Using Fathom® statistical education software in high school to examine students’ acceptance of virtual simulation and use of simulation to model sample size when sampling from large and infinite populations

Anthony Frederick Bill
Bachelor of Engineering (Chemical), Bachelor of Teaching

Submitted in fulfilment of the requirement for the degree of PhD,
University of Tasmania
November, 2012

Declarations, Statement of Co-authorship, Abstract, Acknowledgements, Table of Contents, List of Tables, List of Figures,
Chapters 1 – 5,
References, Acronyms & Initialisations, Glossary, and Mathematical Symbols
Declarations

Declaration of Originality
This thesis contains no material which has been accepted for a degree or diploma by the University or other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Authority of Access
This thesis may be made available for consultation, loan, and limited copying. This permission covers only single copies made for study purposes, subject to the normal conditions of acknowledgment in accordance with the Copyright Act, 1968.

Statement of Ethical Conduct
The research associated with thesis was conducted in accordance with the Human Research Ethics Committee (Tasmania) Network (HERCS) (Approval No. H009790), the Department of Education Tasmania (Ref. 672670), and the Teachers Registration Board of Tasmania Code of Professional Ethics for the Teaching Profession in Tasmania. To the researcher’s and the supervisors’ knowledge no concerns regarding the ethical nature of the study or the personal conduct of the researcher were raised by the schools, the principals, the colleague teachers, parents or the students, HERCS or the Department of Education Tasmania.

Funding
This project was jointly funded by the Australian Research Council (ARC) through an Australian Postgraduate Award Industry (APAI) Linkage project grant (LP0669106) and by the publisher of Fathom software Key Curriculum Press of Emeryville, CA.

Signed, 16th November, 2012

Anthony Frederick Bill
Statement of co-authorship

The following people contributed to the publication of the work undertaken as part of this thesis:

Candidate/author 1 (80%), author 2 (10%), and author 3 (10%)

Author 2 and author 3 co-contributed to the conduct of the study and reviewed the paper.

We the undersigned agree with the above stated "proportion of work undertaken" for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed and dated: Anthony Frederick Bill 27/2/12
Sally Henderson 27/2/12
John Penman 27/2/2012
Abstract

Statistical literacy is regarded as essential for good citizenship, employment, and practical day-to-day living. The ubiquitous nature of data and computers in contemporary society has increased both the need for statistical literacy and the means of developing statistical literacy.

This study investigated students’ acceptance of Fathom® virtual simulation and resampling as a legitimate mathematics tool, the teaching and learning of the explicit determination of sample size when sampling from large populations, and students’ development of use of Fathom statistics education software.

The study was conducted as a three-week long classroom unit of work taught in two Year 9 classes and a detailed study of twelve students in Tasmania, Australia. Pedagogical best practice principles derived from statistics education research guided the study. These included engagement with the big ideas of statistics, active learning and data sets students can understand and value, statistical enquiry that cultivates statistical habits of mind, the use of technology tools that allows students to explore data and concepts, mathematical experiences of substance, provision of a developmental pathway for students to study statistics at more senior years, and authentic assessment.

Fathom was developed for senior high school and tertiary study, and its use in Australian high schools is relatively novel. Students’ unfamiliarity with the software presented at least two challenges: developing acceptance of Fathom’s virtual resampling probability simulator as a legitimate mathematical tool and acquiring basic fluency in the software’s use such that the software was not a constraint on learning. Students’ acceptance of the probability simulator was cultivated purposefully through a process of formal statistical enquiry where students examined the fairness of the Fathom virtual die. Students’ development of use of Fathom re-sampling was examined from the three aspects of key terminology, graphical data representations, and their relationship with Fathom. The principles of instrumental genesis guided the introduction to, and the examination of, students’ use of Fathom.

Sample size is presently ignored in the high school curriculum, and students may complete formal school education with unsophisticated notions of sample size, possibly first acquired in upper primary school. The sample size model \(e = \pm 1/\sqrt{n} \), which
relates the sample size n, to the margin of error e, of the accuracy of measurement, was used in this study. A foremost consideration was that the model was potentially accessible and that students could apply their understanding in a real-life context. Large populations were studied because formal mathematical treatment is relatively simple. Students’ work samples were assessed using the SOLO taxonomy, and situated abstraction was used to observe students’ development of understanding of selected mathematical concepts.

