Accumulation of mercury in estuarine food webs: biogeochemical and ecological considerations.

By

Hugh John Jones
BSc (Hons)

Institute of Marine and Antarctic Sciences (IMAS)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

October 2013
University of Tasmania
STATEMENTS AND DECLARATIONS

Declaration of Originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Authority of Access

This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Statement regarding published work contained in thesis

The publishers of the papers comprising Chapters 2, 3 and 5 hold the copyright for that content, and access to the material should be sought from the journal. The remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Statement of Ethical Conduct

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government’s Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. All research conducted for this thesis was approved by the University of Tasmania Animal Ethics Committee (Permit No. A0010843).

Signed

Hugh Jones

Date 28/10/13
Statement of Co-Authorship

The following people and institutions contributed to the publication of work undertaken as part of this thesis:

Hugh J. Jones, Institute for Marine and Antarctic Studies, UTas

Dr. Kerrie M. Swadling, Institute for Marine and Antarctic Studies, UTas

Dr. Edward C. V. Butler, Australian Institute of Marine Science, NT, Australia 0811

Dr. Sean R. Tracey, Institute for Marine and Antarctic Studies, UTas

Dr. Catriona K. Macleod, Institute for Marine and Antarctic Studies, UTas

Author details and their roles:

Paper 1, Long term trends of Hg uptake in resident fish from a polluted estuary

Reproduced in chapter 2; is published in Marine Pollution Bulletin - Elsevier Publishing:

The candidate was the primary author who conceived the research idea, analysed the data and wrote the original manuscript (75 %); Catriona Macleod is the primary supervisor, providing advice on funding, framing the concept and manuscript preparation (10 %). Kerrie Swadling (10 %) provided statistical assistance and Sean Tracey (5 %) provided advice on manuscript preparation and fish biometrics. Data presented in this work was provided in part by Nyrstar Hobart, Tasmania, as part of the industry’s annual monitoring program.
Paper 2, Complex patterns in fish – sediment mercury concentrations in a contaminated estuary: the influence of selenium co-contamination?

Reproduced in chapter 3; is in press Estuarine and Coastal Shelf Science - Elsevier Publishing:

The candidate was the primary author who conceived the research idea, collected and analysed the samples, analysed the data and wrote the original manuscript (75 %); Catriona Macleod is the primary supervisor, providing support for analytical techniques and manuscript preparation (10 %). Kerrie Swadling (10 %) and Edward Butler (5 %) provided the candidate with advice on manuscript preparation and statistical analysis.

Reproduced in chapter 4 is under review Limnology and Oceanography – ASLO Publishing:

The candidate was the primary author who conceived the research idea, collected and analysed the samples, analysed the data and wrote the original manuscript (65 %); Catriona Macleod (15 %) and Kerrie Swadling (10 %), provided advice on analytical techniques, data analysis and manuscript preparation. Edward Butler (10 %) provided advice on analytical techniques and manuscript preparation.
Paper 4, Spatial variability in selenium and mercury interactions in a key recreational fish species: implications for human health and monitoring.

Reproduced in chapter 5; is published in Marine Pollution Bulletin - Elsevier Publishing:

The candidate was the primary author who conceived the research idea, collected and analysed the samples, analysed the data and wrote the original manuscript (80 %); Catriona Macleod (15 %) is the primary supervisor, providing advice on manuscript preparation. Edward Butler (5 %) also provided advice on the chemical attributes and manuscript preparation.
We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed:

Hugh Jones
PhD Candidate
Institute for Marine and Antarctic Studies – Fisheries and Coasts Centre
University of Tasmania

Signed:

Dr. Catriona Macleod
Primary Supervisor
Institute for Marine and Antarctic Studies – Fisheries and Coasts Centre
University of Tasmania

Signed:

Prof. Richard Coleman
Deputy Director
Institute for Marine and Antarctic Studies
University of Tasmania
ACKNOWLEDGEMENTS

Foremost I would like to express my sincere gratitude to my supervisors for their unwavering support throughout this PhD. In particular I would like to thank my principal supervisor Dr. Catriona Macleod for her incredible efforts in securing funding for this project, her consistent positive input and energy and her patience with my many requests. My sincere thanks must also be extended to Dr Kerrie Swadling for the considerable amount of her time she made available to me, her attention to detail in final proofs and for her door always being open. I am also grateful to have had Dr Ed Butler and Dr Sean Tracey as my additional supervisors and to have on call two experts within their fields. I would also like to acknowledge the huge number of people that have made this thesis possible. Within IMAS I must thank Andrew Pender and Lisette Robertson for their experience and humour in the field and laboratory; Karen Aiton and Graeme Ewing for their work on validating the aging of the fish. I thank Nyrstar, Hobart, for continued support of this project, in particular Todd Milne and James Burke. I also thank Jason Whitehead and Christine Coughanowr at the Derwent Estuary Program, for their assistance and in-kind support. I am very grateful to Dr Warren Corns and Dr Bin Chen of PS Analytical for ‘saving the day’ in providing access and expertise in determining THg, MeHg and Se concentrations. I am also thankful to Linda Barry at ANSTO for her technical expertise in stable isotope analysis. This project received analytical and travel support though the Seafood CRC for which I am appreciative.

