Calcification patterns of the coccolithophore
Coccolithus braarudii (Haptophyta), from the late Quaternary to present in the Southern Ocean

by

Joana Carolina Cubillos

BSc. Hons., University of Tasmania

Submitted in fulfilment of the requirements for the degree of

Doctor

of

Philosophy

University of Tasmania

June, 2013
Declaration of Originality

I declare that the material presented in this thesis is original, except where due acknowledgement is given, and has not been accepted for award of any other degree or diploma

Joana Carolina Cubillos

June, 2013
Authority of Access

This thesis may be available for loan and limited copying in accordance with the Copyright Act 1968

Joana Carolina Cubillos

June, 2013
Statement regarding published work contained in the thesis

The publishers of the paper comprising Chapter 2 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.
The following people contributed to the publication of the work undertaken as part of this thesis:

Joana C. Cubillos (candidate) (50%), Jorijntje Henderiks (author 2) (35%), Luc Beaufort (author 3) (2.5%), Will R. Howard (author 4) (2.5%), Gustaaf Hallegraeff (author 5) (10%)

Details of authors roles:

Joana C. Cubillos (the candidate) and Jorijntje Henderiks contributed to the idea, method development and method refinement, presentation and formalization.

Luc Beaufort contributed to the original idea and training on the original methodology.

Gustaaf Hallegraeff contributed with his expertise, feedback, laboratory facilities, presentation and formalization.

Will Howard facilitated the samples and additional data.

We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published peer-reviewed manuscript contributing to this thesis:

Signed: ____________________ ____________________

Professor Gustaaf Hallegraeff Professor Millard Coffin
Supervisor Executive director
Institute for Marine and Institute of Marine and
Antarctic Studies Antarctic Studies
University of Tasmania University of Tasmania

Date: ____________________________
Dedication

To my beautiful man Philip (Felipe), for his love, patience and kindness…

To our gorgeous son Gabriel and the strength he has already given me…

To my dear family: my dad, Mariano, my mum, Pola, my sisters Paula and Pamela, and my beautiful nephews Benjamin and Emilio…
Acknowledgments

I would like to acknowledge and thank the following people for their contribution to this thesis:

To my primary supervisor Professor Gustaaf Hallegraeff for his commitment to this project, his feedback and his ability to face the challenges that this project presented for all of us.

I had the pleasure to meet and work with Dr. Jorijntje Henderiks, based in Sweden, who also joined the supervision team. Jorijntje has been central to this research and without her constant feedback and tireless work I wouldn’t have been able to finish this candidature. I wish to thank her for all her efforts, knowledge and precious time.

To the rest of my supervision team, Dr. Will Howard and Dr. Simon Wright for their input.

To Helen Bond for all her help and support at the lab and her infallible friendship.

To Associate Professor Ron Berry (ARC Centre of Excellence in Ore Deposits (Codes)), for providing the Leica DM6000 cross-polarised microscope used for all image gathering and method development, and thank him also for sharing his expertise and knowledge in the field of mineralogy and microscopy.

To Dr. Tom Trull and Dr. Stephen Bray (Antarctic Climate and Ecosystem Cooperative Research Centre (ACE, CRC)) for providing the sediment trap samples (SAZ Project), used for method development, and also for their advice and valuable time. Special thanks to Stephen for last minute calculations and his precious time in such last notice.

To Dr. Andrew Moy (Australian Antarctic Division (AAD), Antarctic Climate and Ecosystem Cooperative Research Centre (ACE, CRC)) for his availability, valuable feedback and time.

Professor David Ratkowsky and Dr. Greg Jordan were crucial in the statistical
analysis of the data and their judgment and feedback were central to the results of this thesis. Thanks you both for your sharing your expertise and mostly your valuable time.

To Dr. Karsten Goemann, in charge of the SEM unit (Central Science Laboratory), who provided support in all aspects of image gathering and quality, for which we are very grateful.

To Luc Beaufort for welcoming me into his lab at CEREGE (Aix-en Provence, France), and giving me his time and expertise in the training of the original methodology used as the base for this research.

