PHOTOSYNTHETIC PERFORMANCE AND PRODUCTIVITY OF PHYTOPLANKTON IN THE SOUTHERN OCEAN

by

Wee Cheah, B.Sc. Hons, M.Sc.

Submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

Institute for Marine and Antarctic Studies
University of Tasmania
September, 2012
I declare that this thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Signed: _______________________
       Wee Cheah

Date: ________________
This thesis may be reproduced, archived, and communicated in any material form in whole or in part by the University of Tasmania or its agents, and made be made available for loan and copying in accordance with the Copyright Act 1968.

Signed: __________________________

Wee Cheah

Date: __________________________
Abstract

Marine phytoplankton account for approximately half of global primary production, an amount equivalent to their terrestrial counterpart. These short-lived organisms, with turnover rates between one and three weeks, support nearly all life in the ocean and have a profound effect on global biogeochemical cycles and climate. The connection between marine phytoplankton and climate is intimate and changes to either will profoundly affect the other. Over the years, due to high operational costs and distance from major human settlements, the Southern Ocean has been the least studied ocean, despite its significance in the distribution of nutrients to the world oceans, especially the lower latitudes, and controlling global climate. In order to capture the response of the phytoplankton to environmental change across the vast Southern Ocean, a method with high spatio-temporal resolution is desirable. By focusing on the Australian sector of the Southern Ocean, this dissertation examines the productivity and physiology of natural phytoplankton communities in situ using the fast repetition rate (FRR) fluorometry technique.

The FRR fluorometry technique was used to derive direct estimation of in situ primary productivity in the Southern Ocean during the SAZ-Sense (Sub-Antarctic Zone Sensitivity to Environmental Change) voyage in Jan-Feb 2007. A statistically significant correlation between FRR- and $^{14}$C-derived primary production was observed ($r^2 = 0.85$, slope = $1.23\pm0.05$, $p < 0.01$, $n = 85$) but the relationship between the methods differed vertically and spatially, mainly due to the effect of non-photochemical quenching under high irradiance. This indicates the FRR fluorometry technique can be used to determine in situ primary productivity in the Southern Ocean but care should be taken in the interpretation of the data.

In addition to the primary production measurements, the photosynthetic performance of phytoplankton was investigated to provide a better understanding of how natural phytoplankton communities acclimate to different environmental variables, especially in the iron-replete Subantarctic Zone (SAZ) and iron-depleted Polar Frontal Zone (PFZ). High effective
photochemical efficiency of photosystem II ($F_{v}'/F_{m}' > 0.4$), maximum photosynthesis rate ($P_{max}^R$), light-saturation intensity ($E_k$), maximum rate of photosynthetic electron transport ($1/\tau_{PSII}$), and low photoprotective pigment concentrations observed in the SAZ correspond to high chlorophyll $a$ and iron concentrations. In contrast, phytoplankton in the PFZ exhibits low $F_{q}'/F_{m}'$ ($\sim 0.2$) and high concentrations of photoprotective pigments under low light environment. Strong negative relationships between iron, temperature, and photoprotective pigments demonstrate that cells were producing more photoprotective pigments under low temperature and iron conditions, and are responsible for the low biomass and low productivity measured in the PFZ.

FRR fluorometry data from 31 transects collected aboard MV I’Astrolabe between 2002 and 2009, were used to assess the photosynthetic performance of phytoplankton along a repeated transect from Hobart (42.8°S, 147.3°E) to the French Antarctic station, Dumont d’Urville (66°S, 140°E). The maximum photochemical efficiency of photosystem II ($F_{v}/F_{m}$) values were high in the Subtropical Zone and water close to the Antarctic continent, but low in the PFZ. Spring $F_{v}/F_{m}$ were higher than other seasons, suggesting higher nutrient supply. High $F_{v}/F_{m}$ observed in the Subtropical Zone and Antarctic Zone is consistent with moderate to high iron concentrations in these regions. Overall, phytoplankton photophysiology in the Southern Ocean is governed by nutrient distributions, especially iron, which are affected by atmospheric and oceanic physical processes.
Acknowledgements

This thesis would not be realized without the supports and helps from many individuals. First, I would like to thank my supervisors, Andrew McMinn and Klaus Meiners for all the scientific conversations over the years, their untiring support throughout this project, and assistance with the thesis preparation. I am truly indebted to my primary supervisor, Andrew McMinn, for his expert advice, sense of humour, dedication, and financial support. I really enjoy and appreciate his supervision and guidance.

