An economic evaluation of management strategies for the Tasmanian rock lobster fishery

by

Caleb Gardner

Economics and Finance

Submitted in fulfilment of the requirements for the degree of Master of Economics

University of Tasmania, November 2012
Declaration of Originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Caleb Gardner

Date:

Authority of Access

This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Statement regarding published work contained in thesis

The publishers of the paper comprising Chapter 2 (Systems to maximise economic benefits in lobster fisheries) hold the copyright for that content, and access to the material should be sought from Blackwell Publishing. The publisher of Appendices 2 and 3 (Biological Modelling of Translocation as a Management Tool for a Rock Lobster Fishery; and The Economic Feasibility of Translocating Rock Lobsters to Increase Yield) hold the copyright for that content, and access to the material should be sought from Taylor & Francis Publishing.

The remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Statement of Co-Authorship

The following people and institutions contributed to the publication of the work undertaken as part of this thesis:

Paper 1 (Chapter 2): “Systems to maximise economic benefits in lobster fisheries”

Candidate (70%), Author 2 (Sherry Larkin1, 15%), Author 3 (Juan Carlos Seijo2, 15%)

1Food and Resource Economics Department, Institute of Food and Agricultural Sciences, University of Florida, USA.
2School of Natural Resources, Marist University of Merida, Mexico
Candidate developed the paper concept, structure and the majority of the text.

Author 2 and Author 3 provided expertise on components dealing with Caribbean spiny lobster.

Candidate developed all figures with the exception of a photograph supplied by Author 2.

Paper 2 (Appendix 2): “Biological Modelling of Translocation as a Management Tool for a Rock Lobster Fishery”

Candidate (80%), Author 2 (Ingrid van Putten, 20%)
Candidate developed the paper concept, structure and the majority of the text.
Author 2 assisted with refinement and presentation.

Paper 3 (Appendix 3): “Systems to maximise economic benefits in lobster fisheries”

Candidate (60%), Author 2 (Ingrid van Putten, 40%)
Candidate developed the paper concept, structure and the majority of the text.
Author 2 contributed to its formalisation, development and presentation

We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed: ___________________ ___________________
Dr Sarah Jennings Prof John Tisdell
Supervisor Head of School
School of Economics and Finance School of Economics and Finance
University of Tasmania University of Tasmania

Date:_____________________

Statement of Ethical Conduct

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.
Acknowledgements

This project was conducted through the School of Economics and Finance, University of Tasmania with the support and assistance of:

- the Tasmanian Rock Lobster Fishermen’s Association;
- the Australian Seafood Cooperative Research Centre;
- the Fisheries Research and Development Corporation; and
- the Australian Fisheries Economics Network.

Special mention is made of the assistance of some people in industry and government who helped initiate the research and drive adoption of outputs. In many cases this involved dealing with difficult issues in emotive and sensitive industry meetings: Hilary Revill (DPIPWE); Rodney Treloggen, John Sansom and Mal Maloney (TRLFA); Ian Cartwright (Thalassa Consulting); and Ian Heathorn (Red Rock Lobster). Valuable assistance was also provided by the many members of the SPOC committee of the TRLFA and the CFAC.

Research help and support was provided by my higher degree supervisors, Dr Sarah Jennings (who first inspired me through several undergraduate units), and Prof John Tisdell. Ingrid van Putten, Klaas Hartmann, Bridget Green and Andre Punt also helped me complete various aspects of the research.

Lastly a big thank you to my family: Sha-sha, Alexander and Marie. They’ve been wonderfully understanding and supportive while I’ve worked on this…and I’m looking forward to more time with them.
Abstract

This thesis summarises research on the use of economic approaches in management decision making in the Tasmanian rock lobster fishery. Lobster fisheries globally tend to be well researched and data-rich yet economics is not widely integrated in the management process. This is surprising given that they supply a luxury food market and the entire supply chain is focussed on economic benefit. Lobster fisheries also tend be resilient to recruitment overfishing (Pollock, 1993), which means the basic management objective of biological sustainability tends to be easily met so there is scope to consider other goals of management.

