Evolutionary and Population Genetics of *Jasus* Species Inferred from Mitochondrial DNA

Darren John Brasher B.App.Sc. (Bendigo)

A thesis submitted to the Department of Zoology, University of Tasmania, in partial fulfilment of the requirements for the degree of Master of Science

January 1994
# Table of Contents

Declaration and Statement

Summary

Acknowledgements

1. General Introduction
   1.1 Molecular Systematics
   1.2 Rock Lobsters (Genus *Jasus*)
      1.2.1 Taxonomy
      1.2.2 Life History
   1.3 Genetic Approach to Populations
      1.3.1 Properties of the Mitochondrial Genome
      1.3.2 Restriction Enzyme Analysis of mtDNA
      1.3.2.1 Detection of Population Subdivision
      1.3.2.2 Phylogenetic Reconstruction of Closely Related Taxa
      1.3.3 Protein Electrophoresis
      1.3.4 Comparison of the Resolution of mtDNA and Protein Analyses
   1.4 Genetic Approach to Management of Exploited Populations
      1.4.1 Recognition of Genetically Defined Stocks
      1.4.2 Marine Stock Assessment using mtDNA
      1.4.3 Protein Analysis of Lobster Species
   1.5 Background to Commercial *Jasus* Fisheries
      1.5.1 Australian Fishery
      1.5.2 New Zealand Fishery
   1.6 Aims of the Study

2. Materials and Methods
   2.1 Sample Collection
   2.2 Isolation of Mitochondria
   2.3 Isolation of Mitochondrial DNA
   2.4 Enzymatic Digestion and Identification of mtDNA Fragments
   2.5 Restriction Site Mapping of mtDNA
   2.6 Data Analysis
      2.6.1 Interpretation of mtDNA Fragments
      2.6.2 Analysis of Nucleotide Sequence Diversity
2.6.3 Gene Diversity Analysis
2.6.4 Genotypic Diversity Analysis
2.6.5 Phylogenetic Reconstruction
  2.6.5.1 Discrete-character Methods
  2.6.5.2 Distance Matrix Methods

3. Evolutionary Genetics of *Jasus* Species

3.1 Introduction
3.2 Results
  3.2.1 Enzymatic Digestion
  3.2.2 Intraspecific mtDNA Variation
  3.2.3 Genetic Similarity of *J. novaehollandiae* and *J. edwardsii*
  3.2.4 Genetically Defined Species
  3.2.5 Phylogenetic Reconstruction
    3.2.5.1 *J. verreauxi* as an Outgroup
    3.2.5.2 Discrete-character Analysis
    3.2.5.3 Phenetic Analysis
    3.2.5.4 Absence of Geographic Partitioning in *J. edwardsii*
3.3 Discussion
  3.3.1 Support for *'verreauxi'* and *'lalandii'* Groups
  3.3.2 Gene Flow Between Australian and New Zealand *J. edwardsii*
  3.3.3 High mtDNA Polymorphism in *Jasus*
  3.3.4 Validity of Phylogenetic Reconstructions
  3.3.5 Speciation of *J. tristani* and *J. lalandii*
  3.3.6 Evolution of *'lalandii'* Group *Jasus*
  3.3.7 Systematic Value of *'lalandii'* and *'frontalis'* Subgroups
  3.3.8 MtDNA and Introgressive Hybridization
  3.3.9 Rate of mtDNA Evolution in *Jasus*

4. Population Genetics of *Jasus edwardsii*

4.1 Introduction
4.2 Results
  4.2.1 Enzymatic Digestion
  4.2.2 Phenetic Analysis
  4.2.3 Intra- and Inter-Populational Sequence Diversity
  4.2.4 Grouping of Locations for Gene Diversity Analyses
4.3 Discussion
  4.3.1 Scenarios for Restrictions to Gene Flow
  4.3.2 Significance of Inter-Populational Sequence Comparisons
  4.3.3 Aparent Absence of Population Subdivision
4.3.4 Conservation Status of Western Populations

5. Population Genetics of *Jasus verreauxi*

5.1 Introduction
5.2 Results
   5.2.1 Enzymatic Digestion
   5.2.2 Gene Diversity Analysis
5.3 Discussion
   5.3.1 Comparison with *J. edwardsii* Population Study
   5.3.2 Factors Promoting Subdivision in *J. verreauxi*

6. Conclusions and General Discussion

6.1 Taxonomy of *Jasus*
6.2 Population Structure of *J. edwardsii* and *J. verreauxi*
6.3 Application of Results to Fishery Management
6.4 Speciation in *Jasus*

References

Appendices

Appendix 3a
Appendix 4a
Declaration and Statement

I hereby declare that this thesis contains no material which has been accepted for the award of any degree or diploma in any university and that, to the best of my knowledge, this thesis contains no copy of previously published material except where due reference is made in the text.

D.J. Brasher
18 January 1994

The work reported in this thesis was carried out by D.J. Brasher under the supervision of Drs R.W.G. White and J.R. Ovenden using funds from a grant to Drs Ovenden and White from the Fishing Industry Research and Development Council (FIRDC). Most of the material in this thesis has already been published; references to the publications are given at the beginning of each of Chapters 3, 4 and 5. Mr. Brasher is the senior author on two of the papers (reported in Chapters 3 and 5); Dr Ovenden is the senior author on the the third paper (reported in Chapter 4). Mr Brasher carried out all of the practical work and the majority of the analyses for this latter paper. Dr Ovenden’s seniority in the authorship list recognises her inception of the project, her success in obtaining the research funds and her supervisory and creative input.

