Comparison of the in-stream fauna and resources of Tasmanian river reaches lined with willows or with other riparian types.

by

Martin Read B.Sc. (Hons).

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy,
University of Tasmania (July, 1999)
This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information which is duly acknowledged in the text. To the best of my knowledge this thesis contains no material previously published or written by another person, except where due acknowledgment is made in the text.

Access to this thesis

The thesis copy held in the University Library shall be made available for loan and limited copy in accordance with the Copyright Act 1968.
Table of Contents

ABSTRACT ... V

ACKNOWLEDGMENTS ... VII

CHAPTER 1. GENERAL INTRODUCTION .. 1

INTRODUCTION ... 1

CHARACTERISTICS OF Salix spp. ... 2

EXISTING RESEARCH AND ANECDOTAL EVIDENCE OF IN-STREAM EFFECTS OF WILLOWS 4

CORE RESEARCH AREAS .. 6

PROJECT AIMS AND RESEARCH STRATEGY ... 7

RATIONALE FOR THE USE OF SURVEYS IN THIS STUDY ... 8

Overview of approaches in environmental impact assessment ... 8

Approach adopted in this study ... 10

CHAPTER 2. SEASONAL COMPARISONS OF BENTHIC COMMUNITIES ADJACENT TO
RIPARIAN NATIVE EUCALYPT AND INTRODUCED WILLOW VEGETATION 14

INTRODUCTION ... 14

METHODS AND MATERIALS ... 16

Survey Design .. 16

Study sites ... 17

Habitat measurements .. 20

Benthic Macroinvertebrates ... 20

ANALYSIS ... 22

RESULTS .. 23

Habitat conditions .. 23

Biomass of food resources .. 25

The invertebrates ... 28
CHAPTER 3. EFFECTS OF RIPARIAN WILLOW REMOVAL ON MACROINVERTEBRATES AND FISH... 43

INTRODUCTION .. 43

METHODS AND MATERIALS... 46

Survey Design .. 46

Study sites .. 50

Habitat measurements .. 50

Benthic Macroinvertebrates.. 50

Fish ... 51

ANALYSIS ... 52

Habitat conditions .. 52

Macroinvertebrates - shallow rivers ... 52

Macroinvertebrates - deep rivers .. 55

Fish ... 56

RESULTS ... 56

Habitat conditions - shallow reaches ... 56

Habitat conditions - deep reaches ... 57

Biomass of food resources - shallow habitats .. 58

Macroinvertebrates - Densities and community indices for shallow water habitats .. 63

Functional feeding groups - shallow water habitats 64

Community similarity - deep and shallow water reaches 66

Fish ... 73

DISCUSSION ... 79

Shallow Reaches .. 79

Deep reaches .. 85

Fish ... 85

Summary .. 88
CHAPTER 4. THE ROLE OF LARGE WOODY DEBRIS OF DIFFERING RIPARIAN TYPES IN TASMANIAN RIVERS

INTRODUCTION ... 91

SITE SELECTION ... 93

Assessment of LWD standing stocks ... 93
Assessment of LWD as habitat ... 94

METHODS AND MATERIALS .. 96

Assessment of LWD standing stocks ... 96
Analysis of LWD standing stocks ... 99
Assessment of invertebrates ... 100
Analysis of invertebrates ... 101
Assessment of fish ... 103
Analysis of fish ... 103

RESULTS .. 104

LWD standing stocks ... 104
Invertebrates ... 106
Invertebrates-benthic and wood habitats .. 106
Invertebrates-willow vs. native wood ... 109
Invertebrates on native wood under different riparian types .. 112
Relationships between fish and LWD ... 118

DISCUSSION .. 124

LWD standing stocks ... 124
Relationships between invertebrates and LWD ... 127
Relationships between fish and LWD ... 132
Conclusions ... 134
The widespread distribution of willow trees (*Salix fragilis*) has been thought to impact deleteriously on in-stream faunas in south-eastern Australian rivers. This thesis aimed to address some of the speculation in the literature regarding the impacts of willows through three main research areas. Firstly, a survey was used to compare riparian function of willow vegetation to native riparian vegetation and associated impacts on macroinvertebrate populations. Secondly, the same approach was used to examine differences in macroinvertebrate and fish populations between willowed vegetation and reaches where willows has been removed. Finally, the role of willow large woody debris (LWD) in Tasmanian rivers was investigated. This involved a census of large woody debris standing stocks in 142 reaches on Tasmanian rivers. The ecological role of willow LWD was investigated via a comparison of in-stream native wood to willow wood and the associated effects on macroinvertebrate and fish populations. In this thesis, large woody debris (LWD) refers to large organic woody material defined conventionally as greater than 1.0 m in length and 0.1 m in diameter (Gippel, 1995).

The principal effects of willow vegetation on the biota occurred in summer and were due to a combination of shading effects and decreased water quality and alterations to channel morphology in willowed reaches. While reaches in native riparian zones supported higher densities and numbers of taxa, these were significantly lower in willowed reaches. A slight effect was observed in autumn as macroinvertebrate diversity in willowed reaches was lower than native reaches. I concluded that willows act as a poor surrogate for native riparian vegetation.