To Rick van den Enden for his help with the SEM Unit at the Australian Antarctic Division.

To Professor Patrick Quilty at the School of Earth Sciences for his advice, expertise and generous time.

To Miguel de Salas for the isolation of the *Coccolithus* cultures used on this research.

To Suellen Cook, Kate Perkins and Juan Jose Dorantes and Marius Muller, Giselle Astorga and Fabiola Aburto for their friendship and support throughout this process, and all my friends and family.

To all whom I shared music this past five years, which allowed me to keep my sanity in hard times.
CHAPTER 1 GENERAL INTRODUCTION... 1

1.1 COCCOLITHOPHORES ... 1

1.1.1 Background ... 1

1.1.2 Biomineralization and crystallography ... 3

1.1.3 Stratigraphy and evolution .. 6

1.2 OCEAN SYSTEM ... 7

1.2.1 Carbonate system and calcium carbonate sedimentation 7

1.2.2 Anthropogenic changes: Ocean acidification ... 8

1.3 BACKGROUND TO THIS STUDY .. 10

1.4 STUDY AREA .. 11

1.5 REGIONAL OCEANOGRAPHY .. 12

1.6 COCCOLITHOPHORES IN THE SOUTHERN OCEAN .. 15

1.6.1 Physiological considerations ... 15

1.6.2 Evolution of Coccolithophores ... 17

1.6.3 Taxonomical notes ... 18

1.7 SIGNIFICANCE, AIMS AND THESIS STRUCTURE .. 18

1.7.1 Thesis aims .. 19

1.7.2 Thesis structure ... 19

CHAPTER 2 RECONSTRUCTING CALCIFICATION IN ANCIENT COCCOLITHOPHORES: INDIVIDUAL WEIGHT AND MORPHOLOGY OF COCCOLITHUS PELAGICUS (SENSU LATO) ... 22

ABSTRACT .. 23

2.1 INTRODUCTION ... 24

2.1.1 Coccolith calcite weight estimates: How and why? .. 24

2.1.2 Species concept .. 26

2.1.3 Purpose of this study .. 27

2.2 MATERIAL AND METHODS.. 28

2.2.1 Sample preparation and image collection ... 28

2.2.2 Birefringence ... 29

2.2.3 Calibration Slides ... 30

2.2.4 Converting grey level values to calcite weight .. 32

2.3 RESULTS .. 33

2.3.1 Sample Preservation ... 33

2.3.2 Aspect of Coccolithus pelagicus coccoliths ... 34

2.3.3 Weight Index ... 34
2.3.4 Proximal Shield versus Central Area .. 35
2.3.5 Weight index and size ... 35
2.4 DISCUSSION .. 37
 2.4.1 Accuracy of the method .. 37
 2.4.2 WI and coccolith parameters ... 39
 2.4.3 WI relative to coccolith length throughout time intervals 40
2.5 CONCLUSIONS ... 42

CHAPTER 3 MORPHOTAXONOMY OF COCCOLITHUS SPP. FROM THE SOUTHERN
OCEAN, SOUTH OF TASMANIA ... 44
ABSTRACT ... 44
3.1 INTRODUCTION ... 45
 3.1.1 Species varieties in the genus Coccolithus Schwartz 1894 45
 3.1.2 Taxonomical notes ... 45
 3.1.3 Current global distribution .. 46
 3.1.4 Depositional distribution in the Southern Ocean, south of Tasmania 47
 3.1.5 Purpose of this study .. 48
3.2 METHODS .. 50
 3.2.1 Sediment Traps .. 50
 3.2.2 Coccolith and coccosphere concentrations .. 51
 3.2.3 Culture material ... 52
 3.2.4 Core-top sediment ... 52
 3.2.5 Statistical Analysis .. 52
3.3 RESULTS .. 53
 3.3.1 Coccolithus braarudii in the Australian sector of the Southern Ocean 53
 3.3.2 Coccolith Morphometry ... 55
 3.3.2.1 Morphological variation among cultures .. 55
 3.3.2.2 Variation among all sampling sources ... 56
3.4 DISCUSSION .. 58
 3.4.1 Comparative morphometry .. 58
 3.4.2 Coccolithus presence south of the STF ... 58
3.5 CONCLUSION .. 60

