CAPILLARY ELECTROPHORESIS OF RIBOSOMAL RNA FOR CHARACTERISATION OF MICROBIAL COMMUNITIES

by

Yi Heng Nai

B. Biotech (Hons)

November 2013

Submitted in total fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Chemistry
University of Tasmania
Declaration

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

The publishers of the papers in this thesis hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Yi Heng Nai

November 2013
Acknowledgements

Looking back on this journey, I acknowledge that it would not have been possible without the support, contribution and assistance of many significant individuals.

A/Prof. Michael Breadmore has been an excellent mentor throughout my candidature. He was the first person who provided me with research opportunity in undergrad which eventually led me to pursue my honours and PhD studies under his supervision. His supervision over the years has instilled me with a sense of confidence, enthusiasm and appreciation toward good scientific work. All of which have provided me with the opportunities to gain research skills & experience and try out my own ideas. During the candidature, Dr. Shane Powell, has also been a wonderful supervisor in assisting me in maneuvering through world of microbiology. Both of your consistent support, patience, and guidance throughout this candidature are greatly appreciated.

I am also very grateful to Prof. Paul Haddad and Prof. Emily Hilder for their support for making this PhD candidature possible.

I wish to thank A/Prof. Mike Manefield for the rRNA-SSCP research idea which had led me to this undertaking. I am grateful for the discussions and contributions I have received from Dr. Olivier Zemb and Dr. Maria-Luisa Gutierrez-Zamora.

A special acknowledgement to all the friends that I have made during this journey, I am especially thankful to Timothy Causon, William Percey, Leonel Amaral, Esme Candish, Anna Nordborg, Peter Molesworth, James Suttil, Tess Popelier, Roderick Jones, Dario Caldarola, Petr Smejkal, Tom Kazarian, and Oscar Potter. Also to students, post docs and staffs in ACROSS, School of Chemistry and Food Safety Centre for offering their assistance and friendships throughout my candidature. Thank you for making the department(s) an enjoyable environment to work in.

Last but not least, I would like to thank my family for the constant support that they have given me. I appreciate the sacrifices they made en route to completion of this undertaking.
Statement of Co-Authorship

The following people and institutions contributed to the publication of work undertaken as part of this thesis:

Yi Heng Nai, School of Chemistry, UTAS = Candidate
Shane M. Powell, TIA, UTAS = Author 1
Michael Breadmore, School of Chemistry, UTAS = Author 2
Oliver Zemb, University of New South Wales = Author 3
Maria-Luisa Gutierrez-Zamora, University of New South Wales = Author 4
Mike Manefield, University of New South Wales = Author 5
Roderick C. Jones, University College Dublin = Author 6

Author details and their roles:

Paper 1, <Capillary electrophoresis system of ribonucleic acid molecules>:
Located in chapter 1
Candidate was the primary author (75 %) and with Author 1 (5 %) and author 2 (20 %) assisted with refinement and presentation

Paper 2, <Capillary Electrophoresis Ribosomal RNA Single Stranded Conformation Polymorphism: A New approach for Characterisation of Low Diversity Microbial Communities >:
Located in chapter 3
Candidate was the primary author (75 %) and with author 1, 2, 3, 4 & 5 (5 % respectively) contributed to concepts, experimental design, writing and final corrections. Author 1 and author 2 assisted with refinement and presentation.

Paper 3, <Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization>:
Located in chapter 2
Candidate was the primary author (75 %) and with Author 6 (15 %) and author 2 (10 %) contributed to concepts, experimental design, refinement and presentation

We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed: __________________________ __________________________

A/Prof. Michael Breadmore Prof. Allan Canty
Supervisor Head of School
School Of Chemistry School of Chemistry
University of Tasmania University of Tasmania

Date: __________________________
List of Publications and Presentations

 Nai YH, Zemb O, Gutierrez-Zamora M-L, Manefield M, Powell SM, Breadmore MC
 Doi: 10.1007/s00216-012-6268-0

2. Capillary electrophoretic system of ribonucleic acid molecules
 Nai YH, Powell SM, Breadmore MC (CHAPTER 1)
 Doi: 10.1016/j.chroma.2012.08.017

3. Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization
 Nai YH, Jones RC, Breadmore MC (Chapter 2)
 Electrophoresis, 2013
 Doi: 10.1002/elps.201300288.

4. CE-RNA-SSCP: A New Approach for Characterization of Microbial Communities.

5. New CE approaches for Characterization of Microbial Communities.
6. **CE-RNA-SSCP: A New Approach for Characterization of Microbial Communities.**

7. **In search of Sieving Polymers for Separation of Ribonucleic acids by Conformation**

8. **In search of Sieving Polymers for Non denaturing Capillary Electrophoresis Separation of Ribonucleic acid (RNA)**

ABSTRACT

This thesis documents research on new capillary electrophoresis (CE) based rRNA fingerprint approaches for characterisation of low diversity microbial communities.

