New Australian thraustochytrids: A Renewable Source of Biofuels, Omega-3 Oils and other Bioproducts

by

Kim Jye Lee Chang B. Biotech. (Hons)

(University of Tasmania)

Submitted in fulfilment of
the requirements of the degree of
Doctor of Philosophy
University of Tasmania, August 2013
Declaration

This thesis contains no material that has been accepted for the award of any other degree or diploma in any tertiary institution. To the best of my knowledge this thesis does not contain material written or published by another person, except where due reference is made.

This thesis is not to be made available for loan or copying for two years following the date this statement was signed. The publishers of the papers comprising Chapters 2, 3 and 5 hold the copyright for that content, and access to the material should be sought from the respective journals. Following that time the remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Kim Jye Lee Chang
August 2013
Table of Contents

Declaration... ii
List of Tables .. vii
List of Figures ... ix
Abbreviations .. xii
Publications ... xiv
Statement of Co-Authorship ... xv
Abstract ... xviii
Acknowledgements ... xx

Chapter 1 Introduction: Microalgae - A renewable source of biofuels, omega-3 oils and other co-products ... 1
 Background .. 1
 Cultivation of microalgae ... 2
 Open versus closed cultivation systems .. 2
 Potential of microalgal oil for transport fuels ... 5
 Benefits of algal derived biofuel ... 9
 Biodiesel potential of algae .. 11
 Strain selection for production of biodiesel ... 14
 Potential of microalgae for omega-3 oils and co-products 15
 Rationale for this study ... 17
 Objectives of this study .. 18

Chapter 2 Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils ... 20
 Abstract ... 20
 Introduction .. 21
 Materials and methods ... 23
 Sampling location, isolation and growth of culture organisms 23
 Preparation and analysis of fatty acid methyl esters (FAME) and sterols 26
 Extraction, amplification and sequencing of 18S ribosomal RNA genes 27
 Pigment extraction and analysis .. 28
 Statistical analysis ... 29
 Results .. 30
Discussion ... 41
Sampling location and isolation 41
Groupings based on 18S rRNA gene sequence, fatty acid and sterol profiles 43
Biodiversity ... 46
Omega-3 oil production .. 48
Biodiesel production ... 49
Sterols ... 51
Pigments .. 51

Chapter 3 Odd-chain polyunsaturated fatty acids in thraustochytrids53
Abstract .. 53
Introduction ... 54
Materials and methods ... 56
Culture maintenance .. 56
Lipid extraction .. 57
Preparation of 4,4-dimethyloxazoline (DMOX) derivatives 57
GC and GC-MS analysis ... 58
Results .. 59
Discussion .. 64

Chapter 4 Comparison of thraustochytrids Aurantiochytrium sp.,
Schizochytrium sp., Thraustochytrium sp. and Ulkenia sp. for production of
biodiesel, long-chain omega-3 oils and exopolysaccharides 70
Abstract .. 70
Introduction ... 71
Materials and methods ... 74
Microorganisms and culture condition 74
Biomass harvest and analysis of fatty acid methyl esters (FAME) 76
Harvesting and characterisation of polysaccharides 77
Results and Discussion ... 78
Effect of glucose on biomass yield by different thraustochytrid strains 78
Correlation of growth and pH change 86
Biomass and fatty acid profiles .. 87
Yield and crude chemical characterization of exopolysaccharides..........................94

Conclusion.. 98

Chapter 5 High cell density cultivation of a novel Aurantiochytrium sp.
strain TC 20 in a fed-batch system using glycerol to produce feedstock for
biodiesel and omega-3 oils ... 99

Introduction ... 100

Materials and methods .. 105

Microorganism and culture conditions ... 105

Biomass harvest and analysis of fatty acid methyl esters (FAME)................................. 108

Results ... 110

Effect of initial glucose levels (40 g/L and 100 g/L) on cell growth and lipid yield
.. 110