Comparisons between willowed reaches and reaches where willows had been removed revealed major differences in resources derived from riparian vegetation. Willowed reaches had high organic matter standing stocks and usually low epilithic growth on the substrate. In contrast, removal reaches had lower organic matter standing stocks and higher epilithic biomass. The macroinvertebrate populations reflected these differences. Although no
differences were observed in summary variables such as density or taxon number, differences were found between functional feeding groups. Groupings generally reflected the food sources available in either a vegetated reach with a high organic input and a dense canopy or a non-vegetated reach with no canopy, higher incidental sunlight and therefore a denser epilithic cover. A separate study revealed that in extreme situations willowed reaches are severely impacted with a large decline in water quality and high organic standing stocks eliminating most intolerant taxa. Fish populations at these sites were also depauperate, while at remaining sites fish species showed a strong relationship with their preferred habitat.

Census estimates of woody debris revealed that rainforest vegetation has the highest standing stock of LWD across a spectrum of riparian types. Usually removal of woody native vegetation often in concert with active removal of in-stream LWD accounts for lower wood loadings in the Tasmanian rivers surveyed. Willow LWD is not common in rivers in Tasmania and is a poor ecological substitute for the more complex native debris, which supported higher densities and richness of macroinvertebrate taxa than willow wood; however, both wood types supported similar community composition. LWD provided important habitat for the fish populations surveyed and reduced or negligible standing stocks of LWD corresponded to a reduction in the number and size of particular fish species.

The findings confirm some of the speculations regarding the impact of willows on rivers in south-eastern Australia. Willows were found to be a poor surrogate for native vegetation although they provided important riparian resources in the absence of any vegetation at all. The restoration of riparian zones and selective and strategic removal of willowed vegetation over the long term and replacement with endemic vegetation should minimise the ecological impacts of riparian vegetation removal on macroinvertebrates and fish.
Acknowledgments

I would like to thank my supervisor Dr Leon Barmuta for his advice, assistance and continual support throughout the course of this thesis. His constructive criticism was always appreciated and his support very much valued.

I would also like to thank Dr Peter Davies for his advice and encouragement.

I would like to thank the Land and Water Resources Research and Development Corporation for financial assistance in the form of a Postgraduate Research Scholarship and for top up funding under the National Riparian Program (Sub-Program B1- Sources of Energy) for work on LWD.

I would also like to thank various volunteers who provided technical and field assistance throughout the course of the project. These are Roma Read, Belinda Robson, Ed Chester, Graham O’Meagher, Angela McGaffin, Derek Turnbull, Paul Lewis, Louis Jaclido, David Oldmeadow, Henry Maxwell and Jon Waters.

Thanks to Glen McPherson and David Ratkowsky for assistance with design and analysis.

Special thanks to workmates, Bryce Graham for assistance with analysis and graphical presentation and David Fuller (my boss) for support during the latter stages of this study.

To the numerous property owners who allowed property access to various rivers in the study and the many Landcare groups who provided valuable information and anecdotal evidence on sites studied and willow removal issues.

Finally none of this would have been possible without the continual emotional support and love of my wife Gail to whom I owe the completion of this thesis to. Her ability to single handedly care for our two children Malcolm and Elizabeth is something which I will always treasure in our commitment and love for one another. I cannot thank her enough.
1. General Introduction

Riparian vegetation is recognised as having a key influence on in-stream biological function through shading and inputs of litter (Cummins, 1993), and the relationship between different types of riparian vegetation and the impacts of human disturbance on riparian vegetation has been well documented (Hawkins et al., 1982; Dudgeon, 1989; Quinn et al., 1992b; Townsend et al., 1997). By contrast, far less is known about riparian-stream linkages in Australian lotic systems (Bunn, 1994). In particular, the in-stream impacts of a number of invasive exotic riparian species in rivers have been the subject of much speculation but remain poorly documented with any empirical data, and this situation is exemplified by the widespread introduction of willows (Salix spp.) in many temperate lowland rivers in Australia.

Willows were first introduced to Australasia in the 19th century and are now the dominant riparian tree in many lowland rivers in south-eastern Australia (Mitchell & Frankenberg, 1993; Cremer et al., 1995) and New Zealand (Collier, 1993; Glova & Sagar, 1994; Lester et al., 1994a). Their expansion along rivers is contentious, with willows being promoted for their value in bank stabilisation and “soft” river engineering works by some (e.g. Strom, 1962; Nanninga et al., 1994) or reviled by others because of the hydraulic problems they sometimes cause and their putative impacts on in-stream fauna (e.g. Standing Consultative Committee on river improvement, 1983; Frankenberg, 1995; Ladson et al., 1997). Despite the controversy, there have been very few formal investigations of their in-stream ecological impact (Schulze & Walker, 1997), while the few investigations that have taken place have generally been inconsistent in their findings (Latta, 1974; Besley, 1992; Glova & Sagar, 1994; Lester et al., 1994a). This is probably due to site specificity, with all of the published studies being restricted to a few (generally <3) sites, which are usually located in the same river system. This narrow empirical base prompted this study, where I sought to find general patterns across a variety of small to medium-sized rivers in Tasmania.