Density estimates & relative indices: the current status of macropod populations on Maria Island National Park

Janeane Ingram
B. Sc. (UTAS)

A thesis submitted in partial fulfilment of the requirement for the degree of Bachelor of Science with Honours.

November, 2009

School of Zoology
University of Tasmania
Declaration

This thesis contains no material which has been accepted for a degree or diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in the thesis. The model details and script for the R program from Chapter 4 were designed and written by Dr Simon Wotherspoon, School of Maths and Physics, University of Tasmania and are included in the thesis as an appendix. To the best of my knowledge and belief, this thesis contains no other material previously published or written by another person except where due acknowledgement is made in the text of the thesis.

Janeane Ingram

Date
Abstract

On Maria Island National Park (NP) Forester Kangaroo (*Macropus giganteus*), Bennett’s Wallaby (*Macropus rufogriseus rufogriseus*) and Tasmanian Pademelon (*Thylogale billardierii*) were introduced due to a past management strategy. This policy has caused problems from overgrazing on the island due to seasonal increases in pasture levels, with resulting impacts on animal welfare. The effect of rainfall on population dynamics and resource availability is well documented, with macropods particularly affected due to rapid reproduction rates.

Typically, lethal control methods have been used to control population abundance. Public awareness of animal welfare issues arising from control methods such as culling, has forced wildlife managers to re-evaluate their use. On Maria Island NP annual spotlight surveys have been conducted to estimate a population index for each species. Population estimates are then used to determine if a reduction cull is required, together with body condition of individual animals and pasture availability.

Wildlife managers require reliable population estimates to make informed decisions. This study aims to improve our understanding of population monitoring by comparing spotlight surveys as population indices, with current line transect survey density estimates. In addition, historical cull, spotlight and rainfall data were combined into a model to predict future culling impacts. The model offers a unique opportunity to establish a management tool for use on any monitored macropod population that is harvested or culled annually.

Monitoring indicated that line transect methods are effective for Forester Kangaroo and Bennett’s Wallaby, with an improved survey design. Tasmanian Pademelon had the least probability of detection, but the highest encounter rate and population index from spotlight counts. Predictions from the growth model indicate culling annually with a moderate target level was the most efficient management scenario. Management intervention based on models using time series data and rainfall may prove to be the most important tool for population control of macropods in Australia.
Acknowledgements

Thanks to my supervisors, Professors Hamish McCallum and Mark Hindell, for believing in my project and for assistance throughout the year.

A special thanks to Dr Simon Wotherspoon for assisting me with statistical modelling and for expanding my mathematical horizons.

Thanks to my UTAS support crew Patricia McKay, Paulene Harrowby, Tracey Payne, Dr Aidan Davidson, Kristin Warr, Chris Hurley and Dr Patti Virtue.

The School of Geography and Environmental Studies for the loan of equipment and being interested in my project, especially Dave Green, Dr Peter McQuillan, Professor Jamie Kirkpatrick, Rob Anders (CenSIS) and Dr Jon Osborne (CenSIS).

Special thanks for support, encouragement and trust to Greg Hocking, Manager Wildlife Policy and Planning, Wildlife Management Branch, DPIPWE.

Much appreciation to Pete Lingard, Senior Ranger, Parks and Wildlife Service, DPIPWE for transport and accommodation on Maria Island National Park, having a keen interest in the outcome of my project and being concerned for my welfare.

Thanks to my family and friends for supporting me through the tough times.

To my children, Patrick and Julian, who have made this year worthwhile and who will always be my number one priority.

Thanks to the entire zoo field staff, my volunteer Simon Brain, and my fellow Honours students in room 349 at the School of Zoology.

Last but not least the entire staff at the Science Library, UTAS for help and understanding over the past five years.

This project was undertaken under Animal Ethics Permit number A0010471.
Table of Contents

Declaration ... II
Abstract .. III
Acknowledgements ... IV

1 **CHAPTER 1: GENERAL INTRODUCTION** ... 1
 1.1 **Project Aims** .. 2
 1.2 **Study Site** .. 4
 1.2.1 **Historical landscape context** ... 8
 1.3 **Study Species** .. 10
 1.3.1 Forester Kangaroo (Macropus giganteus) .. 10
 1.3.2 Bennett's Wallaby (Macropus rufogriseus rufogriseus) .. 11
 1.3.3 Tasmanian Pademelon (Thylogale billardierii) .. 11

2 **CHAPTER 2: LINE TRANSECTS** .. 12
 2.1 **Introduction** .. 12
 2.1.1 Distance Sampling Theory ... 12
 2.1.2 Probability Detection Function .. 13
 2.1.3 Distance sampling assumptions ... 14
 2.1.4 Study Aims .. 14
 2.2 **Methods** ... 15
 2.2.1 Line Transect Counts .. 15
 2.2.2 Sampling Effort .. 15
 2.2.3 Analysis ... 18
 2.3 **Results** ... 19
 2.3.1 Line Transect Counts .. 19
 2.4 **Discussion** .. 29
 2.4.1 Line Transect counts .. 29
 2.4.2 Density estimates ... 29
 2.4.3 Validating Assumptions ... 31
 2.4.4 Management implications ... 32

3 **CHAPTER 3: SPOTLIGHT SURVEYS** .. 33
 3.1 **Introduction** .. 33
 3.1.1 Spotlight surveys .. 34
 3.1.2 Survey Effort .. 36
 3.1.3 Strip transect methods ... 36
 3.2 **Methods** ... 37
 3.2.1 Analysis ... 38
 3.3 **Results** ... 38
 3.4 **Discussion** .. 40
 3.4.1 Management Implications ... 41

4 **CHAPTER 4: PREDICTIVE MODEL** ... 42
 4.1 **Introduction** .. 42
 4.1.1 Predictive Model .. 44
 4.1.2 Markov Chain Monte Carlo (MCMC) ... 45
 4.2 **Methods** ... 46
 4.2.1 Analysis ... 46
 4.2.2 Model Validation ... 47
 4.3 **Results** ... 48
 4.4 **Discussion** .. 58
 4.4.1 Management Implications ... 59

5 **CHAPTER 5: GENERAL DISCUSSION** .. 60
 5.1 **Project Aims** .. 60
 5.2 **Management Options** .. 64
 5.3 **Future Research** .. 65