The life-history ecology of *Platycephalus bassensis* and *Nemadactylus macropterus*

Alan Richard Jordan B.Sc (Hons)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, University of Tasmania (August, 1998)
Statements

I declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution and, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text.

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Signed:
Date: 11/5/99
Abstract

The ecology of all life-history stages of two species of demersal fish, sand flathead (*Platycephalus bassensis*) and jackass morwong (*Nemadactylus macropterus*) found in coastal and continental shelf waters of southern and eastern Tasmania was investigated to determine the spatial and temporal patterns of spawning distribution and larval transport, recruitment, abundance and distribution, and size and age composition. The seasonal and interannual variations of the hydrography of shelf waters are described and the influence of such variability on the life-history stages assessed.

Spawning in *P. bassensis* occurred for an extended period of up to six months between October and March in estuaries, coastal embayments and shelf waters of southern and eastern Tasmania. The distribution of spawning fish, larvae and patterns of hydrography indicate that spawning on the shelf is primarily inshore. Larval development of *P. bassensis* is described. Larvae are concentrated in mid-water which retain larvae inshore as cross-shelf subsurface currents are predominantly onshore.

Spawning in *N. macropterus* occurred between early January and late April in mid- and outer-shelf waters. Ichthyoplankton data indicate *N. macropterus* larvae are concentrated in surface waters, with few larvae caught during subsurface sampling of shelf waters over three years, despite large interannual differences in the extent of vertical mixing and stratification. The surface distribution of larvae appears to be a strategy to maximise offshore transport as movement of surface waters of the shelf are generally offshore. However, large interannual variations in the influence of subtropical and subantarctic waters on the shelf are described and the influence of such variations on larval transport assessed.

Significant seasonal and spatial variations in abundance of mature *P. bassensis* were evident, the variations attributed primarily to the seasonal movement of fish between shelf and nearshore waters. Overlying the seasonal trends in abundance were interannual variations that were at least an order of magnitude in difference. Mature *P. bassensis* were generally more abundant on the inner-shelf, with little evidence of size-structuring with increasing depth. Settlement occurred over an extended period in summer with juveniles showing a strong preference for unvegetated habitats in
nearshore waters, compared to beds of the seagrass, *Heterozostera tasmanica*. However, mature *P. bassensis* in nearshore waters showed no preference between vegetated and unvegetated habitats. There is evidence of a seasonal movement of these nearshore fish out onto the shelf close to the size at maturity.

In contrast, *N. macropterus* on the shelf showed size-structuring between depths and regions, with juveniles dominating the inner-shelf in both regions surveyed, while the mid- and outer-shelf of the east coast was dominated by mature fish. Settlement from the pelagic post-larval phase occurred in spring and early summer at between 7 to 9 cm and 9 to 12 months old. Storm Bay appears to be principally a nursery area for the species with migration from the region occurring upon maturity. In addition, the size-structuring by depth was one of the main factors attributed to the significant variations in abundance across the shelf. Significant seasonal variations in abundance were also apparent, which is attributed to the seasonal movement of fish from south-eastern Tasmanian shelf waters.

The age, growth and spatial and interannual trends in age composition of *P. bassensis* and *N. macropterus* were examined using transverse sections of sagittal otoliths. The first annual increment was defined in both species by examination of the progression of otolith radius and length of the 0+ cohort. Sex specific growth curves are presented for both species. Maximum ages of *P. bassensis* was 17 years for males and 13 for females, while *N. macropterus* reached 41 years for males and 30 for females. The age composition of both species was dominated by 4 to 7 years olds with considerable recruitment variability evident with a strong year-class in 1986 for *P. bassensis* and in 1988 for *N. macropterus*. The relationship between the life-history strategies of *P. bassensis* and *N. macropterus* and recruitment variability is discussed.
Acknowledgments

A considerable number of people have provided me with assistance during the course of the studies presented in this thesis. Firstly, I gratefully acknowledge the assistance of the captain and crew of FRV Challenger who without their help the shelf sampling would not have been possible. Thanks also go to the many staff of the Marine Research Laboratories including Grant Pullen, Judy Marshall, Wes Ford, Carl Waterworth, Tristan Richards, Fiona Ewing and Ray Murphy who endured many rough days out at sea and provided assistance in the laboratory.

Thanks also to David Mills and Graeme Ewing for their enthusiasm and friendship, both in the field and while stuck at the computer. I am also grateful Jeremy Lyle for supervision over the course of these projects and his valuable comments on various chapters. Dave Campbell and Tristan Richards provided great assistance in the final preparation.