The study concluded that a process of statistical enquiry may be used both to promote acceptance of virtual simulation and to foster the development of statistical “habits of mind.” The sample size model $e = \pm 1/\sqrt{n}$ has application in Year 9 principally to mathematise traditional Law of Large Numbers activities, where the computing power of virtual simulation allows exploration of very large sample sizes. The introduction of re-sampling and the sample size model in Year 9 provides the foundation for the consideration of contextual tasks in more senior school years. The study suggests that Fathom is suitable for Year 9 students, but recommends further research in the use of re-sampling to exploit fully the software’s potential.
Acknowledgements

Many people have been influential during the research and writing of this thesis. I would like to thank the following people for their encouragement and support during this interesting, and occasionally, challenging time.

My partner Louise Oxley, without whose love, loyalty, and steadfast support this thesis would not have been completed. Thank you, my dear friend.

My daughter Emily, who, in the time of this thesis, has grown into a highly talented, intelligent, beautiful, gracious woman of wisdom and maturity.

My co-supervisor Emerita Professor Jane Watson, whose professionalism, dedication, and untiring support throughout the writing of this thesis were astonishing. Thank you Jane.

My co-supervisor Associate Professor Rosemary Callingham, whose sensible strategic advice has been of immense value.

My adviser, Mr. William Finzer, of KCP Technologies, Emeryville CA, who helped shift my gaze to the international community.

My two colleague teachers whose generosity, professionalism, and kindness are gratefully acknowledged.

I would also like to acknowledge and thank:

The students who participated in the study

Colleagues and staff at the University of Tasmania

My colleagues in the wider statistics education research community

The three industry partners The Australian Bureau of Statistics; Key Curriculum Press, USA; and the Noel Baker Centre for School Mathematics, Prince Alfred College, South Australia.
Table of Contents

Declarations iii
Statement of co-authorship v
Abstract vii
Acknowledgements ix
Appendices xvii
Tables xxi
Figures xxv

Chapter 1
Introduction
1.1 Overview 1
1.2 Statistical literacy in the high school curriculum 2
1.3 The research study as a Year 9 mathematics teaching unit 3
1.4 Overview of this study 4

Chapter 2
Literature Review
2.1 Introduction 7
2.2 Theoretical frameworks used in education research 7
 2.2.1 Introduction 7
 2.2.2 World-views and the researcher’s world view 7
 2.2.3 Quantitative, qualitative, and mixed methods research approaches 8
 2.2.4 Scientific Research Approach (SRA) 11
 2.2.5 Criticisms of education technology research 12
 2.2.6 Research validity and triangulation 13
 2.2.7 Section summary and implications for this study 15
2.3 Statistical thinking in society and education 14
 2.3.1 Introduction 15
 2.3.2 Statistical literacy: its importance in society and this study’s definition 16
 2.3.3 Statistical thinking differs from mathematical thinking 17
 2.3.4 Education research and the big ideas of probability and statistics 17
 2.3.5 Curriculum frameworks: sample size is missing 18
 2.3.6 Section summary and implications for this study 19
2.4 Statistics and probability education in the classroom 20
 2.4.1 Introduction 20
 2.4.2 Procedural approaches to statistics education and their limitations 20
 2.4.3 Statistics education – what education research consider best-practice 21
 2.4.4 Cultivating statistical thinking, discourse in the classroom 22
 2.4.5 Students’ notions of data and data distributions 25
 2.4.6 Students’ notions of chance events 28
 2.4.7 Students’ notions of coin and die systems 30
 2.4.8 Students’ notions of sample size 33
 2.4.9 Measurement and measurement error 36
 2.4.10 Sampling as measurement 37
 2.4.11 Mathematical modelling of sample size in the classroom 38
 2.4.12 Three criteria for an alternative large population sample size model 41
 2.4.13 The large population sample size model used in this study 42
2.4.14 Graphical data representations
2.4.14.1 A definition of graph sense
2.4.14.2 The process of graph comprehension
2.4.14.3 Four key factors influencing graph comprehension
2.4.14.4 Summary of graphs
2.4.15 Section summary and implications for this study

