The relative effects of the herbicide atrazine on selected microalgae

By

Adil Mohamed Khalfan Al Qasmi

Submitted in fulfillment of the requirements for

the Degree of

Doctor of Philosophy

University of Tasmania

July, 2013
Declaration

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Adil Mohamed Khalfan Al Qasmi

Authority of Access

This thesis may be made available for loan and limited copying in accordance with the *Copyright Act 1968*.

Adil Mohamed Khalfan Al Qasmi
Abstract

Cyanobacterial blooms are often associated with eutrophication of lakes and waterbodies which degrade the water quality due to chronic and episodic inputs of nutrients, water stratifications and climatic changes. Increasing terrestrial application of photosynthesis-inhibiting herbicides that enter water bodies during/after heavy rain, can affect the photosynthetic capacity and growth of phytoplankton at sub-lethal concentrations. As herbicide sensitivity of phytoplankton varies among species, their presence can alter phytoplankton community structure to favour more tolerant species, or particular groups such as cyanobacteria which are considered more tolerant of photosynthesis-inhibiting herbicides. This study examined the potential for photosynthesis-inhibiting herbicides to promote cyanobacterial blooms in temperate lakes and waterways. The most commonly applied triazine herbicide, atrazine, was used due to its solubility, mobility and persistence in temperate environments. The relative effects of atrazine on the growth of selected planktonic green algae and cyanobacteria (primarily bloom-forming Anabaena species) were investigated using laboratory mono-cultures and two-species competition cultures.

In the second chapter, the relative tolerance to atrazine of some common freshwater green algae (Selenastrum capricornutum, Desmodesmus asymmetricus and Chlorella protothecoides) and cyanobacteria of the genus Anabaena, particularly Anabaena circinalis were compared in single-species assays using in-vivo fluorescence estimation of growth rates. While the green algae species examined displayed higher intrinsic growth rates than Anabaena strains, their relative tolerance to atrazine (50 – 250 µg L⁻¹) expressed as EC₅₀ was of similar magnitude and range (72-140 µg L⁻¹) compared to the seven Anabaena strains (59 - 111 µg L⁻¹) under light and temperature conditions typical of temperate mid-latitude summer conditions. However, atrazine tolerance varied significantly among the 10 species examined but there was no significant difference in mean atrazine tolerance between the two groups, the cyanobacteria and green algae indicating that the selective effects of atrazine operate at a species/strain level rather than more generally favouring cyanobacteria over green algae.
The third chapter adapted and tested a high through-put microplate-based approach as a rapid and reliable phytoplankton herbicide sensitivity assay that could be used to examine the influence of herbicides on the growth of green algae and cyanobacteria in two-species competition cultures. The assay was based on *in-vivo* fluorescence quantification of chlorophyll a and phycocyanin. Minimum detection limits and correlations of cell concentration and fluorescence were established for two species of eukaryotic green algae and seven *Anabaena* strains. Calibration curves were established for the seven species examined and the detection limits and ranges were sufficient for reliable detection and simultaneous estimation of cyanobacteria and green algal growth rates in two-species competition laboratory cultures. Two-species competition culture experiments were carried out using *A. circinalis* grown with the green algae *Selenastrum capricornutum* or *Desmodesmus asymmetricus*. The growth rate of *A. circinalis* strains showed a 20% increase in exponential growth rate compared to monoculture controls, whereas the green algal species growth rate was reduced by 13-17%, indicating that allelopathic interactions may alter the selective effects of herbicides on phytoplankton community structure.

In the fourth chapter, relative inhibition of the green alga, *Desmodesmus asymmetricus* and the cyanobacterium *A. circinalis* by atrazine was examined at different combinations of light (high = 100, low = 30 μmole photon m$^{-2}$ s$^{-1}$) and temperature (high = 24°C ±1 and low= 18±1°C) when grown separately or in two-species competition cultures. When grown separately, *A. circinalis* showed similar or higher tolerance (EC$_{50}$) to atrazine as *D. asymmetricus* and maintained an increasingly higher growth rate with increasing atrazine concentration under all conditions, except at low light and high temperature where the growth rate of *D. asymmetricus* was higher at atrazine concentrations >150 μg L$^{-1}$. When grown in competition, *A. circinalis* was favoured in the presence of atrazine under high light conditions regardless of temperature, and *D. asymmetricus* was favoured by the presence of atrazine (or equally tolerant) under low light regardless of temperature. Overall, the presence of atrazine favoured *A. circinalis* at high light with the largest relative effect at low temperature. This may explain how temperate mid-latitude
summer blooms of *Anabaena circinalis* can maintain their relative community dominance during declining autumn temperatures in lakes and rivers.

