Identification and Management of Factors Limiting Hybrid Carrot Seed Production in Australia

by

Cameron Spurr
B.Agr.Sc. (Hons.) University of Tasmania

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

University of Tasmania

August 2003
Disclaimer

This thesis contains no material which has been accepted for the award of any other degree or diploma in any other University and to the best of my knowledge, contains no copy or paraphrase of material previously published or written by any other person except where due reference is made in the text.

Authority of Access

This thesis is not to be made available for loan or copying for two years following the date this statement was signed. Following this time the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

C. J. Spurr
August, 2003
Summary

Worldwide, carrot seed production is a highly dynamic industry, with vegetable breeders contracting the production of proprietary varieties to areas where technology and climate combine to give the most reliable yields of high quality seed. Australia has had a significant share of the world market for carrot seed production since 1984, servicing customers in Asia, Europe and the United States. Since the mid 1990s, requirements for increased quality and reliability of production, coupled with improvements in the production standards of other carrot seed exporters, have threatened Australia’s market share. The failure of a significant number of Australian crops to meet the current minimum production standard of 85% seed germination required by export markets has been the major issue faced by the industry during this period. In addition, producers have experienced difficulty in consistently achieving satisfactory yields of seed of some hybrid varieties.

The present study was undertaken to address both of the issues facing Australian producers, with an emphasis on achieving improvements in the production of seed of European hybrid carrot varieties. Preliminary work established that the problems of low germination and unreliable yields were largely unrelated, leading to two research themes based on cause and management of low germination and unreliable seed yield.

Low germination of Australian seed lots was closely correlated to the occurrence of seeds without embryos or with embryos exhibiting extensive physical damage. Surveys of carrot fields and caging trials in South Australia and Tasmania established that both conditions resulted from feeding of the endemic insect, Nysius vinitor Bergroth (Hemiptera: Lygaeidae) on developing carrot seeds. Adult N. vinitor were found to infest carrot seed crops in a series of migratory flights from shortly before flowering until harvest. In Tasmania evidence was collected that suggested that a significant proportion of migrants originate from nearby areas of weedy host species. During peak periods of migration populations of up to 17 insects per carrot plant were observed. Field based
caging trials showed that loss of germination due to *N. vinitor* feeding could occur from flowering through to harvest. For individual male sterile plants, daily reductions in seed germination of 0.04 to 0.11% per insect were observed during this period.

Because of the need to respond quickly to *N. vinitor* infestation to minimise germination loss, work was undertaken to develop protocols for monitoring the insect in carrot seed crops. In trial plots, sticky traps detected migrations of *N. vinitor* into carrot fields, with the number of insects caught closely correlated to average population densities on the plants. In commercial crops *N. vinitor* population densities were non-randomly distributed across the fields, with gradients associated with the prevailing wind directions during the periods of migration. Thus, the positioning of the sticky traps was shown to be important for reliable detection of *N. vinitor* as well as accurate estimation of population size.

The issue of unreliable seed yield was examined in two hybrid crosses, No. 22, a 3-way (F1 male sterile line) Nantes hybrid with brown anther cytoplasmic male sterility (CMS) and W0030, an F1 Nantes hybrid with petaloid CMS. Two alternative hypotheses; source limitation (assimilate) and pollination limitation, were tested to explain the occurrence of low seed yields. Shading, umbel removal and leaf trimming treatments applied to both hybrids over two seasons did not significantly affect seed yield, seed size or seed quality. Supplemental hand pollination treatments increased seed yield by up to 284%, providing evidence that seed yield was strongly limited by inadequate pollination in No. 22, and to a lesser extent in W0030. In both hybrids, pollination was restricted by variable pollen viability at anthesis, low pollen longevity under field conditions and low rates of pollen transfer to the male sterile line.

Commercial hybrid carrot seed production is based on the strip method of hybrid seed production in which rows of the pollinator line are alternated with the male sterile line. Within the strip method, varying the ratio of pollinator and male sterile lines between 1:4 and 4:4 and distance between adjacent male beds between 2.4 to 7.2m had no effect on pollination or seed yields of No. 22. Surveys of insect pollinator visitation, pollen loads
and foraging patterns explained these results. Honeybees, *Apis mellifera ligustica* Linnaeus (Hymenoptera: Apidae) and two Dipteran species *Calliphora ruficornis* Macquart (Diptera: Calliphoridae) and *Eristalis tenax* Linnaeus (Diptera: Syrphidae) effected most pollination in carrot seed plots. All three species showed a strong tendency for directional foraging within a single row of plants, thereby restricting the opportunities for pollination of the male sterile line. These findings suggest that the strip method of production may be incompatible with the foraging behaviour of some important pollinators of hybrid carrots and hence the attainment of optimum seed yields in some varieties.