2.5 Computer technology and statistics education software
2.5.1 Introduction
2.5.2 An historical perspective
2.5.3 Desirable features in educational software
2.5.4 Computer mini-tools and Fathom
2.5.5 The role of computers and software in the classroom
2.5.6 Theoretical frameworks to introduce technology
2.5.6.1 Instrumental genesis (IG)
2.5.6.2 Situated abstraction
2.5.6.3 Affordance and constraints
2.5.7 Computer simulation and re-sampling
2.5.8 Section summary and implications for this study

2.6 Assessing students’ learning
2.6.1 Curriculum framework
2.6.2 Rubrics and student portfolios
2.6.3 Hierarchical assessment models
2.6.4 Assessing thinking using SOLO
2.6.5 Instrumental genesis, situated abstraction, affordances and constraints
2.6.6 Section summary and implications for this study

2.7 Implications for this research study and the three research questions

Chapter 3 Methodology
3.1 Introduction
3.2 The design of the study
3.2.1 Overview
3.2.2 The four overlapping phases of the classroom study
3.2.3 The study presented as a summary of the teaching sequence
3.2.4 The detailed study of six student pairs
3.2.5 The time-line of the study
3.2.6 The sample of participants
3.2.7 The research settings
3.2.8 Summary of data collection instruments
3.2.9 Six statistical tools or concepts introduced by the researcher
3.2.10 Principles used to introduce Fathom into the classroom
3.2.11 Instructional and peer support
3.2.12 Assessment frameworks
3.2.13 Ethical considerations
3.2.14 Data validity

3.3 Classroom teaching sequence work samples
3.3.1 Introduction and the four phases of the classroom study
3.3.2 Phase 1: Pre-study items and introductory exploratory data activity
3.3.2.1 Basic mathematical skills
3.3.2.2 Physical die 103
3.3.2.3 Data spread of a class set of a multiple coin toss 103
3.3.2.4 Sample size for a national and state election survey (Pre-test) 104
3.3.2.5 New York marathon – introduction to Fathom 104

3.3.3 Phase 2: Developing acceptance of the Fathom dice simulator 106
3.3.3.1 Home-made die 107
3.3.3.2 Develop a fairness measure 107
3.3.3.3 Whole class discussion 108
3.3.3.4 Fairness measure homework 109
3.3.3.5 Fathom virtual die – first Fathom simulation 109
3.3.3.6 Compare three dice using GICS 110

3.3.4 Phase 3: Large population sample size model 111
3.3.4.1 The effect of sample size on the fairness measure 112
3.3.4.2 Coin measures 50 & 500 tosses of a coin homework – Part 1 114
3.3.4.3 Coin measures 50 & 500 tosses of a coin – Part 2 114
3.3.4.4 Physical coin toss (cumulative proportion of heads) 115
3.3.4.5 Fathom virtual 50 & 500 tosses of a coin simulation 115
3.3.4.6 Compare intuition of a 50-coin toss with a Fathom coin toss 116
3.3.4.7 Mt. Wellington cable-car (naïve) 116
3.3.4.8 Large population sample model \(e = \pm 1/\sqrt{n} \) 117
3.3.4.9 Public opinion surveys (whole-class activities) 119

3.3.5 Phase 4: Post-study assessment 119
3.3.5.1 50 students in a Year 9 maths class 120
3.3.5.2 Federal election survey: Howard versus Rudd 121
3.3.5.3 Mixed up measures dot plots 121
3.3.5.4 Mathematics of the sample size model 121
3.3.5.5 Badly biased coin (Post-study assessment Q. 4) 122
3.3.5.6 Mt. Wellington cable car (Post-study assessment Q. 5) 122
3.3.5.7 Fathom basic skills test 122
3.3.5.8 Sample size national and state election survey (follow-up) 123

3.4 Students’ post-study questionnaire and test 123
3.5 Researchers professional journal 124
3.6 Colleague teachers’ post-study interview 124
3.7 Detailed study research items 125
3.7.1 Overview 125
3.7.2 Part A: Die one face, or six faces showing simultaneously 128
3.7.3 Part B: Coin one side, or both sides showing at once 128
3.7.4 Part C: The effect of sample size on preference for data representation 129
3.7.5 Part D: Three potentially biased virtual coins 129
3.7.6 Part E: Graphs and the Law of Large Numbers 130
3.7.7 Part F: Cumulative proportion of heads graph and sample size 131
3.7.8 Part G: Measures dot plots 50 & 500 on one graph 131
3.7.9 Part H: For and Against – contextual sampling task 131

