Enhancing Aluminium Resistance in Barley

through Over-expression of MATE Genes

by

Gaofeng Zhou

Submitted in fulfilment of the requirement for the

Degree of Doctor of Philosophy

University of Tasmania

June 2012
DECLARATION

The thesis contains no material, which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge, contains no material previously published or written by any other person, except where due reference is made in the text of this thesis.

Gaofeng Zhou

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Gaofeng Zhou
University of Tasmania
ACKNOWLEDGEMENTS

Looking back, I am surprised and at the same time very grateful for all I have received throughout these years.

First and foremost, thanks to University of Tasmania for offering me with Endeavour International Postgraduate Research Scholarship and the living allowance.

I offer my sincerest gratitude to my supervisors, Associate Professor. Meixue Zhou (UTAS), Dr. Peter R Ryan (CSIRO) and Dr. Emmanual Delhaize (CSIRO), who have supported me throughout my thesis with their patience and knowledge. In the past three years, they taught me how to appreciate the good scientific work. They have enlightened me through their wide knowledge of molecular biology and their deep intuitions about where it should go and what is necessary to get there. They spend a lot of time revising and proof reading my thesis. I attribute the level of my Doctoral degree to their encouragement and effort and without them this thesis, too, would not have been completed or written.

Many people provided help for me during my experiment period. I thank Terese Richardson and Michael Ayliffe for helping me in barley and wheat transformation. And thanks to Jorge F. Pereira for vector construction of Frd3 and SbMATE and their transformation into barley. Also thanks to Wendy Welfare for doing general cleaning and autoclaving works. Also thanks to the plant disease control staff and weekends waters for looking after my plants.

I thank my group and the people in PUE group that allow me to stay centered and rediscover what is important and why I am doing what I am doing. Thanks to Richard, Alan, David, Andriy, Tina, Linda, Andy, Fahim, Hussein and Muyun for their help and friendship.

The years spent in Australia would not have been as wonderful without my Chinese friends, including Weiwei Deng, Yang Jiang, Qinxiang Liu, Lei Liu, Shijiang Cao, Wan Xia, Xiaoming Jiao, Yong Zhong, Junmei Jing, Qishun Huang, Zejuan Huang,
Meilin Zou, Lijun Tian, Xuerong Zhou, Bei Dong, Mingbo Wang, Bo Wang and Dacheng. Special thanks to Dr. Qing Liu for his help these years.

Thank also to my family. They support me throughout all my studies at University. Especially my brother Guangling, he looks after our parents these years when I was studying overseas, even when he was on peaks of stress and lack of sleep because of his job.

Last but not least, a big thank you to my wife, Ou Wang. Without her I would be a very different person today, and it would have been certainly much harder to finish a PhD. She spent a lot of time looking after our daughter Xinxin.
PUBLICATIONS

Zhou GF, Delhaize E, Ryan PR, Zhou MX. Comparison of aluminium resistance in transgenic barley expressing of *Frd3* and *SbMATE*. (In preparation)
List of Figures