Evaluation of glycerol as carbon source ... 113

Glycerol and additional nutrients in fed-batch cultivation ... 116

Discussion .. 119

Effect of initial glucose levels on biomass and fatty acid production 119

Comparison of glucose and glycerol as carbon source ... 121

Glycerol and additional nutrients in fed-batch cultivation ... 122

pH regulation of Aurantiochytrium sp. TC 20 in fermentation 123

Biodiesel and long-chain omega-3 fatty acid production ... 124

Chapter 6 Life-cycle assessment: Heterotrophic cultivation of
thraustochytrids for biodiesel production... 128

Abstract ... 128

Introduction ... 129

Materials and methods .. 133

LCA software ... 133

Life cycle assessment ... 133

Heterotrophic cultivation ... 136

Processing ... 138

Combustion emissions ... 140

Results and Discussion ... 142

Total greenhouse gas impact and energy intensity ... 142

Conclusion .. 147

Chapter 7 Conclusions and future perspectives .. 148
Introduction ... 148
Biodiscovery .. 149
Odd-chain polyunsaturated fatty acids ... 149
One litre batch culture trials ... 151
Optimisation in two litre fed-batch fermentation trials in bioreactors 151
Life-cycle assessment .. 152

Fatty acid profiles .. 153
Biofuels, omega-3 oils and co-products ... 155
Implications for further research ... 157

Bibliography ... 158
List of Tables

Table 1-1 Advantages and limitations of open ponds and photobioreactors (adapted from Brennan and Owende, 2010) ... 4
Table 1-2 Major investments during 2008 - 2009 in biotech companies to develop renewable liquid fuels from microalgae in USA (summarised from Mascarelli, 2009b) .. 7
Table 1-3 Oil content of selected microalgae (data from Chisti, 2007) 12
Table 2-1 Pigment composition and content (µg/L) of selected strains from each taxonomic group (based on fatty acid and sterol profiles) 40
Table 2-2 Summary of chemotaxonomic characteristics and 18s rRNA sequence data of thraustochytrid strains examined in the present study 44
Table 3-1 Fatty acid (FA) composition (%) of two thraustochytrid strains (TC 01 and TC 04) isolated from the south east coast of Tasmania (n = 2) 60
Table 3-2 Characteristic and diagnostic fragment ions from DMOX derivatives of selected fatty acids from thraustochytrids TC 01 and TC 04 62
Table 4-1 List of thraustochytrid strains and their chemotaxonomic and molecular grouping, based on Lee Chang et al. (2012) .. 74
Table 4-2 Fatty acid composition (as percentage of total fatty acids) for eight thraustochytrid strains grown in 4 % w/v glucose in shake flask culture at day 9 .. 90
Table 4-3 EPS yield at day 7 for eight thraustochytrid strains grown in shake flask cultures with 2 % w/v glucose ... 95
Table 5-1 Fatty acid profiles (as either % of total FA or mg/g biomass) of Aurantiochytrium sp. strain TC 20 (CS number: CS-980, GenBank accession numbers: JN675267) at 69 h of fermentation in different fed-batch treatments of experiment 2: (i) glucose (Glu); (ii) glycerol (Gly) and (iii) glycerol and nutrients (Gly/ Nutr) ... 125
Table 5-2 Lipid class composition (as % of total lipids) of Aurantiochytrium sp. strain TC 20 (Gly/ Nutr) at 69 h of fermentation with glycerol as the carbon source. Composition determined using thin layer chromatography – flame ionisation detection .. 126
Table 6-1 Bioreactor inputs (operating conditions) and outputs (microalgal culture) per 0.20 ML reactor batch, used for the LCA (glycerol and outputs scaled up from data in Lee Chang et al., 2013). .. 137

Table 6-2 Process inputs (operational parameters) and outputs (products) per 0.20 ML reactor batch, used for the LCA .. 139

Table 6-3 Different greenhouse gases and their global warming potentials (GWP) relative to carbon dioxide (with a 100 year time horizon) .. 141

Table 7-1 Fatty acid profiles (as percentage of total fatty acids) of Aurantiochytrium sp. strain TC20 (Group F) from three different experiments – (i) Initial screening, (ii) Flask optimization, and (iii) Scale up in bioreactors 154
List of Figures