This thesis would never have come to be had I not had the unwavering support of my family back in the UK, and their belief in the ‘educated beach bum’. Finally, and most importantly I must thank my beautiful wife Becky, for all the adventures that got us this far; for wandering halfway around the globe on a whim with me and always providing me with a smile to come home to each day.
GENERAL ABSTRACT

Estuarine systems that are exposed to industrial pollutants often retain a high loading of contaminants, including mercury (Hg), due to prevailing physical, chemical and biological conditions. Estuarine biota are principally exposed to Hg through dietary uptake, which can lead to higher order species bioaccumulating significant concentrations that can also be harmful to human health if consumed. Methylmercury (MeHg) production, bioaccumulation, and biomagnification in estuarine food webs are broadly understood but our knowledge of Hg food pathways and selenium’s (Se) interaction with Hg is lacking. Current observations show poor correlation between bioaccumulation and environmental loadings, indicating that food web uptake and transfer of Hg are not straightforward. Understanding the mechanisms that underpin this variability is critical to quantifying and managing Hg exposure risks, and for developing appropriate management actions. The studies within this thesis examined the bioavailability, trophic magnification and bioaccumulation of Hg within a contaminated estuary to provide better capacity to manage the ecosystem and human health concerns.

Specifically this work focused on three areas: (1) The long-term capacity of resident fish to recover from Hg system contamination; (2) routes of Hg and Se trophic magnification within estuarine food webs; and (3) the influence of Se on Hg bioavailability and Hg toxicity. The study was based in the Derwent Estuary, Tasmania, a site of historical mercury pollution.

It was found that despite significant reduction of Hg discharges into an estuarine system, Hg concentrations in fish did not decrease, even after an extended period of time had passed (in this case, 37 years). The fact that Hg concentration in fish did not decline was only evident after application of biometric models, which suggests that monitoring of fish bioindicator species must include biological information to avoid misinterpretation of spatial and temporal trends of Hg contamination in biota.
Continuing, but spatially variable, methylation of Hg from sediments was found to be the key driver in the bioaccumulation of MeHg in resident fish. Co-contamination of Se and its close association with Hg in the sediments suggested a role of Se in reducing Hg bioavailability. Se uptake by resident fish was sufficient to maintain Se molar excess over Hg (a critical relationship in defining Hg toxicity), but an Se-based assessment of the risk of Hg toxicity to human consumers pointed to the potential for negative health effects associated with Hg in certain regions. This finding highlighted that, for human health assessments to be effective, the information on which they are based must be applied at a spatial scale appropriate to the source of Hg pollution.

To link an Hg source in the environment to fish, this research used a novel combination of Bayesian stable isotope mixing models and dietary analysis to provide refined trophic magnification models with which to evaluate Hg movement through food webs to the species of interest. The refined models reduced uncertainty in trophic magnification pathways and highlighted key benthic prey species as routes for Hg bioaccumulation.

These results provide a significant advance on the current understanding of Hg dynamics, specifically: improving our understanding of the relationship between Hg and Se; identifying issues with the way in which Hg concentrations fish are measured and reported so that the levels and risk can be more accurately understood; and identifying an improved approach for evaluating trophic interactions and bioaccumulation pathways. The findings will support estuarine management by informing existing monitoring programs and enabling better evaluation of the risks to human health in regions of Hg contamination.
TABLE OF CONTENTS

STATEMENTS AND DECLARATIONS ... iii
ACKNOWLEDGEMENTS ... xiii
GENERAL ABSTRACT ... xv
TABLE OF CONTENTS ... xvii
LIST OF FIGURES .. xxi
LIST OF TABLES .. xxvi

CHAPTER 1 GENERAL INTRODUCTION, OVERVIEW AND THESIS STRUCTURE 31

1.1 Background ... 31
1.2 Study region .. 32
1.3 Hg bioavailability from sediments .. 36
1.4 Bioaccumulation of Hg in resident fish .. 38
1.5 Trophic transfer of Se and Hg ... 40
1.6 Selenium mercury interactions in fish and consequences for human health 43
1.7 Thesis outline .. 47

CHAPTER 2 LONG TERM TRENDS OF Hg UPTAKE IN RESIDENT FISH FROM A POLLUTED ESTUARY ... 51

2.1 Highlights ... 52
2.2 Abstract ... 52
2.3 Key words .. 53
2.4 Introduction .. 53
2.5 Methods .. 56
 Study Site .. 56
 Sample collection .. 57
 Hg analysis ... 58
 Data analysis .. 59
2.6 Results .. 63
 Temporal Models describing Hg bioaccumulation (1991-2011) 66
 Spatial Model describing Hg bioaccumulation (1991-2011) ... 69
 Age data and growth rates .. 71
2.7 Discussion ... 73
2.8 Conclusions .. 78