Thanks to the officers and crews of RSV Aurora Australis, MV l’Astrolabe, Australian Antarctic Divisions (AAD) gear officers, and fellow expeditioners and volunteers for their support during my three amazing Antarctic experiences. I acknowledge Mark Rosenberg for the oceanography data, Neil Johnson, Alicia Navidad, John Akl, Kristina Paterson for the macronutrients data, Andrew Bowie and Delphine Lannuzel for making the iron data available, Sergei Sokolov and Steve Rintoul for the oceanographic fronts data.

Thanks to all staff and students at the Institute of Antarctic and Southern Ocean Studies (IASOS), Institute for Marine and Antarctic Studies (IMAS), and Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC) for providing such a great working atmosphere. In particular, thanks to Margaret Hazelwood, Juliab Labour, Patti Virtue, Kelvin Michael, Kate Maloney, Denbeigh Amstrong, Jemina Stuart-Smith, Bernadette Ulbrich-Hooper for their their assistance, and Rob Johnson, Pier van der Merwe, Alex Fraser, Miguel de Salas, Helena Baird, Tom Remenyi, Aylce Hancock, Jake van Oosterom, Ming Fu, Szlina Salleh, Mahadi Mohammad, Leonie Jordan, Krystyna Saunders, Andrew Martin, Fraser Kenney, Laura Smith, Simon Geard, and Simon Reeves, for the many conversations on phytoplankton, oceanography, fluorometers, and computing.

I would like to thank Brian Griffiths (CSIRO), Simon Wright (AAD), Peter Strutton (IMAS), Karen Westwood (AAD), and Lesley Clementson (CSIRO), for their discussion and contribution to my manuscripts.
I would also like to thank Tony Fenton and his parents (Geoff and Janet), Glenda Ashmore, my landlord Michael Fenton, for their company and kindness, making my life in Tassie such a memorable one. To my Ariba Amoebas underwater team mates (Rob, Yumi, Alex, Dave, Duncan, Gale, Simon, Simon, Sarah, Alyce, Chris, Jake, Amelie, Dachlen, Michael), thanks for the wonderful games.

Finally, I would like to dedicate this thesis to my family and Hiroko for their understanding and encouragement over the years.

This work was supported financially by the Australian Government through the Australian Antarctic Science Grants Project (#2720 and #1307) and ACE CRC. I would also like to thank ACE CRC for providing me a PhD scholarship.
Publications resulting from research completed during candidature

Published/in revision

Refereed:


Statement of Co-Authorship

The following people contributed to the publication of the work undertaken as part of this thesis:

Paper 1/Chapter 2 (Assessing Sub-Antarctic Zone primary productivity from fast repetition rate fluorometry):

- **Wee Cheah** (81%)
- Andrew McMinn (6%)
- F. Brian Griffiths (4%)
- Karen J. Westwood (3%)
- Simon W. Wright (3%)
- Ernesto Molina (1%)
- Jason P. Webb (1%)
- Rick van den Enden (1%)

Paper 2/Chapter 3 (Dynamic influences of iron and temperature on phytoplankton photophysiology in the changing Sub-Antarctic Zone):

- **Wee Cheah** (81%)
- Andrew McMinn (6%)
- F. Brian Griffiths (4%)
- Karen J. Westwood (3%)
- Simon W. Wright (3%)
- Lesley A. Clementson (3%)

Paper 3/Chapter 4 (Seasonal to interannual variability in phytoplankton photosynthetic performance in the Southern Ocean, 2002-2009):

- **Wee Cheah** (82%)
- Andrew McMinn (8%)
- Peter G. Strutton (6%)
- F. Brian Griffiths (4%)

Details of the authors’ roles:

Wee Cheah designed and implemented the experiment, performed data analysis and manuscript writing.

