Effects of variable retention harvesting on productivity and growth in wet eucalypt forests

by

Robyn Elizabeth Scott
MSc, Forest Science

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Plant Science, University of Tasmania; and Co-operative Research Centre for Forestry, Hobart, Australia

May 2013
Declaration of Originality

I hereby declare that this thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Robyn Scott May 2013

Authority of Access

This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Robyn Scott May 2013

Statement regarding published work contained in thesis

The publishers of the papers comprising Chapters 4 to 6 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Robyn Scott May 2013
Statement of publication

Peer-reviewed publications produced as part of this thesis:

Statement of Co-Authorship

The following people and institutions contributed to the publication of work undertaken as part of this thesis:

Robyn Scott, University of Tasmania = Candidate
Mark Neyland, Forestry Tasmania = Author 1
David McElwee, Forestry Tasmania = Author 2
Susan Baker, Forestry Tasmania = Author 3
Mark Hovenden, University of Tasmania = Author 4
Stephen Mitchell, University of British Columbia = Author 5
Paul Adams, Forestry Tasmania = Author 6
Matthew Wood, Forestry Tasmania = Author 7

Author details and their roles:

Paper 1, Burning outcomes following aggregated retention harvesting in old-growth wet eucalypt forests.

Located in chapter 4.

The candidate was the lead author of this paper and contributed to all aspects of the study including idea development, data collection and analysis, and manuscript writing. Author 1 provided overall guidance and supervision, including the development of ideas, the analysis of data and the writing of the manuscripts. Author 2 assisted with data collection and analysis while Author 3 provided previously collected data and helped to refine the manuscript.

Paper 2, Short-term effects of firebreaks on seedling growth, nutrient concentrations and soil strength in southern Australian wet eucalypt forests.
The candidate was the lead author of this paper and contributed to all aspects of the study including idea development, data collection and analysis, and manuscript writing. Author 1 provided overall guidance and supervision, including the development of ideas, the analysis of data and the writing of the manuscripts. Authors 4 and 5 contributed to the development of the research questions and sampling design and helped to refine the manuscript. Authors 6 and 7 helped to develop the methodology, supervised the field work and helped to refine the manuscript.

Paper 3, Early regeneration results following aggregated retention harvesting of wet eucalypt forests in Tasmania, Australia.

Located in chapter 6.

The candidate was the lead author of this paper and contributed to all aspects of the study including idea development, data collection and analysis, and manuscript writing. Author 1 provided overall guidance and supervision, including the development of ideas, the analysis of data and the writing of the manuscripts. Author 2 assisted with data collection and analysis.
We the undersigned agree with the above stated “proportion of work undertaken” for each of
the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed: __________________ _____________________

Mark Hovenden René Vaillancourt
Supervisor Head of School
School of Plant Science School of Plant Science
University of Tasmania University of Tasmania

Date: _____________________
Acknowledgements

I would like to acknowledge the support of Forestry Tasmania, the Tasmanian Community Forest Agreement, the University of Tasmania, and the Co-operative Research Centre for Forestry in completing this research. My supervisors, Dr. Mark Neyland (Forestry Tasmania), Dr. Mark Hovenden (University of Tasmania) and Dr. Stephen Mitchell (University of British Columbia), have provided excellent advice and guidance, prompt editorial comments, and gentle nudges to keep me on track when it seemed I might be heading off into the wilderness. Particular thanks are due to Mark Neyland who provided phenomenal encouragement and support and could always be relied on to look out for my best interests.

A number of people assisted with field measurements over the years, including Tim Davis, Leigh Edwards, Sue Jennings, Dave McElwee, Lachie Clark, Phuong Tran, Kristen Dransfield, Leanne Earle, Pete Sheldon, Crispen Marunda, Sean Boucher, Mitch Fulford, and Leanne Earle. I fear that others remain only as initials on various data sheets, but I am very grateful to all of them for their hard work, thoroughness and cheerfulness. Special thanks are due to Dave McElwee for keeping the monitoring program and data collection on track while I was on maternity leave.

Luke Ellis was instrumental in developing the VR calculator, while Marie Yee provided help with coupe context metrics. Glenn McPherson and Rob Musk provided statistical advice. Others who have contributed to the success of this research include the Variable Retention Implementation Group, all of the District Staff involved in implementing ARN, Dick Chuter, Tony Blanks, Jacinta Lesek, Matt Wood, Paul Adams, Sue Baker, Tim Wardlaw, Steve Read, John Hickey, and Martin Stone.
I’d like to say an enormous thank-you to all my friends and family for their support, encouragement and belief in me. And finally, to James, who reminds me every day that there are things more important than a doctorate, and to David, for making it all possible and for providing hugs on demand, thank you so very much.
Abstract

Society’s changing expectations for native forest management and an improved understanding of wet-forest ecology have led to the adoption of variable retention silviculture in Tasmania’s old-growth wet eucalypt forests. Variable retention aims to maintain biodiversity and ecosystem function in managed forests by retaining patches of forest or individual trees. Retained areas are intended to provide continuity of structure and function, enhance landscape connectivity, and influence the regenerating forest. However, these ecological goals must be balanced against silvicultural considerations such as achieving successful regeneration and avoiding damage to retained trees.