3.8 Data analysis 132
3.8.1 Data storage and processing 132
3.8.2 Evaluation of multiple choice or correct / incorrect items 132
3.8.3 Evaluation of students’ worksheets using SOLO 132
3.8.4 Evaluation of items using instrumental genesis and situated abstraction 135
3.8.5 Evaluation of post-study student questionnaires 137

xiii
Chapter 4

<table>
<thead>
<tr>
<th>Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>145</td>
</tr>
<tr>
<td>4.2 Pre-study assessment</td>
<td>146</td>
</tr>
<tr>
<td>4.2.1 Basic mathematical skills (Pre-test Q. 1 (a–f) & Q. 5)</td>
<td>146</td>
</tr>
<tr>
<td>4.2.2 Physical die (Pre-test Q. 4)</td>
<td>146</td>
</tr>
<tr>
<td>4.2.3 Data spread of class set of a multiple coin toss (Pre-test Q. 2 & 3)</td>
<td>148</td>
</tr>
<tr>
<td>4.2.4 Sample size for a national and state election survey (Pre-test Q.6 & 7)</td>
<td>150</td>
</tr>
<tr>
<td>4.2.5 New York marathon – introduction to Fathom</td>
<td>153</td>
</tr>
<tr>
<td>4.2.6 Summary of findings</td>
<td>156</td>
</tr>
<tr>
<td>4.3 Research Q.1: Developing acceptance of the Fathom die simulator</td>
<td>157</td>
</tr>
<tr>
<td>4.3.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>4.3.2 Home-made die</td>
<td>158</td>
</tr>
<tr>
<td>4.3.3 Develop a fairness measure</td>
<td>159</td>
</tr>
<tr>
<td>4.3.4 Fairness measure homework</td>
<td>161</td>
</tr>
<tr>
<td>4.3.5 Fathom virtual die – first Fathom simulation</td>
<td>163</td>
</tr>
<tr>
<td>4.3.6 Compare three dice using GICS</td>
<td>163</td>
</tr>
<tr>
<td>4.3.7 Students’ post-study questionnaire items</td>
<td>167</td>
</tr>
<tr>
<td>4.3.8 Detailed study workshop</td>
<td>169</td>
</tr>
<tr>
<td>4.3.9 Colleague teacher interview</td>
<td>170</td>
</tr>
<tr>
<td>4.3.10 Summary of findings for Research question 1</td>
<td>171</td>
</tr>
<tr>
<td>4.4 Research Q.2: Is $e = \pm 1/\sqrt{n}$ an accessible sample size model?</td>
<td>173</td>
</tr>
<tr>
<td>4.4.1 Introduction</td>
<td>173</td>
</tr>
<tr>
<td>4.4.2 Students’ background knowledge of the sample size function</td>
<td>175</td>
</tr>
<tr>
<td>4.4.3 The effect of sample size on the fairness measure</td>
<td>175</td>
</tr>
<tr>
<td>4.4.4 Physical coin toss (The Law of Large Numbers)</td>
<td>178</td>
</tr>
<tr>
<td>4.4.5 Coin Measures 50 & 500 tosses of a coin homework – Part 2</td>
<td>179</td>
</tr>
<tr>
<td>4.4.6 Fathom virtual 50 & 500 tosses of a coin simulation</td>
<td>182</td>
</tr>
<tr>
<td>4.4.7 Compare intuitive sense of 50 tosses of a coin with a Fathom coin toss</td>
<td>185</td>
</tr>
<tr>
<td>4.4.8 Mt. Wellington cable-car (naïve response)</td>
<td>186</td>
</tr>
<tr>
<td>4.4.9 Large population sample size model $e = \pm 1/\sqrt{n}$</td>
<td>189</td>
</tr>
<tr>
<td>4.4.10 Federal election survey: Howard and Rudd (Post-study test Q. 2)</td>
<td>191</td>
</tr>
<tr>
<td>4.4.11 Mathematics of the sample size model (Post-study test Q. 3 b & c)</td>
<td>193</td>
</tr>
<tr>
<td>4.4.12 Mt. Wellington cable-car (Post-study test Q. 4)</td>
<td>195</td>
</tr>
<tr>
<td>4.4.13 Sample size for a national and state election survey (Follow-up test)</td>
<td>197</td>
</tr>
<tr>
<td>4.4.14 Students’ development on the two contextual tasks</td>
<td>199</td>
</tr>
<tr>
<td>4.4.15 Students’ post-study questionnaire items</td>
<td>203</td>
</tr>
<tr>
<td>4.4.16 Detailed study cumulative proportion of heads</td>
<td>205</td>
</tr>
<tr>
<td>4.4.17 Detailed study For and Against – contextual sampling task</td>
<td>209</td>
</tr>
<tr>
<td>4.4.18 Colleague teacher interviews</td>
<td>215</td>
</tr>
<tr>
<td>4.4.19 Summary of findings for Research question 2</td>
<td>216</td>
</tr>
<tr>
<td>4.5 Research Q.3: Fathom re-sampling as a tool for high school</td>
<td>220</td>
</tr>
<tr>
<td>4.5.1 Introduction</td>
<td>220</td>
</tr>
<tr>
<td>4.5.2 Re-sampling terminology</td>
<td>222</td>
</tr>
</tbody>
</table>
4.5.2.1 Develop the fairness measure 222
4.5.2.2 Coin measures 50 & 500 tosses of a coin homework – Part 1 222
4.5.2.3 50 students in a Year 9 maths class 224
4.5.2.4 Students’ post-study questionnaire items 226
4.5.2.5 Detailed study 226
4.5.2.6 Summary of findings for re-sampling terminology 229
4.5.3 Measures dot plots 230
4.5.3.1 Female race-times (Pre-test Q.5) 231
4.5.3.2 Compare three dice using GICS 231
4.5.3.3 Sample size, fairness measure and 50 & 500 tosses of a coin 232
4.5.3.4 Badly biased coin 235
4.5.3.5 Mixed-up measures dot plots 237
4.5.3.6 Students’ post-study questionnaire items 238
4.5.3.7 Detailed study 239
4.5.3.8 Colleague teacher interview 241
4.5.3.9 Summary of findings for measures dot plots 242
4.5.4 Students’ relationship with Fathom 243
4.5.4.1 Students’ procedural use of Fathom in the classroom 244
4.5.4.2 Four aspects of learning promoted by Fathom 247
4.5.4.3 Detailed study – students’ perception of Fathom 251
4.5.4.4 Students’ post-study questionnaire items 252
4.5.4.5 Detailed study – students’ recall of Fathom after 6 weeks 253
4.5.4.6 Colleague teacher interview 255
4.5.4.7 Summary of findings for students’ relationship with Fathom 255
4.5.5 Summary of findings for Research question 3 256
4.6 Chapter summary