D.J. Brasher
J.R. Ovenden
R.W.G. White
18 January 1994
Summary

Restriction enzyme analysis of mtDNA extracted from antennal gland tissue was used to assess mtDNA variation within and between five nominal species of commercially important rock lobster, genus *Jasus*. Samples were collected from South Africa (*Jasus lalandii*, sample size=11), Vema Seamount in the South Atlantic Ocean (*J. tristani*, 8), Tasmania (*J. novaehollandiae*, 11), and New Zealand (*J. edwardsii*, 10; *J. verreauxi*, 9).

The generally high degree of intraspecific mtDNA nucleotide sequence diversity detected (0.33–0.99%) with six five- and six-base enzymes enabled high resolution assessment of species boundaries previously defined only by morphological criteria. Sequence diversity analysis failed to reveal significant mtDNA diversity between the *J. edwardsii* and *J. novaehollandiae* samples. Furthermore, phylogenetic reconstruction, using both phenetic and parsimony analysis of the restriction site data, did not partition mtDNA haplotypes into distinct Australian and New Zealand assemblages. These results suggest that Australian and New Zealand red rock lobster represent conspecific populations of *J. edwardsii*.

High sequence diversities separating *J. edwardsii*, *J. lalandii* and *J. tristani* (4.41–7.36%) indicates long-term reproductive isolation and provides confirmation of their specific status. The genome of *J. verreauxi* is highly distinct from the genomes of the other species (nucleotide sequence diversity: 14.92–16.67%), supporting the existence of 'lalandii' and 'verreauxii' groups within *Jasus*.

The topologies of trees generated by phylogenetic analyses grouped *J. edwardsii* and *J. lalandii* to the exclusion of *J. tristani*; however, further analysis indicated that the relationships of these species was essentially unresolved. Nevertheless, these results, when considered with knowledge of the current distributions of these species, do not support hypotheses for the evolution of 'lalandii' group *Jasus*, which suggest a relatively recent divergence of *J. lalandii* and *J. tristani*. Instead, they give systematic validity to the grouping of *J. lalandii* with *J. edwardsii* as proposed by the existing taxonomy.
A restriction enzyme study of mtDNA variation in *J. edwardsii* was extended to include samples collected from widespread locales across southern Australia and from New Zealand. A total of 132 adult lobsters from 13 locales were analysed to address the possibility of population subdivision. Phenetic analysis failed to reveal geographic partitioning of mtDNA haplotypes. Despite collection locations being separated by large geographical distances, sequence diversity analysis between pairs of samples failed to conclusively detect population subdivision. Gene diversity analyses also failed to detect subdivision, even when samples were grouped into likely populations based on hydrological and environmental parameters. These results suggest that genetic homogeneity is maintained in this species by widespread dispersal of a long-lived, planktonic larval stage.

Analyses to detect population subdivision were also applied to 25 *J. verreauxi* collected from one Australian and two New Zealand locales. From the raw restriction site data, Australian and New Zealand haplotype assemblages were defined by two restriction sites, one confined to each country. Genetic differentiation between Australian and New Zealand *J. verreauxi* was also supported by gene diversity analysis. In contrast to the population study of *J. edwardsii*, these results suggest that larval exchange between adult populations across the Tasman Sea may be limited.
Acknowledgements

I would like to thank my supervisor Dr R.W.G. White and co-supervisor Dr J.R. Ovenden for their constructive criticisms, assistance, guidance and encouragement throughout the course of this project.

I would also like to thank other members of the Fish Genetics Laboratory – Adam Smolenski, Russel Bywater, Jenny Jarrett, Tom Krasnicki, Jeremy Austin and Jon Waters – for their invaluable advice, assistance and company, Wayne Kelly for technical support, and Barry Rumbold for his efficient help in the purchasing of materials and equipment.

I gratefully acknowledge the following people for providing rock lobster samples: Robert Kennedy (Tasmanian Department of Sea Fisheries), Robert Grove-Jones and Bruce Wallner (South Australian Department of Fisheries), David Molloy (Marine Science Laboratories, Queenscliff, Victoria), Rhys Brown and Eric Barker (Fisheries Department of Western Australia), John Booth, Keith Allen and Allan Gard (Ministry of Agriculture and Fisheries, New Zealand), Mick Murphy (Temma, Tasmania), George Greaves (Esperance, Western Australia), Dave Pollock and Roy Melville-Smith (Sea Fisheries Research Institute, South Africa), and Steve Montgomery (New South Wales Institute of Fisheries).

My thanks also to Bob Kennedy, Bruce Phillips, Dave Pollock and John Booth for comments or reviews relating to drafts of published manuscripts.

I thank the Fishing Industry Research and Development Council (grant 88/41) for financially supporting this study.

Finally, I wish to give my warmest thanks to Alice Valentine for her unfailing friendship and encouragement during the final preparation of this thesis.