CHAPTER 4 SEASONAL VARIABILITY IN CALCIFICATION AND ABUNDANCE OF
THE COCCOLITHOPHORE COCCOLITHUS BRAARUDII [(GAARDER, 1962) BAUMANN
ET AL., 2003] IN THE SUBANTARCTIC ZONE (SAZ) OF THE SOUTHERN OCEAN,
SOUTH OF TASMANIA ... 62
ABSTRACT ... 62
4.1 INTRODUCTION ... 63
 4.1.1 The Southern Ocean influence in global ocean circulation 63
 4.1.2 The Subantarctic Zone (SAZ) .. 65
4.1.3 Coccolithophores seasonality patterns ... 65
4.1.4 Purpose of this study .. 66
4.2 METHODS .. 67
4.2.1 Sediment traps .. 67
4.2.2 Environmental data ... 68
4.2.3 Statistical analysis ... 69
4.3 RESULTS .. 70
4.3.1 Environmental parameters .. 70
4.3.2 Seasonal population .. 70
4.3.2.1 Population averages ... 70
4.3.2.2 Chlorophyll \(a \) ... 74
4.3.3 Morphological variations ... 75
4.4 DISCUSSION ... 79
4.4.1 Morphological trends ... 79
4.4.2 Seasonal trends ... 81
4.5 CONCLUSIONS ... 82

CHAPTER 5
COCCOLITHUS BRAARUDII [(GAARDER, 1962) BAUMANN ET AL., 2003]
DURING THE LATE QUATERNARY: CALCIFICATION PATTERNS FROM THE LAST
GLACIAL MAXIMUM TO THE PRESENT .. 84

ABSTRACT .. 84

5.1 INTRODUCTION .. 85
5.1.1 Historical carbon trends ... 85
5.1.2 Nannoplankton-based paleoceanography in the Southern Ocean 86
5.1.3 Purpose of this study ... 87

5.2 MATERIALS AND METHODS .. 87
5.2.1 Core sediment ... 87
5.2.2 Sediment traps ... 88
5.2.3 Estimate weight by birefringence .. 88
5.2.4 Morphometric Measurements ... 89
5.2.5 Environmental proxy data .. 89
5.2.6 Statistical Analysis ... 90

5.3 RESULTS AND INTERPRETATION ... 90
5.3.1 Changes in calcification and size ... 90
5.3.2 Overall morphometric variability ... 92
5.3.3 Size determined variability .. 94
5.3.4 Environmental variability .. 97

5.4 DISCUSSION ... 101
5.4.1 Assessment of comparative analysis ... 101
5.4.2 Morphological changes in C. braarudii over the past 20,000 years 102
5.4.3 C. braarudii in response to carbon chemistry ... 103
Abstract

Ocean acidification, caused by a decrease in pH due to elevated anthropogenic CO₂ input from the atmosphere into the ocean, is the focus of intense current research with regard to biological impacts. Allegedly, the most affected species will be those that produce hard calcite and aragonite shells. In the present study, we assessed calcification and morphometry of the large-sized, heavily calcified coccolithophore genus *Coccolithus*, in the Southern Ocean, south of Tasmania.

Firstly, we characterised the species, past and present, in the Southern Ocean using the following source materials: fossil core-top material from Core GC07 (South Tasman Rise); recent sediment trap samples collected during Sept 2003 - Feb 2004 from the Subantarctic Zone (SAZ) south of the subtropical front (STF); and two newly isolated culture strains from coastal Tasmania. Results showed that only a single taxon, designated *Coccolithus braarudii* [(Gaarder, 1962) Baumann et al., 2003] sensu Geisen et al. (2002) and Young et al., (2003), was consistently present in the Southern Ocean, with coccolith length ranging from 10-16 µm and consistent presence of a central bar across the central area. Core-top sediments showed its presence for at least the past ~1000 years, and recent sediment trap samples demonstrated a well-established population from Sept 2003 to Feb 2004 (coccolith and coccosphere fluxes of ~ 6.87 x 10³ and ~ 2.11 x 10² counts/m²/day, respectively in September to over ~ 6.41 x 10⁶ and 1.23 x 10⁴ counts/m²/day in January 2004, respectively). Tasmanian culture material proved that this species was equally present both north and south of the STF (~ 46°S).