Andrew McMinn contributed with project development and refinement, technical and conceptual discussion, and document preparation.
Brian Griffiths and Peter Strutton assisted with technical and conceptual aspects of the papers, as well as document preparation.

Karen Westwood, Simon Wright, and Lesley Clementson provided data and assisted in document preparation.

Ernesto Molina, Jason Webb, and Rick van den Enden provided assistance in data collection.

We the undersigned agree with the above stated proportion of work undertaken for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed: __________________________
Andrew McMinn
Supervisor
Institute for Marine and Antarctic Studies
Date: __________________________

Signed: __________________________
Mike Coffin
Head of School
Institute for Marine and Antarctic Studies
Date: __________________________
# Table of Contents

Table of Contents xi

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Marine primary producers ................................. 1

1.2 The Southern Ocean ..................................... 2

1.3 Measuring primary production .............................. 3

1.4 Fast repetition rate fluorometry ........................... 4

1.5 Thesis objectives ........................................ 7

2 Assessing Subantarctic Zone primary productivity from fast repetition rate fluorometry 8

2.1 Abstract .................................................. 8

2.2 Introduction .............................................. 9

2.3 Materials and methods .................................... 11

2.3.1 Sampling ............................................... 11

2.3.2 FRR measurements .................................... 14

2.3.3 $^{14}$C measurements ................................ 14

2.3.4 FRR primary productivity model ....................... 16

2.3.5 Data analysis .......................................... 17

2.4 Results .................................................. 17

2.4.1 Hydrological conditions ................................. 17

2.4.2 Variable fluorescence measurements ..................... 18

2.4.3 Chlorophyll $a$, productivity and macronutrients .......... 18

2.4.4 FRR and $^{14}$C primary productivity estimates ............ 21

2.5 Discussion .............................................. 21

2.5.1 Variability of fluorescence measurements ................ 21

2.5.2 Primary productivity SAZ-West, SAZ-East and PFZ .......... 23

2.5.3 FRR- and $^{14}$C-based productivity ...................... 25

2.6 Conclusion ............................................ 28

3 Dynamic influences of iron and temperature on phytoplankton photophysiology in the changing Sub-Antarctic Zone 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Abstract</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Materials and Methods</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Hydrography</td>
<td>33</td>
</tr>
<tr>
<td>3.3.2</td>
<td>FRR Fluorometry</td>
<td>34</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Photosynthesis-Irradiance Incubations</td>
<td>35</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Spectral Absorption and Pigments</td>
<td>36</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Statistics</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Results</td>
<td>37</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Hydrographic Conditions</td>
<td>37</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Photosynthetic Parameters</td>
<td>38</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Phytoplankton Pigment, Absorption and Community Structure</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Discussion</td>
<td>46</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Photoacclimation of Phytoplankton in the SAZ and PFZ</td>
<td>46</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Influence of Iron and Temperature on Photoacclimation</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>Seasonal to interannual variability in phytoplankton photosynthetic performance in the Southern Ocean, 2002-2009</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Abstract</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Data and analysis</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Results</td>
<td>58</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Hydrographic properties</td>
<td>58</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Trends in $F_v/F_m$</td>
<td>59</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Diurnal $F_v/F_m$ patterns</td>
<td>62</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The link between $F_v/F_m$ and environmental variables</td>
<td>64</td>
</tr>
<tr>
<td>4.5</td>
<td>Discussion</td>
<td>66</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Trends in $F_v/F_m$</td>
<td>66</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Diurnal $F_v/F_m$ patterns</td>
<td>69</td>
</tr>
<tr>
<td>4.5.3</td>
<td>$F_v/F_m$ and environmental variables</td>
<td>70</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>Overall summary and conclusion</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary</td>
<td>72</td>
</tr>
</tbody>
</table>

Bibliography 74