In the first body of work, an alternative approach for sieving polymer synthesis through reversible addition fragmentation chain transfer (RAFT) polymerisation is presented. Sieving polymer matrices are typically synthesised by conventional free radical polymerisation. This thesis describes the first synthesis of a high molecular weight poly(n,n-dimethylacrylamide) (PDMA) in which both the molar mass and polydispersity distribution were controlled by RAFT polymerisation. A multi-step chain extension is detailed and the physical properties and separation performance of DNA/RNA using this RAFT polymer are described.

The second body of work deals with the development of new approach for characterisation of microbial communities using CE. The new approach involves conformational separation of microbial 16S ribosomal RNA (rRNA) molecules containing the highly variable regions present in 16S rRNA. Single stranded conformation polymorphism (SSCP) is a separation technique based on the principle that for nucleic acid fragments of equal lengths, variation in sequences can affect nucleic acid folding and hence can be separated due to the difference in electrophoretic mobility. While CE DNA-SSCP has been commonly applied in clinical mutation diagnostic tests and studies of microbial diversity, CE rRNA-SSCP has yet to be demonstrated. In this work, an enzymatic based RNA-oligonucleotide cleavage method was employed to cleave the 16S rRNA (~1542 bases) to smaller fragments of similar length (~340 bases). This strategy uses a eubacterial ‘scissor’ probe to target and
hybridise highly conserved sites within the rRNA flanking highly variable regions (e.g. V1, V2 or V3). As rRNA is synthesised only by actively-growing cells, together with its role as the marker molecule for assigning sequences to genera and species, it can thus be used to correlate to the functioning members of microbial communities. Taking advantage of these unique properties, CE-rRNA-SSCP circumvents the need for polymerase chain reaction (PCR) amplification and retains the quantitative information regarding to the evenness of the microbial community that is important for ecological studies that were otherwise lost during PCR step. Compared to gel electrophoresis based approach, CE- rRNA SSCP significantly decreased the analysis time from 24 hours to 60 min and the use of a fluorescently labelled hybridisation probe for detection decreased the sample requirement by ten-fold. The combination of fast analysis time, low sample requirement and sensitive fluorescence detection makes CE-rRNA-SSCP an appealing new approach for characterising low diversity microbial communities.

The third body of work deals with the conception and development of a novel characterisation approach termed multiplex cleavage microbial community analysis (MCMCA), which is a potential method to simultaneously link the phylogeny of multiple groups of metabolically active microorganisms to their respective metabolic activity and relative abundance within a community. MCMCA utilizes the similar sequence-specific cleavage of rRNA molecules with oligonucleotides and RNase H employed in previous approach but differs by the use of multiple taxon specific probes selected to specifically cut the 16S rRNA into discrete fragments varying in length. The cleaved rRNA mixture is subsequently mixed with a fluorescently labelled locked nucleic acid (LNA) universal hybridisation probe and resolved using denaturing CE size separation. The feasibility of this rational is tested using model microbial strains,
followed by optimisation of the cleavage procedure to achieve multiplex cleavage in a
model microbial community. This approach was then applied to characterise a
hydrocarbon degrading enrichment community derived from soil.
TABLE OF CONTENTS