Figure 2-1 Chemotaxonomic grouping of 36 strains of temperate (*) and tropical (^) new Australian thraustochytrids based on fatty acid and sterol profiles formed by using the complete linkage function to compare Bray-Curtis similarity matrices (Spearman correlation, 9999 permutations) in Primer 6 (PRIMER-E Ltd, Plymouth, UK)..31

Figure 2-2 Phylogeny of thraustochytrid partial 18S rRNA gene sequences from DNA extracts of the 36 new Australian strains (* temperate strains, ^ tropical strains) and reference sequences from the database. Parentheses indicate sequences matched to chemotaxonomic groups. Bootstrap values > 75 % are shown at the nodes. Two strains which were chemotaxonomically grouped as E, clustered more closely with other groups. These were TC 08 (clustered with groups G and H) and TC 07 (clustered with group C). Group G strains were clustered with group H strains. Most strains in groups G and H were from tropical north Queensland, except TC 06 and TC 08 ..39

Figure 3-1 Mass spectra of DMOX derivatives of the two major C_{21} PUFA: (A) 21:5ω5 (4,7,10,13,16) and (B) 21:4ω7 (5,8,11,14). Ions used to identify double bond positions at Δ4 and Δ5 are 152 and 153, respectively. Other double bond positions are located where a gap of 12 amu is flanked by two intense fragment ions of 40 amu difference ..63

Figure 3-2 Gas chromatogram of the total FA (as FAME) of thraustochytrid TC01, showing unusual odd-chain polyunsaturated fatty acids ..65

Figure 3-3 Proposed OC-FA biosynthesis pathway in thraustochytrids TC 01 and TC 04. Top row indicates number of double bonds; vertical arrows indicate elongase (e). Excluding the initial Δ9, Δ10 or Δ11 desaturation, upward angled arrows indicate methylene interrupted desaturation towards the omega (ω, methyl) side of an existing double bond (as occurs in organisms which can produce PUFA de novo, including most photosynthetic and some heterotrophic organisms), downward angled arrows indicate methylene interrupted desaturation towards the delta (Δ, carboxyl) side of an existing double bond, FA in brackets were not identified in our samples, but indicate likely pathway intermediates...............68
Figure 4-1 *Aurantiochytrium* sp. strains TC 09 (Group E), 18 (Group H), 20 (Group F), and 30 (Group G) in 2 % w/v and 4 % w/v glucose. (a) biomass yield g/L, (b) glucose concentration (g/L), and (c) pH change in culture media

Figure 4-2 *Schizochytrium* sp. strain TC 02 (Group A) and *Ulkenia* sp. strain TC 10 (Group D) in 2 % w/v and 4 % w/v glucose. (a) biomass yield g/L, (b) glucose concentration (g/L), and (c) pH change in culture media

Figure 4-3 *Thraustochytrium* sp. strains TC 04 (Group B) and TC 33 (Group C) in 2 % w/v and 4 % w/v glucose. (a) biomass yield g/L, (b) glucose concentration (g/L), and (c) the pH change in culture media

Figure 4-4 The total content of (a) fatty acid methyl esters, FAME mg/g, and (b) biomass g/L, of eight different thraustochytrid strains in 2 % w/v and 4 % w/v glucose

Figure 4-5 The percentage of fatty acid methyl esters, FAME (a) docosahexaenoic acid, DHA, and (b) palmitic acid, 16:0, of eight different thraustochytrid strains in 2 % w/v and 4 % w/v glucose

Figure 4-6 Crude chemical compositions of purified EPS produced by thraustochytrid strains grown in liquid shake flask cultures. Abundances of neutral sugars, uronic acids and protein are reported as percentage of total EPS

Figure 5-1 Two litres stirred tank bioreactors connected to a Biostat B (Sartorius Stedim, Australia) control system

Figure 5-2 Fed-batch cultivation of *Aurantiochytrium* sp. strain TC 20 in a 2 L bioreactor with 1.6 L of medium. The initial medium contained 40 g/L glucose. A dose of glucose (660 g/L) was fed into the bioreactor at 29 h. Data given are the mean of two replicate bioreactors under the same conditions. Abbreviations: Glu, glucose; DCW, dry cell weight