To evaluate calcification patterns, a method to estimate coccolith weight was newly adapted in order to suit this large, heavily calcified species. This method is based on the intensity of birefringence of individual coccoliths under cross-polarised light, measured in grey levels, which is converted into relative weight (picograms per pixels) through a calibrated transfer function. In its original approach, the birefringence technique is unsuitable for partially non-birefringent coccoliths in standard orientation, such as those of the family Coccolithaceae. However, we
here consider only the birefringent parts of the coccoliths, the proximal shield (PS) and central area (CA) to determine intra-specific coccolith weight variation. Since only part of the coccolith is measured, this constitutes a relative weight measurement, here called weight index (WI). In contrast to other methods that exclusively rely on coccolith length to estimate calcification, the advantage of this approach is that it decouples coccolith weight from length, to provide separate estimates of how each morphological feature of coccoliths responds to environmental changes. Furthermore, we advocate for a combined approach of WI and morphometry, to depict allometric relationships within coccoliths, i.e. how coccolith shape varies with size.

Sediment trap samples from the Subantarctic Zone (SAZ) were analysed for seasonal variations in the morphology of *C. braarudii*. Distal shield length (DSL), WI, and various other parameters of individual coccoliths were measured ($N = \sim 3000$), as well as coccolith and coccosphere concentrations estimated. Results showed an increase in WI, DSL and cell concentration from spring to summer, correlated with the seasonal increase in phytoplankton chlorophyll a. No correlation was found between WI and environmental parameters (Atmospheric CO$_2$, [CO$_3^{2-}$], DIC, sea surface temperature (SST) and nutrients), which appears to confirm earlier observations that this species is insensitive to chemical variations. However there was a positive correlation between DSL and SST. We also recorded the occurrence of a lighter, slightly smaller phenotype during early spring - which could be the remnant of a winter population - and a larger, heavier phenotype in mid-summer. Although this might indicate a constant allometric relationship between size and weight at a seasonal scale, the appearance of healthier populations in summer may suggest certain seasonal plasticity of *C. braarudii* coccoliths.

In order to analyse changes in WI and morphological parameters at a geological time scale, fossil material from sediment Core MD972106 was investigated from the Last Glacial Maximum (LGM, ~ 20 ka) through to the late Holocene (~ 4.2 ka), and compared with recent sediment trap samples. Additionally, we incorporated a novel estimator for intra-specific variations in the degree of calcification, combining WI and DSL, resulting in a calcification index (CI). Coccolith weight (WI) in *C. braarudii* in the Southern Ocean has significantly increased (not decreased) from the
late Quaternary to the present, further confirming that this genus could be insensitive to changes in ocean chemistry composition.

Lighter, larger coccoliths during the LGM could imply degrees of calcification would be lower as a trade-off for larger coccolith under glacial conditions. Holocene material contained a smaller, heavier phenotype, while a larger, heavier phenotype was present in contemporary oceans. While variations in DSL were correlated with environmental parameters such as SST, atmospheric CO₂ (ppmv) and CO₃²⁻ concentrations ([CO₃²⁻]), WI was not related to any of these variables. Our results showed that the scaling between size and weight (allometry) of coccoliths was not constant over geological time, indicating subtle but significant changes in the mean shape of _C. braarudii_, and that the allometric relationships at a seasonal scale may represent short term adaptation processes. CI exhibited a clear response to environmental parameters, especially SST, implying that variable allometry between size and weight underpins phenotypic plasticity in this species, which is assumed to be an adaptive response to changing environmental conditions.