This thesis identifies significant opportunities for improvement of the quality and reliability of hybrid carrot seed production in Australia. Management protocols for *N. vinitor* derived from the research have contributed to an increase in the percentage of commercial carrot seed crops achieving the germination standard required for export from below 70% prior to 2000 to 100% in 2003. Studies of yield variability identify inadequate pollination as a contributing factor. Efforts to improve pollen viability and pollen transfer in commercial production may contribute to greater reliability of hybrid seed yields.
Acknowledgements

I would like to sincerely thank my supervisors, Drs. Neville Mendham and Philip Brown for their support and guidance throughout this project and enthusiasm to help at all times.

It has been my pleasure to work with South Pacific Seeds (SPS) on this project. The enthusiasm and practical support I have received has been nothing short of exceptional. In particular, I would like to make special mention of Craig Garland, Production Manager for SPS, Tasmania, Max Dalrymple, Production Manager for SPS, South Australia, Kylie Fulton, formerly of SPS, South Australia and John Hall, SPS, Griffith, who were closely involved with the project from the beginning. I would also like to thank the SPS field staff in Tasmania, South Australia and New Zealand and SPS's growers, who were always willing to help out with field trials.

In the early stages of this project I was able to undertake a study tour of vegetable seed production in the Pacific North West of the United States and attend the 28th International Carrot Conference in Washington State through the financial support of Horticulture Australia and SPS. I am particularly indebted to Phil Hancock, Managing Director of SPS, who organised many of the contacts and provided the introductions that paved my way on this excellent learning experience.

Throughout this project I have received considerable help from the staff at the School of Agricultural Science and TIAR. I am especially grateful for the advice and expertise I have received from Lou Hanslow, Phil Andrews, Bill Peterson, Dr. Geoff Allen, Dr. David Ratkowski and Dr Owen Seeman.

Finally I would like to thank my family, extended family and friends for their help and encouragement and especially my wife, Diane, who endured this project with patience and love and provided the practical and emotional support that was needed.
Table of Contents

SUMMARY .. III

ACKNOWLEDGEMENTS .. VI

CHAPTER 1 .. 1

GENERAL INTRODUCTION .. 1

1.1 - THE CARROT SEED INDUSTRY 1
Worldwide Carrot Seed Production 1
The Australian Carrot Seed Industry 2

1.2 - REPRODUCTIVE BIOLOGY OF THE CARROT 4
Initiation of Flowering – Juvenility, Vernalisation and Photoperiodic Requirements 4
Flowering and Pollination 5
The Carrot Seed .. 8
Hybrid Systems .. 9

1.3 – CULTURAL PRACTICES FOR CARROT SEED PRODUCTION ... 11

1.4 - RESEARCH IMPETUS AND PROJECT FOCUS 14

1.5 – OUTLINE OF THESIS STRUCTURE 14

vii
CHAPTER 2

GENERAL MATERIALS AND METHODS

2.1 - PLANT MATERIAL

2.2 - FIELD EXPERIMENTS

2.3 - GLASSHOUSE EXPERIMENTS

2.4 - POLLEN COLLECTION, STORAGE AND VIABILITY TESTING

2.5 - EXAMINATION OF POLLEN DEPOSITION ON THE STIGMAS OF MALE STERILE FLOWERS.

2.6 - SEED HARVESTING, PREPARATION AND STORAGE.

2.7 - SEED YIELD ASSESSMENT

2.8 - SEED GERMINATION ASSESSMENT

2.9 - SEED EMBRYO ASSESSMENT

2.10 - STATISTICAL ANALYSIS

CHAPTER 3

PRELIMINARY STUDIES OF YIELD AND GERMINATION OF CARROT SEED IN AUSTRALIA AND NEW ZEALAND

3.1 – LITERATURE REVIEW

Poor Germination of Carrot Seed
CHAPTER 4

FEEDING DAMAGE AND MANAGEMENT OF NYSIUS VINITOR BERGROTH (HEMIPTERA: LYGAEIDAE) IN RELATION TO CARROT SEED YIELD AND QUALITY

4.1 - LITERATURE REVIEW

Nysius (Dallas) in Australia and New Zealand
The Biology of Australian Nysius
Migration and Dispersal of Australian Nysius
Crop Damage
Management Options
Conclusion

4.2 - MATERIALS AND METHODS

Survey of Seed Feeding Insect in Carrot Seed Crops
Seed Yield and Quality Effects from Exposure of Carrot Plants to N. vinitor During Mid Seed Development
Seasonal Prevalence of N. vinitor in Carrot Seed Crops
The Relationship of Timing and Level of Adult *N. vinitor* Infestation to the Yield and Quality of the Seed Produced 75
Monitoring of *N. vinitor* Populations in Carrot Seed Crops 79

4.3 - RESULTS 81
Survey of Seed Feeding Insects in Carrot Seed Crops. 81
Seed Yield and Quality Effects of Post Fertilisation Exposure to *N. vinitor* 83
Seasonal Prevalence of *N. vinitor* in Carrot Seed Crops 84
Seed Yield and Quality with Respect to the Level and Timing of Infestation of Adult *N. vinitor* 91
Monitoring of *N. vinitor* in Carrot Seed Crops 95