Figure 1.1 Effect of Al$^{3+}$ toxicity on roots ... 5
Figure 1.2 Al$^{3+}$-activated organic anion efflux .. 12
Figure 2.1 Nomenclature of the transgenic plants ... 34
Figure 3.1 Citrate efflux from root apices of transgenic and various control plants. 43
Figure 3.2 Root growth of T1 HvAACT1 barley lines in hydroponic solution 1 µM AlCl$_3$. .. 45
Figure 3.3 Malate efflux from root apices of T2 transgenic lines homozygous for HvAACT1 and control plants ... 46
Figure 3.4 HvAACT1 expression in transgenic T2 lines homozygous for HvAACT1 and controls. ... 47
Figure 3.5 Al$^{3+}$ resistance of the transgenic T2 homozygous lines and control lines in hydroponic culture ... 50
Figure 3.6 Shoot fresh weight of the transgenic T2 homozygous lines and control lines grown in soil ... 51
Figure 3.7 Root fresh weight of the transgenic T2 homozygous lines and control lines grown in soil ... 52
Figure 3.8 Longest root lengths in the transgenic T2 homozygous lines and control lines grown in soil ... 53
Figure 3.9 Length of the second-longest roots in the transgenic T2 homozygous lines and control lines grown in soil ... 54
Figure 3.10 Total root length in the transgenic T2 homozygous lines and control lines grown in soil ... 55
Figure 3.11 Examples of the transgenic and control plants taken from the soil experiments prior to processing ... 56
Figure 3.12 Distribution of root diameters from plants grown in soil 57
Figure 4.1 Citrate efflux from root apices of T1, T2 and T3 SbMATE transgenic lines. ... 63
Figure 4.2 Malate efflux from root apices of T2 and T3 homozygous SbMATE transgenic lines ... 67
Figure 4.3 Normalized RNA expression level of SbMATE in T3 homozygous lines. ... 68
Figure 4.4 Al³⁺ resistance of T3 homozygous SbMATE transgenic lines and null lines in hydroponics. 69
Figure 4.5 Relationships between SbMATE expression, citrate efflux and relative root growth (RRG) in T3 lines. 70
Figure 4.6 Representative samples of SbMATE transgenic plants and non-transgenic plants grown in limed and acid soils. 72
Figure 4.7 Root fresh weight of plants grown in acid and limed soil. 73
Figure 4.8 Effect of SbMATE expression on total fresh weight in acid and limed soil. 74
Figure 4.9 Effect of SbMATE expression on the length of the longest root. 76
Figure 4.10 Effect of SbMATE expression on the length of the second longest root. 77
Figure 4.11 Effect of SbMATE expression on the total root length. 78
Figure 4.12 Effect of SbMATE expression on the distribution of root diameters. 79
Figure 5.1 Citrate efflux from root apices of transgenic and control plants. 87
Figure 5.2 Al³⁺ resistance of T2 homozygous Frd3 transgenic lines in hydroponic solution. 91
Figure 5.3 Frd3 expression in transgenic homozygous T3 lines using qRT-PCR. 92
Figure 5.4 Malate efflux from root apices of T3 homozygous lines and control plants. 93
Figure 5.5 Al³⁺ resistance in hydroponic solution. 94
Figure 5.6 Photographs of representative transgenic and control plants taken from the soils experiments prior to processing. 96
Figure 5.7 Shoot fresh weight in the T3 homozygous Frd3 transgenic lines grown in acid soil and limed soil. 97
Figure 5.8 Root fresh weight in the T3 homozygous Frd3 transgenic lines grown in soil. 98
Figure 5.9 Longest root lengths in the T3 homozygous Frd3 transgenic lines grown in soil. 99
Figure 5.10 Length of the second-longest roots in the T3 homozygous Frd3 transgenic lines grown in soil. 100
Figure 5.11 Total root length in the T3 homozygous Frd3 transgenic lines grown in soil. 101
Figure 5.12 Distribution of root diameters of plants grown in soils. 102
Figure 6.1 MATE expression level relative to the reference gene actin.................. 112
Figure 6.2 Citrate efflux from excised root apices.. 113
Figure 6.3 Al³⁺ resistance of the barley lines in hydroponic culture............... 115
Figure 6.4 Al³⁺ resistance comparisons among transgenic barley lines carrying
TaALMT1 and MATE (HvAACT1, SbMATE and Frd3) genes............................. 116
Figure 6.5 Al³⁺ and acid tolerance comparisons between transgenic barley lines
carrying TaALMT1 and MATE (HvAACT1, SbMATE and Frd3) genes............. 117

Figure S1 Construction of pWBvec 8:HvAACT1 vector for transformation 140
Figure S2 pWBvec8:ubiquitin digested with BamHI................................. 141
Figure S3 pBluescript II:HvAACT1 digested with PstI 142
Figure S4 pWBvec8:HvAACT1 double digested with SmaI and KpnI 143
Figure S5 Identification of HvAACT1 transgenic barley by PCR.................. 144
List of Tables

Table 1.1 Al\(^{3+}\) resistance genes in plants ... 14
Table 1.2 Studies which have used biotechnology to increase Al\(^{3+}\) resistance in plants ... 20
Table 2.1 MGL medium .. 30
Table 2.2 FHG medium .. 30
Table 2.3 BCI medium .. 32
Table 2.4 RM medium .. 32
Table 2.5 Primers used in the experiments ... 36
Table 3.1 Segregation analysis of T2 HvAACT1 lines determined by the leaf assay for antibiotic resistance ... 42
Table 4.1 Screening T2 plants for homozygous lines of SbMATE transgenic barley .. 65
Table 5.1 Segregation of antibiotic resistance (hygromycin) in T2 families expressing Frd3 ... 89
Table 5.2 Macroelement concentration in Frd3 homozygous barley with iron treatment .. 105
Table 5.3 Microelement concentration of Frd3 homozygous barley with iron treatment .. 106