DECLARATION .. I

ACKNOWLEDGEMENTS .. II

STATEMENT OF CO-AUTHORSHIP .. III

LIST OF PUBLICATIONS AND PRESENTATIONS .. IV

ABSTRACT ... VI

LIST OF ABBREVIATIONS ... XII

PREFACE .. 1

THE IMPORTANCE OF STUDYING MICROBIAL BIODIVERSITY .. 1

AN OVERVIEW OF CULTURE INDEPENDENT MOLECULAR TECHNIQUES FOR STUDYING SOIL MICROBIAL COMMUNITIES .. 2

Denaturing / Temperature Gradient Gel Electrophoresis (DGGE/TGGE) 3

Amplified Ribosomal DNA-Restriction Analysis (ARDRA) .. 4

Single Stranded Conformation Polymorphism (SSCP) .. 5

Fluorescence in situ hybridisation (FISH) ... 6

SCOPE OF THESIS ... 9

REFERENCES .. 11

1. LITERATURE REVIEW: CAPILLARY ELECTROPHORESIS SYSTEM OF RIBONUCLEIC ACID MOLECULES .. 14

1.1. INTRODUCTION .. 14

1.2. ELECTROPHORESIS OF RNA MOLECULES .. 16

1.3. SEPARATION MECHANISM OF RNA IN SIEVING POLYMER 17

1.4. ANALYTICAL PARAMETERS ... 20

1.4.1. Sieving matrix ... 20

1.4.1.1. Cellulose derivatives... 21

1.4.1.2. Polyvinyl pyrrolidone (PVP) .. 25

1.4.1.3. Polyethylene oxide (PEO) ... 25

1.4.1.4. Linear polyacrylamide (LPA) and poly-N,N-dimethylacrylamide (PDMA) 26

1.4.2. Background electrolytes ... 26

1.4.3. Electrolyte Additives .. 26

1.4.4. Temperature ... 30

1.4.5. Electric field strength ... 32

1.4.6. Detection strategies ... 32

1.5. CONCLUDING REMARKS ... 36

1.6. REFERENCES .. 38

2. SIEVING POLYMER SYNTHESIS BY REVERSIBLE ADDITION FRAGMENTATION CHAIN TRANSFER (RAFT) POLYMERISATION 42

2.1. INTRODUCTION ... 42

2.2. EXPERIMENTAL ... 48

2.2.1. Materials and reagents ... 48

2.1.1. Synthesis of trithiocarbonate RAFT agent ... 48
2.2.2. Synthesis of Polydimethylacrylamide macro-RAFT agent .. 49
2.2.3. Chain extension of polydimethylacrylamide macro-RAFT agent 49
2.2.4. Size-exclusion chromatography (SEC) characterisation .. 50
2.2.5. CE ... 51
2.2.6. Viscosity Measurements .. 51
2.2.7. Sample ... 52
2.3. RESULTS AND DISCUSSION ... 53
2.3.1. Polymer considerations for RAFT polymerisation .. 53
2.3.2. Physical properties of commercial matrix .. 53
2.3.3. RAFT polymerisation ... 54
2.3.4. Sieving polymer synthesis utilising polydimethylacrylamide macro-RAFT agent and characterisation ... 57
2.3.4.1. Viscosity measurement of sieving matrices ... 63
2.3.5. Electrophoresis of DNA and RNA size standard ladders ... 63
2.4. CONCLUDING REMARKS AND FUTURE WORK .. 69
2.5. REFERENCES .. 70

3. CAPILLARY ELECTROPHORESIS RIBOSOMAL RNA SINGLE STRANDED
CONFORMATION POLYMORPHISM ... 73
3.1. INTRODUCTION .. 73
3.2. MATERIALS AND METHODS .. 76
3.2.1. Materials and reagents ... 76
3.2.2. Bacterial strains and culture conditions ... 76
3.2.3. Total RNA extraction ... 77
3.2.4. Sequence specific cleavage reaction ... 77
3.2.5. Synthesis of polydimethylacrylamide (PDMA) .. 79
3.2.6. Characterisation of polydimethylacrylamide .. 80
3.2.7. Hybridisation probe ... 80
3.2.8. CE-rRNA-SSCP .. 81
3.2.9. Validation of CE-rRNA-SSCP .. 82
3.3. RESULTS AND DISCUSSION ... 84
3.3.1. RNA detection - fluorescently labelled hybridisation probe 84
3.3.2. Optimisation of SSCP condition ... 86
3.3.2.1. Sieving polymer .. 87
3.3.2.2. Urea concentration ... 87
3.3.2.3. Analysis temperature and field strength ... 91
3.3.3. Relative quantification and repeatability ... 93
3.3.4. CE-rRNA-SSCP resolution with high diversity samples ... 96
3.3.5. Growth and metabolic activity monitoring study ... 99
3.4. CONCLUDING REMARKS ... 103
3.5. REFERENCES .. 104

4. MULTIPLEX CLEAVAGE MICROBIAL COMMUNITY ANALYSIS 107
4.1. INTRODUCTION .. 107
4.2. EXPERIMENTAL .. 110
4.2.1. Materials .. 110
4.2.2. Bacterial strains, environmental soil sample and culture conditions 110
4.2.3. Total RNA extraction .. 112
4.2.4. Sequence specific cleavage of rRNA with RNase H..112
4.2.5. Fluorescence detection of rRNA with locked nucleic acid enhanced hybridisation probe 115
4.2.6. Instrumentation ..115
4.3. RESULTS AND DISCUSSION...117
 4.3.1. Proof-of-concept of MCMCA ..117
 4.3.1.1. A newly designed microbial characterisation approach.......................................117
 4.3.1.2. Probe considerations ...118
 4.3.1.3. Scissor Probes evaluation and optimisation of the reaction conditions for the multiplex cleavage of rRNA..119
 4.3.1.4. Modification of Alf682R probe ..121
 4.3.1.5. Determination of common reaction temperature for hybridisation and cleavage 123
 4.3.1.6. CE analysis of Initial Multiplex cleavage rRNA fragments..................................125
 4.3.1.7. Adjustment of hybridisation stringency using temperature and formamide130
 4.3.1.8. Effect of the scissor probe concentration in the hybridisation-cleavage buffer on the cleavage efficiency 134
 4.3.1.9. Optimisation of CE-LIF size separation of RNA..136
 4.3.2. Application of MCMCA and CE-rRNA SSCP on hydrocarbon degrading community enriched from soil ...140
4.4. CONCLUDING REMARKS...143
4.5. REFERENCES...145

GENERAL CONCLUSIONS AND FUTURE DIRECTIONS ...148

References..154

APPENDIX...A

SYNTHESIS OF FLUORESCENTLY LABELLED SIZE STANDARD A
NMR SPECTRA OF 2-PROPANOIC ACID BUTYL TRITHIOCARBONATE (PABTC) C
REFERENCES..D