4.4 - DISCUSSION 99

CHAPTER 5 105

TECHNIQUES FOR HANDLING, STORING AND TESTING THE GERMINATION CAPACITY OF CARROT POLLEN

5.1 - LITERATURE REVIEW 105
The Pollen Grain 105
Pollen Viability and Longevity 107
Pollen Storage 111
Pollen Viability Testing 113
Conclusion 118

5.2 - MATERIALS AND METHODS 119
Examination of the Nuclear Number of Carrot Pollen at Anthesis 119
Evaluation of Pollen Viability Tests For Use with Carrot Pollen 119
Validation of the FCR Test for Routine Use 122
The Effects of Desiccation and Rehydration on Pollen Viability 122
The Effect of Storage Temperature on Pollen Longevity 123
5.3 - RESULTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of the Nuclear Number of Carrot Pollen at Anthesis</td>
<td>125</td>
</tr>
<tr>
<td>Evaluation of Viability Tests for Use with Carrot Pollen</td>
<td>125</td>
</tr>
<tr>
<td>Validation of the FCR Test for Routine Use</td>
<td>127</td>
</tr>
<tr>
<td>The Effect of Desiccation and Rehydration Conditions on Pollen Viability</td>
<td>129</td>
</tr>
<tr>
<td>The Effect of Storage Temperature on Pollen Longevity</td>
<td>131</td>
</tr>
</tbody>
</table>

5.4 - DISCUSSION

CHAPTER 6

SOME LIMITING FACTORS FOR SEED SET IN HYBRID CARROT SEED CROPS

6.1 - LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Flower Fertility</td>
<td>135</td>
</tr>
<tr>
<td>Pollination and Fertilisation</td>
<td>136</td>
</tr>
<tr>
<td>Factors Affecting Seed Set After Fertilisation</td>
<td>137</td>
</tr>
<tr>
<td>Conclusion</td>
<td>142</td>
</tr>
</tbody>
</table>

6.2 - MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Material and Environmental Conditions</td>
<td>145</td>
</tr>
<tr>
<td>Modification of Resource Availability for Seed Development</td>
<td>146</td>
</tr>
<tr>
<td>Pollination Experiments</td>
<td>148</td>
</tr>
<tr>
<td>Pollen Viability Experiments</td>
<td>151</td>
</tr>
</tbody>
</table>

6.3 - RESULTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modification of Resource Availability for Seed Development</td>
<td>155</td>
</tr>
<tr>
<td>Pollination Experiments</td>
<td>155</td>
</tr>
<tr>
<td>Pollen Viability Experiments</td>
<td>159</td>
</tr>
</tbody>
</table>

6.4 - DISCUSSION

xi
CHAPTER 7

POLLINATOR FORAGING PATTERNS AND PARENT LINE ARRANGEMENT IN RELATION TO HYBRID SEED YIELD

7.1 - LITERATURE REVIEW
Pollen Vectors in Carrot
Insect Pollinators of Carrot Seed Crops
Recommendations for Pollination of Carrot Seed Crops
Factors Affecting Pollinator Visitation Rates to Carrot Seed Crops
Pollinator Foraging Patterns
The Effects of Parent Line Arrangement on Hybrid Seed Yields
Conclusion

7.2 - MATERIALS AND METHODS
Plant Material and Climatic Conditions
The Effects of Parent Line Arrangement on Pollination and Seed Yield
Pollination Vector Studies
Data Analysis

7.3 - RESULTS
The Effects of Parent Line Arrangement on Pollination and Seed Yield
Pollination Vector Studies

7.4 - DISCUSSION

CHAPTER 8

GENERAL DISCUSSION
PROJECT OVERVIEW
KEY FINDINGS
Chapter 1

General Introduction

This chapter is written in three sections. The first provides a brief historical background to the Australian carrot seed industry within the context of the worldwide industry. The status of the Australian industry during the late 1990s, at the time of commencement of this project, and the development of the problems that were its genesis are described. The second section explains the concepts of reproductive development and seed production that are fundamental to the research that was undertaken. The final section of the chapter describes the focus and broad objectives of the research and outlines the structuring of this thesis.

1.1 - The Carrot Seed Industry

Worldwide Carrot Seed Production

Worldwide, in excess of 3000 ha of carrot seed crops are produced annually (Schreiber and Ritchie, 1995; Simon, 2000). A large proportion of this is contracted or ‘in house’ production of proprietary varieties for vegetable breeding companies. The United States (Washington, Oregon, Northern California and Idaho) and southern France currently dominate the seed production industry. Other significant producers include Australia, New Zealand, Italy, Israel, Japan and Chile. Based on the figures provided by Schreiber and Ritchie (1995) and Simon (2000) hybrid seed accounts for approximately 60% of carrot seed production.