Table S1 Details of elemental analysis of barley grown in iron deficient and sufficient solutions .. 145
Table S2 Elemental analysis of seed from homozygous transgenic ALMT1 and MATE barley lines .. 146
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>2,4-dichlorophenoxyacetic acid</td>
</tr>
<tr>
<td>ALMT</td>
<td>aluminium-activated malate transporter</td>
</tr>
<tr>
<td>Amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BW26</td>
<td>Bobwhite 26</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>didistilled water</td>
</tr>
<tr>
<td>Dicamba</td>
<td>3,6-dichloro-o-anisic acid</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>E. Coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene dinitrilotetraacetic acid</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GP</td>
<td>Golden Promise</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropylthio-β-o-galactopyranoside</td>
</tr>
<tr>
<td>Kb</td>
<td>kilo base</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>MATE</td>
<td>multidrug and toxic compound extrusion</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>O.D.</td>
<td>optical density</td>
</tr>
<tr>
<td>oligo（dT）</td>
<td>oligodeoxythymidyl acid</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>QTL</td>
<td>quantitative trait loci</td>
</tr>
<tr>
<td>RG</td>
<td>root growth</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>RRG</td>
<td>relative root growth</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>Tris</td>
<td>tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µL</td>
<td>microlitre</td>
</tr>
</tbody>
</table>
Abstract

Acid soils limit crop yields around the world due to nutrient deficiencies and mineral toxicities. Non-adapted plants grown on acid soils typically have shorter and thicker root systems because high concentrations of soluble aluminium (Al\(^{3+}\)) inhibit root elongation. This restricts their ability to acquire water and nutrients. An important mechanism of Al\(^{3+}\) resistance discovered in many plant species relies on the release of organic anions from roots. The gene controlling this trait are members of two gene families called the aluminium activated malate transporter (ALMT) family and multidrug and toxic compound exudation (MATE) family. Members of the ALMT family encode anion channels which release malate anions from roots while the MATEs encode co-transporter proteins which facilitate citrate release from roots. Although barley (*Hordeum vulgare*) is more sensitive to Al\(^{3+}\) toxicity than many other cereals including wheat (*Triticum aestivum*), rye (*Secale cereale*) and rice (*Oryza sativa*) significant genotypic variation in resistance does occur. This variation is controlled by citrate efflux from the root apices which is encoded by a MATE gene called *HvAACT1*. In this study three MATE genes from barley, *Arabidopsis* and sorghum (*Sorghum bicolor*) were transformed into the Al\(^{3+}\)-sensitive barley cultivar ‘Golden Promise’ with a constitutive promoter. These genes include the major Al\(^{3+}\)-resistance genes from barley and sorghum (*HvAACT1* and *SbMATE* respectively) and the *Frd3* gene from *Arabidopsis thaliana* which is important for iron nutrition. All three are known to encode transport proteins that facilitate citrate efflux from cells. The resulting transgenic lines were assessed for transgene expression, citrate efflux from root apices, and Al\(^{3+}\) resistance in hydroponic solution and acid soil. The control plants included in these experiments were null segregant lines and the parental barley cultivar. The Al\(^{3+}\)-resistant barley cultivar Dayton was also included as a positive control.

Barley cultivar “Golden Promise” was transformed separately with the MATE genes using the *Agrobacterium* method. Several independent T2 or T3 barley lines homozygous for each transgene were generated as well as null segregant lines. The transgenic lines released significantly more citrate from their root apices than the null controls. Plants expressing the *HvAACT1* and *SbMATE* genes required Al\(^{3+}\) in the external solution to activate citrate efflux while plants expressing *Frd3* released
citrate in the presence and absence of Al$^{3+}$. This is consistent with previous studies showing that HvAACT1 and SbMATE are Al$^{3+}$-activated proteins. The citrate efflux from the transgenic lines was similar to, or greater than, the efflux detected from cv. Dayton.

Transgenic and control seedlings were grown in an aerated hydroponic culture containing a simple nutrient solution with 0, 1, 2, or 4 µM AlCl$_3$ (pH 4.3). Net root growth was measured after 4 d. Relative root growth (growth in the Al$^{3+}$ solution relative to control solution) was significantly greater in the transgenic lines than the null controls for most Al$^{3+}$ treatments and similar results were obtained for the three MATE genes. The Al$^{3+}$ resistance of the transgenic lines was similar to the Al$^{3+}$ resistance of cv. Dayton.

Al$^{3+}$ resistance of the transgenic and control lines was also assessed in short-term soil experiments. The acidic ferrosol was either unamended (pH 4.33 with aluminium being 21% of exchangeable cations) or limed so that pH increased to 5.18 and only 1% of exchangeable cations was aluminium. After 6 d growth the following measurements were made: length of the longest and second-longest roots, total root length, total root weight, shoot weight and distribution of root diameters. In the unamended acid soil root growth of the null lines was inhibited compared to the limed soil and the roots became thicker. Expression of each of the MATE genes significantly increased Al$^{3+}$ resistance with relative length of the longest roots (root length in acid compared to limed soil) and relative total root length (total root length in acid compared to limed soil) providing the greatest differences between the transgenic and null lines. The transgenic lines also maintained a greater percentage of thinner roots in the acid soil than the null lines.