This study is the first to assess regeneration success and related silvicultural outcomes after operational variable retention harvesting in wet eucalypt forests, and to compare these to outcomes after conventional clearfell, burn and sow harvesting. A total of 38 aggregated retention (ARN) coupes and 31 paired clearfell, burn and sow (CBS) coupes harvested from 2003 – 2009 and regenerated from 2007 – 2010 were monitored for up to three years to address questions concerning forest influence and retention levels, the persistence of aggregates, the effects of site preparation including new ‘slow burning’ methods, and early regeneration results.

Early silvicultural outcomes after operational ARN harvesting in old-growth wet eucalypt forests were generally satisfactory, and compared favourably with outcomes after conventional CBS harvesting. There were no differences in eucalypt seedling stocking, density or height between ARN and CBS coupes at one year of age. At three years of age, seedling density and height did not vary with silvicultural system, and stocking was only 5% lower in ARN coupes when two outliers were removed. This early regeneration success in the
ARN coupes is attributed to the high proportion of burnt seedbed achieved in the regeneration burns on these coupes, the adoption of aerial sowing as a standard operating procedure, and the absence of any increase in browsing pressure or edge-related growth suppression.

Seedling height and density were strongly related to the state of the seedbed, and increased with increasing burn intensity, confirming that the creation of burnt seedbed is essential for good early regeneration in wet eucalypt forests. The higher perimeter-to-area ratio of ARN coupes resulted in a higher proportion of the harvested area being affected by firebreaks, although this decreased in more recently harvested openings due to changes in coupe design. Soil disturbance and compaction associated with firebreaks were found to affect soil physical and chemical properties and to reduce eucalypt seedling height growth by 40-60%. To reduce soil disturbance and potential impacts on regeneration, it is recommended that firebreaks be established only where absolutely necessary, and firebreak widths be minimised wherever possible.

Windthrow and harvesting damage were not significantly increased by ARN harvesting, but 2.5 times as much unharvested forest was affected by the regeneration burn in ARN coupes compared to CBS coupes, due largely to burning in the retained aggregates. It is recommended that island aggregates be at least 1 ha in size to avoid excessive burn damage and reduce windthrow risk. The longer-term effects of ARN harvesting on eucalypt productivity remain unknown, and more detailed examination of edge effects is required, but these early results indicate that initial silvicultural goals for regeneration can be met after variable retention harvesting in wet eucalypt forests.

Keywords: Australia, *Eucalyptus*, regeneration, silvicultural systems, variable retention, firebreak, seedbed.
Table of Contents

Chapter 1. Introduction .. 1
1.1. Wet eucalypt forest ecology .. 1
1.2. Alternatives to clearfelling .. 3
1.3. Goals and guidelines for Tasmanian VR .. 4
1.4. Silvicultural implications .. 6
1.5. Research questions and thesis outline ... 9

Chapter 2. Retention and forest influence .. 11
2.1. Introduction ... 11
2.2. Methods ... 14
2.3. Results ... 19
2.4. Discussion ... 24
2.5. Conclusions ... 27

Chapter 3. Windthrow and harvesting damage ... 29
3.1. Introduction ... 29
3.2. Methods ... 32
3.3. Results ... 36
3.4. Discussion ... 42
3.5. Conclusions and recommendations ... 46

Chapter 4 - Burning and site preparation ... 48
4.1. Introduction ... 48
4.2. Methods ... 53
4.3. Results ... 61
4.4. Discussion ... 70
4.5. Conclusions and recommendations ... 74
Chapter 5 – Impacts of firebreaks ... 75
 5.1. Introduction .. 75
 5.2. Methods .. 78
 5.3. Results .. 86
 5.4. Discussion ... 92
 5.5. Conclusions ... 95

Chapter 6 - Regeneration .. 96
 6.1. Introduction ... 96
 6.2. Methods ... 99
 6.3. Results .. 107
 6.4. Discussion ... 117
 6.5. Conclusions ... 123

Chapter 7. Synthesis and discussion ... 125
 7.1. Thesis aims and major research outcomes ... 125
 7.2. Discussion ... 127
 7.3. The future of VR in Tasmania ... 134
 7.4. Conclusions ... 137

References ... 138

Appendix 1. Forestry Tasmania’s approach to variable retention 151

Appendix 2. Detailed site characteristics ... 153