Chapter 5 Discussion and Implications

5.1 Introduction 262
5.2 Evidence that the study was conducted as intended 262
5.3 Research Q. 1: Developing acceptance of the Fathom simulator 263
5.4 Research Q. 2: An accessible sample size model 268
5.5 Research Q. 3: Fathom re-sampling as a tool for high school 276
5.5.1 Re-sampling terminology 276
5.5.2 Measures dot plots 279
5.5.3 Students’ relationship with Fathom 283
5.6 General discussion of the study 289
5.7 Limitations of the study 292
5.8 Implications of the study 294
5.8.1 For teachers 294
5.8.2 For statistics education researchers 298
5.8.3 For Fathom software developers 300
5.8.4 For teaching resources developers 301
5.9 Summary 303
References 305
Acronyms and initialisations 339
Glossary 340
Mathematical symbols 344
Appendices

Appendix A Classroom study materials

Student worksheets
A.1 Pre-test
A.2 New York Marathon – introduction to Fathom
A.3 Home-made die
A.4 Factory-made die
A.5 Fairness measure homework
A.6 Fathom virtual die – first Fathom simulation
A.7 Compare three dice using GICS
A.8 The effect of sample size on the %fairness measure – boys’ version
A.9 The effect of sample size on the %fairness measure – girls’ version
A.10 Coin measures 50 & 500 tosses of a coin homework
A.11 Physical coin toss (cumulative proportion of heads)
A.12 Fathom virtual 50 & 500 tosses of a coin simulation
A.13 Mt. Wellington cable-car (naïve)
A.14 Large population sample size model
A.15 Post-study test
A.16 Fathom basic skills test
A.17 National and state election survey (follow-up test)
A.18 Students’ post-study questionnaire and test