Figure 5-3 Fed-batch cultivation of *Aurantiochytrium* sp. strain TC 20 in a 2 L bioreactor with 1.6 L of medium. The initial medium contained 100 g/L glucose. Seed culture was inoculated at 5% (v/v). A dose of glucose (660 g/L) was fed into the bioreactor at 45.6 h. Data given are the mean of two replicate bioreactors under the same conditions. Abbreviations: Glu, glucose; DCW, dry cell weight

Figure 5-4 Fed-batch cultivation of *Aurantiochytrium* sp. strain TC 20 in a 2 L bioreactor with 1.6 L of medium. The initial medium contained 40 g/L glucose (Glu) or glycerol (Gly). An additional 400 mL 660 g/L of glucose (Glu) or
glycerol (Gly) was fed into the bioreactor at 25.4 h. Abbreviations: DCW, dry cell weight.................................114

Figure 5-5 Effect of addition of nutrients (Gly/ Nutr) in a fed-batch cultivation of *Aurantiochytrium* sp. strain TC 20 in a 2 L bioreactor with 1.6 L of medium. The initial medium contained 40 g/L glycerol. At 25.4 h, an additional feed of 400 mL 660 g/L glycerol + 100 mL of concentrated nutrients (yeast extract, trace metal mix, vitamin mix, MgSO$_4$.7H$_2$O and MSG) was added at 18 mL/h (total volume of fermentor = 2 L). Abbreviation: DCW, dry cell weight.................115

Figure 5-6 Yield of (a) saturated fatty acid, 16:0, and (b) docosahexaenoic acid, DHA, in different treatments of the *Aurantiochytrium* sp. strain TC 20. All 3 treatment media were initially with 40 g/L of glucose (Glu) or glycerol (Gly). An additional 400 mL of 660 g/L glucose or glycerol was fed at 25.4 h. Bioreactor Gly/ Nutr had an additional 100 mL of concentrated nutrients (yeast extract, trace metal mix, vitamin, MgSO$_4$.7H$_2$O and MSG) added at 25.4 h117

Figure 5-7 Partial gas chromatogram of the total FA (as FAME) of the thraustochytrid *Aurantiochytrium* sp. strain TC 20 at 69 h of fermentation with glycerol as the carbon source (Gly/ Nutr). The shoulder on the front of DHA is DPA-6. Abbreviations: AA, 20:4ω6; EPA, 20:5ω3; DPA-6, 22:5ω6; DHA, 22:6ω3118

Figure 6-1 Heterotrophic microalgae production process diagram. The upgrade step could be production of biodiesel via either hydropyrolysis to produce a hydrocarbon based fuel, or transesterification to produce a fatty acid methyl ester based fuel. The residual biomass could be used elsewhere for example for stock or aquaculture feed or used on-site in an anaerobic digester to produce energy to be fed back into the system...135

Figure 6-2 LCA of biodiesel derived from heterotrophic microalgae production followed by extraction and transesterification and energy yields resulting from oil-free biomass back to anaerobic digestion...144
Abbreviations

The following abbreviations have been used in this thesis:

