Optimisation of 2,4-D treatments for the control of common scab of potato (and related studies)

By Hannah Thompson

B AgrSc (Hons) University of Tasmania

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Tasmania

February 2013
Declaration of Originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Hannah Thompson

University of Tasmania

February 2013

Authority of Access

This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Hannah Thompson
Acknowledgements

I would not have been able to produce this thesis without the help of a number of people, and I would like to thank them for their involvement, assistance and support.

I would like to thank my supervisors, Dr. Calum Wilson and Dr. Robert Tegg for their extensive support and guidance. Their assistance in the conception, undertaking and review of the work contained within this thesis has been indispensible. I thank them for their patience and willingness to share their knowledge.

From TIA I would like to thank Annabel Wilson for her assistance with all things laboratory and glasshouse, Leon Hingston for his involvement in the smooth planting and management of the field trials, and Dr. Alison Dann for her help and knowledge that was invaluable in undertaken in the work for chapter 5. I thank Stewart McGee and Wilton Geale for allowing the use of their land for field trials, and their interest in this project.

I would like to acknowledge the work of Dr. John Ross and Dr. Noel Davies in the quantification of 2,4-D for chapters 2 and 3. I thank Dr. Ross for his help in developing the protocols for the extraction of 2,4-D from the tubers, and Dr. Davies for providing the protocols for, and undertaking the quantification of the extracted 2,4-D.

This research was funded by Horticulture Australia Limited (HAL) using the processing potato levy and voluntary contributions from the New Zealand Institute of Food, Horticulture New Zealand, the Potato Council-UK, and A&L Canada Laboratories, with matched funds from the Federal Government. The South Australian Research and Development Institute, the Department of Primary Industries Victoria and the University of Tasmania (UTAS)/Tasmanian Institute of Agriculture (TIA), the University of Melbourne, Flinders University, Novozymes Biologicals Australia Pty Ltd and the Victorian Seed Potato Authority have provided in-kind support.

I thank UTAS, the School of Agricultural Science, TIA, the School of Plant Science, and the Central Science Laboratories for the use of their facilities and equipment.
I thank HAL and the University of Tasmania for supporting me with their scholarship.

I would also like to thank those many people who have supported me throughout my PhD. I would like to thank my community of fellow PhD students who have shared in this experience with me. In particular I would like to thank Katie Dunne for sharing both our office and her vast knowledge of wine, and others for sharing the stress and excitement of thesis writing with me. The laughter and trepidation we shared made my PhD a far more enjoyable and less solitary experience. I would like to thank my fellow researchers for their guidance. I thank my brother for his humour and excellent taste in music, I thank Phillip for his company and distraction, and I thank my friends, my family, and my choir for their support and friendship.

Finally, and most importantly, I would like to thank my parents. I would not be where I am today without their support, assistance and encouragement, and I cannot thank them enough.
Publications

Refereed Journal Articles

Conference Publications

Thompson, HK, Tegg, RS, and Wilson, CR 2010 ‘2,4-D induced resistance to common scab of potato’, *Proceedings of the 6th Australasian Soilborne Diseases Symposium*, 9-11th August 2010, Twin Waters, QLD.

Poster Presentations

Tegg RS, Thompson, HK, and Wilson, CR, ‘Optimisation of rates, timing and assessment of new compounds for control of common scab disease of potato through foliar applied treatments’ *ACPP APPS Conference*, 26-29th April 2011, Darwin, NT.
Abstract

Common scab is an economically important disease of potato found in most growing regions of the world. There are few practical control methods and none that are both reliable and effective. Disease is minimised through planting resistant varieties, strategic use of irrigation, seed tuber treatments and late planting. Common scab is caused by pathogenic *Streptomyces* spp. that produce thaxtomin, necrosis-causing phytotoxins that are essential for pathogenicity. Previous research had found that 2,4-dichlorophenoxyacetic acid (2,4-D), a herbicide and synthetic auxin, controlled common scab symptoms when applied to the foliage of potato, but also resulted in undesirable phytotoxic effects. It has been demonstrated that when 2,4-D is translocated to potato tubers, it suppresses thaxtomin toxicity.

This study determined optimal rates and timing of 2,4-D application for control of common scab whilst minimising phytotoxic effects of the treatments. It found that treatment of potato plants as soon as 5 days after emergence provided greater protection against common scab and greater suppression of thaxtomin toxicity in harvested tubers than treatments after tuber initiation. Rates much lower than had previously been tested were found to reduce disease and induce toxin tolerance to levels similar to that obtained with treatments at near herbicidal rates, suggesting that maximum toxicity suppression occurred at very low tuber 2,4-D levels. These very low rates did not induce any noticeable phytotoxic symptoms, nor affect harvested tuber yield or quality, and resulted in 2,4-D residue levels well below maximum residue limits in tubers at harvest. Additionally, it was found that if seed tubers were treated prior to planting, daughter tubers would have some protection from disease and show tolerance to the toxin without an additional post emergence treatment.