The staff at the Central Ageing Facility provided valuable assistance with otolith preparations and readings. Jock Young and Barry Bruce provided valuable input through discussions on the world of larvac and oceanography.

Thanks also to Robert White for his supervision of this thesis and for providing comments on the manuscript. This study was partially funded by the Fisheries Research and Development Corporation.

Finally, I would especially like to thank my wife for enduring all those lost weekends and nights while I was locked in my study. Without her support I would not have lasted the distance.
Table of Contents

Chapter 1 Introduction
1.1 General 1
 1.1.1 Spawning and larval distribution 1
 1.1.2 Juvenile distribution 3
 1.1.3 Adult distribution 4
1.2 Study species 7

Chapter 2 Study areas and general methods 10
2.1 Shelf region 10
 2.1.1 Survey areas 10
 2.1.2 Sampling gear and regime 11
 2.1.2.1 Trawl surveys 11
 2.1.2.2 Plankton surveys 15
2.2 Inshore region 17
 2.2.1 Survey areas 17
 2.2.2 Sampling regime and gear 18
 2.2.2.1 Beam trawl and gill-net surveys 18
 2.2.2.2 Specific sampling sites 19
 2.2.2.3 Plankton surveys 22
 2.2.2.4 Beach seine surveys 22
2.3 Biological data 23

Chapter 3 Reproductive biology, early-life history and recruitment of sand flathead Platyrhina pallidus 25
3.1 Introduction 25
3.2 Methods 26
 3.2.1 Survey areas and sampling regime 26
 3.2.2 Laboratory procedures 27
3.3 Results 28
 3.3.1 Size at maturity 28
 3.3.2 Gonadal development 29
 3.3.3 Shelf hydrography 31
 3.3.4 Shelf larval distribution 35
 3.3.5 Inshore hydrography 35
 3.3.6 Inshore larval distribution 35
 3.3.7 Larval development 36
 3.3.7.1 Identification 36
3.3.7.2 Morphology
3.3.7.3 Fin development
3.3.7.4 Spination
3.3.7.5 Pigmentation
3.3.8 Recruitment

3.4 Discussion
3.4.1 Size at maturity
3.4.2 Gonadal development
3.4.3 Larval distribution
3.4.4 Larval development
3.4.4 Recruitment

Chapter 4 Spatial and temporal variations in abundance and distribution of sand flathead, *Platycephalus bassensis*

4.1 Introduction
4.2 Methods
4.2.1 Survey area and sampling regime
4.2.1.1 Shelf region
4.2.1.2 Inshore region
4.2.2 Statistical analysis
4.2.3 Size composition
4.3 Results
4.3.1 Shelf region
4.3.1.1 Hydrography
4.3.1.2 Catch rates
4.3.1.3 Size compositions
4.3.2 Inshore region
4.3.2.1 Catch rates
4.3.2.2 Size composition
4.3.2.3 Nearshore beach survey
4.4 Discussion

Chapter 5 Age, growth and interannual and spatial trends in age composition of sand flathead, *Platycephalus bassensis*

5.1 Introduction
5.2 Methods
5.2.1 Study locality and sampling regime
5.2.2 Laboratory procedures
5.2.3 Age validation
5.2.4 Precision of age estimates
5.2.5 Growth
5.2.6 Age composition
5.3 Results
5.3.1 Size and sex compositions
5.3.2 Otolith structure and interpretation
5.3.3 Validation
5.3.4 Precision of age estimates
5.3.5 Growth
5.3.6 Age composition
5.4 Discussion
5.4.1 Validation
5.4.2 Growth
5.4.3 Age composition

Chapter 6 Reproductive biology and early-life history of jackass morwong, Nemadactylus macropterus
6.1 Introduction
6.2 Methods
6.2.1 Study locality and sampling regime
6.2.2 Laboratory procedures
6.3 Results
6.3.1 Size at maturity
6.3.2 Gonadal development
6.3.3 Hydrography
6.3.4 Larval distribution
6.4 Discussion
6.4.1 Size at maturity
6.4.2 Gonadal development
6.4.3 Spawning and larval distribution

Chapter 7 Spatial and temporal variations in abundance and distribution of jackass morwong, Nemadactylus macropterus
7.1 Introduction
7.2 Methods
7.2.1 Study locality and sampling regime
7.2.2 Statistical analysis
7.2.3 Size Composition
7.3 Results