15:0 pentadecanoic acid
16:0 palmitic acid
17:0 heptadecanoic acid
18S rRNA 18S ribosomal RNA gene
AA arachidonic acid (20:4ω6)
ANACC Australian National Algae Culture Collection
AQIS Australian Quarantine and Inspection Service
BSTFA N,O-Bis(trimethylsilyl)trifluoroacetamide
DCW Dry cell weight
DHA docosahexaenoic acid (22:6ω3)
DMOX 4,4-dimethyloxazoline
DPA-3 docosapentaenoic acid (ω3)
DPA-6 docosapentaenoic acid (ω6)
EPA eicosapentaenoic acid (20:5ω3)
EPS exopolysaccharides
ERoEI energy returned on energy invested
FAME fatty acid methyl ester
FAS fatty acid synthase
FID flame ionization detector
GC gas chromatography
GC-MS gas chromatography- mass spectrometry
Glu glucose
Gly glycerol
HC hydrocarbon
HCl hydrochloric acid
HPLC high performance liquid chromatography
HRD hydroweprocessed renewable biodiesel
LCA Life-cycle assessment
LC-PUFA long chain ($\geq C_{20}$) polyunsaturated fatty acid
MeOH methanol
MUFA monounsaturated fatty acid/s
Nutr nutrients
OC-FA odd-chain fatty acids
PCR polymerase chain reactions
PKS polyketide synthase
PUFA polyunsaturated fatty acid/s
SD standard deviation
SFA saturated fatty acid
SPI septum-programmable injector
TAG triacylglycerols
TC thraustochytrids collection
TFA total fatty acid/s
Tr trace
X:YωZ This was adopted for the naming of fatty acids, where X refers to the number of carbon atoms in the molecule, Y refers to the number of double bonds in the molecule, and ω indicates the carbon position of the first double bond from the terminal methyl end (CH3) of the molecule. The latter is generally referred to as omega ω (e.g. ωZ) or n-ω (e.g. n minus ω).
Publications

The following peer-reviewed publications have been either wholly or partially derived from work associated with this thesis:

Kim Jye Lee Chang, Geoff Dumsday, Peter D. Nichols, Graeme A. Dunstan, Susan I. Blackburn and Anthony Koutoulis, High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils, Applied Microbiology and Biotechnology (2013) 97:6907–6918

Statement of Co-Authorship

The following people and institutions contributed to the publication of work undertaken as part of this thesis:

Candidate: Kim Jye Lee Chang, School of Plant Science

Author 1: Anthony Koutoulis, UTAS School of Plant Science

Author 2: Susan I. Blackburn, CSIRO Marine and Atmospheric Research

Author 3: Peter D. Nichols, CSIRO Marine and Atmospheric Research

Author 4: Graeme A. Dunstan, CSIRO Marine and Atmospheric Research

Author 5: Maged P. Mansour, CSIRO Marine and Atmospheric Research

Author 6: Guy C.J. Abell, CSIRO Marine and Atmospheric Research

Author 7: Lesley A. Clementson, CSIRO Marine and Atmospheric Research

Author 8: Carol Mancuso Nichols, CSIRO Materials Science and Engineering

Author 9: Geoff Dumsday, CSIRO Materials Science and Engineering

Author 10: Lucas Rye, CSIRO Marine and Atmospheric Research

Author 11: Tim Grant, Life Cycle Strategies

Author details and their roles:

Paper 1, Novel odd-chain polyunsaturated fatty acids in thraustochytrids:
Located in chapter 3. Candidate was the primary author and author 3, author 4 and author 5 contributed to the lipid identification and laboratory assistance. Authors 1, 2, 3, and 4 assisted with refinement and presentation.
Paper 2, Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils: Located in chapter 2. Candidate was the primary author, author 3 and author 4 contributed to the lipid identification, author 6 assisted with DNA extraction and sequencing software, and author 7 contributed to the pigment isolation and analysis. Authors 1, 2, 3, and 4 assisted with refinement and presentation.

Paper 3, Comparison of thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp. and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils and exopolysaccharides: Located in chapter 4. Candidate was the primary author, author 3 and author 4 contributed to the lipid identification, and with author 8 contributed to the EPS isolation and characterisation. Authors 1, 2, 3, and 4 assisted with refinement and presentation.

Paper 4, High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils: Located in chapter 5. Candidate was the primary author, author 3 and author 4 contributed to the lipid identification, and with author 9 contributed to the experimental design and Bioreactor operation. Authors 1, 2, 3, and 4 assisted with refinement and presentation.