This study also examined genetic variation in a number of somaclonal potato lines derived from Russet Burbank that showed a higher tolerance to thaxtomin than the parent line. In prior studies, enhanced tolerance to thaxtomin through reduced cellular uptake was identified in *Arabidopsis thaliana* mutants. Fine mapping showed mutations in the gene *TXR1* were responsible for the observed phenotype. In this study, *TXR1* potato homolog genes from selected thaxtomin tolerant somaclones were cloned, sequenced and analysed for variation to determine if toxin tolerance may be associated with mutations within this gene. The parent cultivar had only two
allelic forms, whilst the thaxtomin tolerant variants possessed an additional eight unique alleles. These mutant $TXR1$ alleles may have contributed toward thaxtomin tolerance in these variants.
Table of Contents

Acknowledgements... II
Publications... IV
Abstract ... V

Chapter 1: Review of literature ... 1
 1.1 Introduction.. 2
 1.2 Common Scab of Potato... 3
 1.2.1 Significance .. 3
 1.2.2 Streptomyces... 3
 1.2.3 Symptoms and Infection .. 4
 1.3 Thaxtomins .. 6
 1.3.1 Production .. 6
 1.3.2 Role in Pathogenicity ... 7
 1.3.3 Biosynthesis and the pathogenicity island ... 7
 1.3.4 Mechanism ... 8
 1.3.5 txr1 ... 11
 1.4 Control methods .. 13
 1.4.1 Targeted irrigation and pH management ... 13
 1.4.2 Delayed planting ... 13
 1.4.3 Soil borne and seed tuber borne inoculum ... 14
 1.4.4 Breeding ... 14
 1.4.5 Chemical controls ... 15
 1.4.6 Biological controls .. 17
 1.5 Auxin Induced Resistance ... 18
 1.5.1 Chemical induced resistance ... 18
 1.5.2 Herbicide and indole induced resistance .. 19
 1.5.3 Auxin induced resistance .. 19
 1.5.4 Mechanisms ... 20
 1.5.5 Commercial use of 2,4-dichlorophenoxyacetic acid .. 21

Thesis Aims .. 23

Chapter 2: Determination of optimal timing of the foliar application of 2,4-D for common scab control in potato ... 24
 2.1 Abstract.. 25
Chapter 3: Determination of optimal rate of foliar 2,4-D application for common scab control in potato

3.1 Abstract

3.2 Introduction

3.3 Materials and Methods

3.3.1 Inoculum preparation for pot trials

3.3.2 Planting material

3.3.3 Preparation of 2,4-D treatments

3.3.4 Pot trials

3.3.5 Field trial #1

3.3.6 Data analysis

3.4 Results

3.4.1 Disease control
Chapter 4: Evaluation of 2,4-D seed tuber treatments and intergenerational carryover of 2,4-D in seed tubers for control of common scab in potato

4.1 Abstract ... 103
4.2 Introduction ... 104
4.3 Materials and Methods .. 106
 4.3.1 Inoculum for pot trials .. 106
 4.3.2 Planting material .. 106
 4.3.3 Preparation of 2,4-D treatments ... 107
 4.3.4 Tuber treatment experiments ... 108
 4.3.5 Carryover effect of 2,4-D into tubers ... 110
 4.3.6 Data analysis ... 111
4.4 Results ... 112
 4.4.1 Disease control ... 112
 4.4.2 Agronomic effects ... 118
 4.4.3 Tuber toxin tolerance .. 122
4.5 Discussion .. 125
 4.5.1 2,4-D applied as a seed tuber treatment is translocated to emerging tubers ... 125
 4.5.2 Low levels of 2,4-D within tubers control disease in subsequent crop 126
 4.5.3 2,4-D Seed tuber treatments are not biocidal ... 126
 4.5.4 2,4-D seed tuber treatments may promote emergence 127
 4.5.5 Carryover of 2,4-D may provide multi-generational disease control 128
 4.5.6 Conclusion ... 128

Chapter 5: Evaluation of genetic diversity within the TXRI homolog in thaxtomin resistant potato varieties ... 129
Chapter 6: General Discussion

6.1 Summary of Research

6.2 Early treatments and translocation

6.3 Hormonal effects of auxin

6.3.1 On tuber initiation

6.3.2 On plant/pathogen interactions

6.4 Cultivar differences

6.5 Disease pressure

6.6 Powdery scab disease

6.7 Tuber slice assay

6.8 Future development

References
Table of Figures

Figure 1.1 Thaxtomin A, reproduced from Loria et al. (2006) ...6

Figure 2.1 Examples of necrosis in the tuber slice assay ...38

Figure 2.2 Field trial #1 Linear regression between the mean surface coverage of common scab and powdery scab ...47

Figure 2.3 Field trial #2 The quantification of 2,4-D in tubers at harvest, from plants treated with 2,4-D at various times ...63

Figure 2.4 Field trial #2 The quantification of 2,4-D in tubers at harvest, from plants treated with 2,4-D at various rates 20 days after emergence64

Figure 3.1 Field trial Linear regression between the mean surface coverage of common scab and powdery scab ...89

Figure 3.2 Field trial #2 The quantification of 2,4-D in tubers at harvest, from plants treated with 2,4-D at various rates ...95

Figure 4.1 Field trial Linear regression between the mean surface coverage of common scab and powdery scab ...115

Figure 5.1 cDNA sequence from potato (Solanum tuberosum) (SGN-U294912) aligned to a section of the cDNA sequence (position 204 to 607) of the TXRI gene in Arabidopsis thaliana (AT3G59280) ...134

Figure 5.2 Allelic variants of the putative S. tuberosum TXRI homolog (TXRI-a through TXRI-j) aligned to the homolog sequence identified in the diploid potato (The Potato Genome Sequencing Consortium 2011), between positions 360-881 of Superscaffold PGSC0003DMT400075996 (PCGS seq) and the putative S. tuberosum homolog cDNA sequence SGN-U29491 ...138

Figure 5.3 Exons of the identified variants of the putative S. tuberosum TXRI homolog (TXRI-a through TXRI-j), predicted amino acid sequence, and predicted secondary protein structures ...143