These results demonstrate that Al$^{3+}$ resistance in barley can be enhanced by heterologous expression of the ShbMATE and Frd3 genes or by over-expression of the endogenous HvAACT1 gene. Biotechnology provides important options for increasing the Al$^{3+}$ resistance of crop plants which can complement traditional breeding practices. Both strategies will be important for maintaining and even increasing food production on acid soils in the future.

Keywords: HvAACT1, citrate transporter, aluminium tolerance, transgene
Table of Contents

DECLARATION .. I

ACKNOWLEDGEMENTS ... II

PUBLICATIONS .. IV

List of Figures .. V

List of Tables ... VIII

List of Abbreviations .. IX

Abstract .. X

CHAPTER 1 Introduction ... 1

1. 1 Acid soils ... 1

1.1.1 What is acid soil? .. 1

1.1.2 Formation and distribution of acid soils ... 2

1.2 Aluminium toxicity ... 3

1.3 Natural variations ... 6

1.4 Genetics of Al$^{3+}$ resistance .. 7

1.4.1 Single or few genes: cases of simple inheritance 7

1.4.2 Multiple genes: cases of complex inheritance 8

1.5 Mechanisms of Al$^{3+}$ resistance ... 9

1.5.1 Mechanisms of Al$^{3+}$ exclusion ... 9

1.5.2 Mechanisms of Al$^{3+}$ tolerance ... 13

1.6 Identification of Al$^{3+}$ resistance genes in plants 13

1.6.1 Organic anion transporters ... 15

1.6.2 Other resistance genes ... 16

1.7 Transgenic approaches for increasing Al$^{3+}$ resistance 18

1.7.1 Over-expression of genes involved in organic anion biosynthesis 18

1.7.2 Over-expression of genes involved in organic anion transport 21

1.7.3 Genes not associated with organic anions ... 22
Table of Contents

1.8 Objectives .. 23

CHAPTER 2 General materials and methods ... 24

2.1 Transformation of *E. coli* ... 24

2.1.1 Preparation of *E. coli* cells for electroporation ... 24

2.1.2 Electroporation .. 24

2.2 Sequencing ... 25

2.3 DNA isolation .. 25

2.3.1 SDS method for DNA extraction .. 25

2.3.2 Rapid DNA isolation method for PCR ... 25

2.4 Amplification from gDNA and plasmid DNA ... 26

2.5 Quantitative Real-Time PCR .. 26

2.6 Measurements of citrate efflux from root apices ... 26

2.7 Measurements of malate efflux from root apices ... 27

2.8 Measurements of *Al*³⁺ resistance in hydroponic culture 27

2.9 Measurements of *Al*³⁺ resistance in soil .. 28

2.10 Triparental mating to introduce binary plasmids into *Agrobacterium* 28

2.11 Barley transformation .. 31

2.11.1 Isolation of barley embryos ... 31

2.11.2 Growth of *Agrobacterium* ... 31

2.11.3 Innoculation of the embryos .. 31

2.11.4 Analysis of transgenic plants ... 33

2.11.5 System for naming transgenic materials ... 33

2.12 Leaf assay ... 35

CHAPTER 3 Over-expression of *HvAACT1* in barley .. 37

3.1 Introduction ... 37

3.2 Materials and methods ... 38

3.3 Results .. 40

3.3.1 Barley transformation .. 40

3.3.2 Analysis of T0 *HvAACT1* barley plants ... 40

3.3.3 Characterization of T1 *HvAACT1* barley plants ... 40
3.4 Discussion...58

CHAPTER 4 Engineering aluminium resistance in barley with SbMATE

4.1 Introduction...61
4.2 Materials and Methods ...62
4.3 Results...62
 4.3.1 Generation of homozygous lines ...62
 4.3.2 Organic anion efflux ...64
 4.3.3 Transgene expression...66
 4.3.4 Relative root growth: hydroponic experiments66
 4.3.5 Relative root growth: soil experiments...71
4.4 Discussion...80

CHAPTER 5 Al$^{3+}$ resistance increased with expression of Frd3 in barley

5.1 Introduction...83
5.2 Material and methods ...85
5.3 Results...86
 5.3.1 Generation of transgenic lines...86
 5.3.2 Analysis of T1 lines ...86
 5.3.3 Analysis of T2 plants ...88
 5.3.4 Soil experiments..90
 5.3.5 Elemental analysis..103
5.4 Discussion...107

CHAPTER 6 Direct comparison of the three MATE genes................................. 110

6.1 Introduction...110
6.2 Materials and methods ...110
6.3 Results...111
6.4 Discussion...118

CHAPTER 7 General discussions and conclusions................................. 120

References...126
Appendix.. 140