The use of economics in lobster fishery management is reviewed for fisheries globally. In some lobster fisheries, economic benefit is formally measured and reported as “sustainable economic yield”, which is the long-run, sustainable revenue from harvests minus the costs of harvesting. Reporting of economic yield does not always imply the use of this data in management decision processes, however there are cases where maximum economic yield (MEY) is used as a formal target including in Australian and New Zealand fisheries for Panulirus cygnus, P. ornatus and Jasus edwardsii. Bioeconomic models that combine stock, cost and price information are now being used in lobster fisheries including P. interruptus, P. argus, P. cygnus, J. edwardsii and Homarus americanus to evaluate regulations such as catch limits, season length, gear limits, and type. Economic theory has also been influential in the evolution of management systems used to constrain catch, in particular through the increased use of market-based and rights-based systems. These systems aim to provide incentives and mechanisms for the transfer of catch to more efficient operators and reward for conservative stock management that protects future harvests. Economic approaches can be used to resolve resource sharing issues in lobster fisheries with most research dealing with recreational and commercial interactions.

A bioeconomic analysis of the Tasmanian rock lobster Jasus edwardsii fishery was conducted using a length- and sex-based model. The model was spatially and temporally structured to account for differences in costs of fishing and price. The analysis concluded that the current total allowable commercial catch (TACC) was too high to maximise economic yield and left the industry vulnerable to temporal changes in productivity. Alternative pathways to lower TACCs were explored but although these affected economic yield, differences were minor. Despite operating under ITQ management for over a decade,
the presence of tradeable catch shares was insufficient for industry to motivate changes in the TACC to target MEY. Industry and government were motivated to exercise stewardship, in terms of acting to prevent stock collapse, but were reluctant to accept that economic yield and asset values could increase with lower catches. This bioeconomic analysis of different harvest strategies proved valuable in this debate, demonstrating a need for formal economic analysis as part of the suite of information used for setting TACCs even with the incentives provided by ITQs.

The bioeconomic modeling approach was also used to examine the feasibility of a novel approach to increase productivity in the Tasmanian rock lobster fishery, which was to translocate lobsters from slow growth areas to faster growth areas. Change in stocks in response to translocation was assessed in comparison to the change in TACC that would be required to produce the same effect. These operations appeared viable with strongly positive net present value. When combined with quota management, a translocation of 100,000 lobsters per annum improved most performance measures on a similar scale as would be achieved by a reduction in the total allowable catch of around 10%. This conclusion held broadly across total biomass, legal sized biomass, biomass of large lobsters (>145 mm CL), catch rates and egg production. Economic outcomes were summarised using the discounted cash flow method. Market capitalization of quota units was currently estimated at $210 million (10507 units @ $20,000). Ongoing translocations would be expected to increase catch rates so that costs would decline for the same revenue. The discounted cash flow effect of this change on market capitalisation was estimated at an increase of $47.4 million ($4515 per unit).

The research presented here led to management reform in the Tasmanian rock lobster fishery. New performance measures and target reference points were developed and adopted by Government, which now target MEY. The industry voted for lower TACCs on the basis of the bioeconomic model outputs presented here and by March 2012 had led to recovery in catch rates, increase in quota lease price, and increase in quota asset values ($84 million increase in market capitalisation). Translocation has been adopted for a commercial scale trial (100,000 lobsters per annum) with the first release occurring in February 2012. This was funded by industry through a voluntary increase in their license fee, in response to the research presented here.

Table of Contents

1. General Introduction .. 9
 References .. 14

2. Systems to maximise economic benefits in lobster fisheries .. 16
 Abstract .. 16
 Introduction .. 16
 Economic concepts used in lobster fishery management ... 17
 Bioeconomic modelling .. 21
 Lobster fishery management systems .. 24
 Resource sharing and allocation of lobster stocks .. 36
 Developing Issues in Lobster Fishery Economics ... 42
 Conclusions ... 48
 References ... 50

3. Estimating economic yield in an ITQ managed lobster fishery 58
 Abstract .. 58
 Introduction .. 58
 Methods ... 60
 Results ... 68
 Discussion ... 73
 References ... 76

4. Bioeconomic model based evaluation of translocation ... 79
 Abstract .. 79
 Introduction .. 80
 Methods ... 82
 Results ... 87
 Discussion ... 96
 References ... 99

5. General Discussion ... 101
 References ... 104

Appendix 1: Population dynamics model structure .. 105

Appendix 2: Biological modelling of translocation as a management tool for a rock lobster fishery ... 117
 Abstract .. 117
Appendix 3: The economic feasibility of translocating rock lobsters to increase yield

Introduction ... 137
Abstract .. 137
Introduction ... 137
Methods .. 139
Results .. 145
Conclusions ... 153
References ... 155