Lesson MS-PowerPoint presentations – Boys’ class
A.19 Lesson 0 Introduction and pre-testing
A.20 Lesson 1 Exploratory data analysis using Fathom
A.21 Lesson 2 Test the fairness of physical dice
A.22 Lesson 3 Fathom virtual die simulation
A.23 Lesson 4 Compare three dice using GICS
A.24 Lesson 5 The effect of sample size on the %fairness measure
A.25 Lesson 6 Fathom virtual coin 50 & 500 tosses simulation
A.26 Lesson 7 Test the Large population sample size model
A.27 Lesson 8 Use the Large population sample size model
A.28 Lesson 9 Post-study assessment

Lesson plans – Boys’ class
A.29 Lesson 0 Introduction and pre-testing
A.30 Lesson 1 Exploratory data analysis using Fathom
A.31 Lesson 2 Test the fairness of physical dice
A.32 Lesson 3 Fathom virtual die simulation
A.33 Lesson 4 Compare three dice using GICS
A.34 Lesson 5 The effect of sample size on the %fairness measure
A.35 Lesson 6 Fathom virtual coin 50 & 500 tosses simulation
A.36 Lesson 7 Test the Large population sample size model
A.37 Lesson 8 Use the Large population sample size model
A.38 Lesson 9 Post-study assessment
A.39 Lesson 10 Follow-up testing
Appendix B Ethics documentation
B.1 Full application Human Research Ethics Committee
B.2 Minimum risk application Human Research Ethics Committee
B.3 Approval Human Research Ethics Committee (Tasmania) Network
B.4 Department of Education application and approval
B.5 Information letter to school principals
B.6 Information letter to colleague teachers
B.7 Information letter to parents – detailed study
B.8 Information letter to students – classroom study
B.9 Information letter to students – detailed study
B.10 Consent form – school principal
B.11 Consent form – colleague teacher
B.12 Consent form – parent of student in detailed study
B.13 Consent form – student in detailed study
B.14 Signed consent forms – detailed study
B.15 Final report H009790 to the Human Research Ethics Committee
B.16 Final and closing ethics report H009790 approved

Appendix C Colleague teacher interview protocols and transcripts
C.1 Colleague teacher interview protocol
C.2 Transcript of interview with colleague teacher of all-male class
C.3 Transcript of interview with colleague teacher of all-female class
C.4 Colleague teacher interviews summary by major themes

Appendix D Detailed study interview protocols and transcripts
D.1 Detailed study student interview protocol
D.2 Transcript of student pair N2610H R1706D Parts E–G
D.3 Transcript of student pair N2701B Y1504L Parts E–H
D.4 Transcript of student pair S1001J T0612M Parts E–H
D.5 Transcript of student pair E1709S R1610A Parts E–H
D.6 Transcript of student pair E2611G R2408I Parts E–H
D.7 Transcript of student pair Y0304T Y0706J Parts E–H
D.8 Summary of major themes by student pair
D.9 Summary of students’ use of Fathom in the detailed study

Appendix E Professional journal
E.1 Professional journal of all-female class
E.2 Professional journal of all-male class

Appendix F Selected students’ work samples and exemplars
F.1 Compare three dice using GICS – students exemplars in full
F.2 Male students’ responses to New York Marathon task
F.3 Female students’ responses to the New York Marathon task
F.4 Male students’ responses to the Fathom virtual die – first Fathom simulation (Appendix A.6)
F.5 Female students’ responses to the Fathom virtual die – first Fathom simulation (Appendix A.6)
F.6 Male students’ responses to the effect of sample size on the %fairness measure – boys’ version (Appendix A.8)
F.7 Female students’ responses to the effect of sample size on the %fairness measure – girls’ version (Appendix A.9)
F.8 Male students’ responses to Fathom basic skills test (Appendix A.16)
F.9 Female students’ responses to Fathom basic skills test (Appendix A.16)
F.10 Male students’ responses to the post-study assessment
F.11 Female students’ responses to the post-study assessment

Appendix G Analysis of selected students’ work
G.1 SOLO evaluation of students’ responses to female race-times
G.2 Analysis of the pre-test
G.3 Example of post-study portfolio assessment

Appendix H Sample size model
H.1 Derivation of the large population sample size model
H.2 A comparison of the 10% and the large population sample size model
H.3 The small population sample size model

Appendix I Learning trajectories

Appendix J Articles published during candidature