The fifth chapter used two-species competition cultures with different relative starting concentrations of *D. asymmetricus* and *A. circinalis* to determine whether the outcome of green algae/cyanobacteria growth competition could be reversed by atrazine starting from scenarios of different relative dominance (4:1, equal, or 1:4 starting concentration of each species). In the absence of atrazine, *D. asymmetricus* dominated 10 day growth competition experiments from scenarios from both dominant and equal starting concentration, whereas *A. circinalis* dominated only in cultures in which it started with 1:4 dominance. In the presence of low concentrations of atrazine (10-60 µg L\(^{-1}\)), *A. circinalis* dominated over *D. asymmetricus* regardless of the species dominance at the start of the experiment. The relative patterns of growth in the experiments suggested that the dominant factor during exponential growth phase (first 5-6 days) was inhibition of both species by atrazine but more severe inhibition for *D. asymmetricus*. After day 5 inhibition of *D. asymmetricus* by the allelopathic activity of *A. circinalis* became the dominant factor. These experiments show that the allelopathic activity of *A. circinalis* and low concentrations of atrazine (10µg L\(^{-1}\)) combine reverse growth competition outcomes even from a position of green algal dominance, and indicate a mechanism by which low concentrations of herbicides can shift algal communities toward cyanobacterial dominance in temperate mid-latitude lakes and rivers.

The influences of photosynthetic-inhibiting herbicides in combination with other adaptive physiological strategies/mechanisms that promote cyanobacterial blooms are also discussed.
Acknowledgements

I would like to take this opportunity to thank all the wonderful people in this school, The National Centre for Marine Conservation and Resource Sustainability and my family for their encouragement and lifting my spirits to carry out this huge task. My thanks and sincere gratitude to my major advisor, Dr Christopher Bolch, for introducing me to the world of the most efficient organisms, the phytoplankton. His guidance and expertise in this field has been a real push through those years of total commitment and tireless effort to learn almost every aspect of phytoplankton’s world and I think the knowledge gained is immense and well-founded. My thanks also to go to my co-advisor, Dr Andrew Seen for his contributions in understanding the chemistry side of my study in herbicides. My extended thanks to the Dr John Purser, the Director of the Centre for all the support he provided especially in my last year. Also thanks to Dr Elkana Ngwenya for his time and efforts assisting with statistical analysis, and to the International student advisor, Ms Ginni Woof for making me feels at home.

Again, I like to thank my family who have been away most of the time in Oman and their patience while I am carrying out my PhD studies in Tasmania and to the people and staff at the Agriculture and Fisheries Research Funds in Oman who supported me financially and made this experience a reality. I hope this small contribution of my study will help to encourage other students around the world to get involved in environmental science and improve their expertise to understand our environmental needs as global ecosystem problems are mounting every single day.
Table of contents

Statement of originality .. ii
Abstract .. iii
Acknowledgement ... vi
Table of contents .. vii
List of Tables .. xi
List of Figures ... xiii

Chapter 1

General Introduction .. 1

1.1 Introduction ... 2

1.2 Existing approaches for ecotoxicity assessment 2

1.3 Photosynthesis inhibiting herbicides 5

1.4 Community effects of photosynthetic inhibiting herbicides 6

1.5 Allelopathic interactions .. 7

1.6 Atrazine ... 8

1.7 Blooms of Anabaena .. 10

1.8 Monitoring contaminants/ herbicides in the aquatic system 10

1.9 Study outline ... 11

1.9.1 Research approach ... 11

1.10 References .. 14
Chapter 2

Relative effects of atrazine on growth of selected microalgal species 20

2.1 Introduction 21

2.2 Materials and Methods 23

2.2.1 Cultures and culture conditions 23

2.2.2 Herbicides 25

2.2.3 Toxicity studies 27

2.2.4 Data analysis 29

2.3 Results 30

2.3.1 Atrazine concentration 30

2.3.2 Toxicity studies 30

2.4 Discussion 38

2.5 References 44

Chapter 3

Development of a high-throughput platform to measure cyanobacteria and eukaryotic algal growth in two-species competition cultures 48

3.1 Introduction 49

3.2 Materials and Methods 50

3.2.1 Algal strains and culture conditions 50

3.2.2 Calibration for detection of single algal species 51

3.2.3 Simultaneous detection and quantification of green algae and cyanobacteria
3.2.4 Two-species mixed culture studies

3.3 Results

3.3.1 Single microalgal species detection

3.3.2 Simultaneous detection and quantification of green algae and cyanobacteria

3.3.3 Single species and two-species growth studies

3.4 Discussion

3.5 References

Chapter 4

Effects of seasonal light and temperature combinations on atrazine inhibition (EC_{50}) of cyanobacteria and green algae

4.1 Introduction

4.2 Materials and Methods

4.3 Results

4.4 Discussion

4.5 References

Chapter 5

Effect of the herbicide atrazine on growth and competition between the cyanobacterium *Anabaena circinalis* and green alga, *Desmodesmus asymmetricus*
5.1 Introduction 98
5.2 Materials and Methods 99
5.3 Results 102
5.4 Discussion 110
5.5 References 116

Chapter 6

General discussion and summary 119
6.1 Overview of thesis 120
6.2 Major factors of cyanobacterial bloom forming 122
6.3 Future research 126
6.4 References 128

Appendix 1 132