Paper 5, Life-cycle assessment: Heterotrophic cultivation of thraustochytrids for biodiesel production: Located in chapter 6. Candidate was the primary author, author 10 and author 11 contributed to the idea, LCA software operation and development. Authors 1, 2, 3, and 4 assisted with refinement and presentation.
We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed:
Anthony Koutoulis
Supervisor
School of Plant Science
University of Tasmania

René Vaillancourt
Head of School
School of Plant Science
University of Tasmania

Susan I. Blackburn
Supervisor
Marine and Atmospheric Research
CSIRO

Peter D. Nichols
Supervisor
Marine and Atmospheric Research
CSIRO

Graeme A. Dunstan
Supervisor
Marine and Atmospheric Research
CSIRO

Date: 7 August 2013
Abstract

The potential of biofuel production from microalgae is of intense interest globally owing to growing concern with rising crude oil prices and future availability. In addition to producing lipids for potential biofuel application, thraustochytrids are capable of forming other high-value bioproducts, such as proteins, enzymes, omega-3 polyunsaturated fatty acids (PUFA), carotenoid pigments and exopolysaccharides (EPS). The co-production of high-value bioproducts during biofuel production is desirable when it adds greater value to the production process and improves process economics.

Thirty-six new thraustochytrids have been isolated from the southeast coast of Tasmania and far north Queensland. They were separated into eight chemotaxonomic groups (A – H) based on fatty acid and sterol composition, with the groups clustered closely with four different genera (*Aurantiochytrium*, *Schizochytrium, Thraustochytrium* and *Ulkenia*) based on 18S rDNA molecular identification. In an initial screening study, some strains produced > 60 % docosahexaenoic acid (DHA) under unoptimized culture conditions. *Aurantiochytrium* sp. strains (groups G and H) contained 15:0 (pentadecanoic acid) at between 20 – 30 % of the total fatty acids (TFA) and 16:0 (palmitic acid) in the range of 7 – 15 % TFA, suggesting these strains could be potential candidates for biodiesel production. β,β-Carotene, canthaxanthin and astaxanthin were identified in pigmented strains. Part of the process to scale up is to select the best performing strain based on growth and biochemical characteristics. In the subsequent trials, eight thraustochytrid strains from the different chemotaxonomic groups (A – H) were compared in 1 L scale baffled shake flasks for the synthesis of EPS, in addition to biomass yield and fatty acid profiles. The crude chemical characterization of the EPS, which were released into the culture media by these strains, was performed as an initial step in
determining the potential for biotechnological application of these biomaterials. *Aurantiochytrium* sp. strain TC 20 had the highest biomass production (18.5 g/L) and oil yield (7.5 g/L) after 9 days of growth in 4 % w/v glucose basal media at 20 °C, with 0.18 g/L EPS extracted from the supernatant. The maximum yield of EPS was observed in *Schizochytrium* sp. strain TC 02 (0.3 g/L). High biomass producing strains that also had high lipid and high EPS yield may be better candidates for commercial production of biofuels and other bioproducts. The next phase was to optimize biomass in 2 L bioreactors. The growth of *Aurantiochytrium* sp. TC 20 was also investigated using glycerol as a carbon source. Glycerol is becoming increasingly available, because it is a by-product of biofuel production from vegetable oil and animal fats. Fortification of the feed with additional nutrients improved the biomass yield from 56 g/L (34 % total fatty acids) to 71 g/L (52 % total fatty acids, cell dry weight) at 69 h.

A life-cycle assessment, from the upstream biomass production to the direct emission of biodiesel combustion, was applied to assess the energy balance and the potential environmental impacts of this heterotrophic microalgal-derived biodiesel. The scenario analysis of a virtual production facility, modeled on experimental yield data, demonstrated that cultivation of heterotrophic microalgae for the production of biodiesel is comparable in terms of greenhouse gas emissions and energy usage to production of petroleum diesel. The LCA identified that improvements in cultivation conditions, in particular the bioreactor energy inputs and microalgae yield, will be critical in developing a sustainable production system. This study demonstrates the potential of heterotrophic cultivation of newly isolated endemic thraustochytrids to provide Australia’s transportation fleet with a secure, environmentally sustainable alternative fuel feedstock, and co-production of high value bioproducts that can provide additional revenue to benefit the economics of biofuel production.
Acknowledgements

I would like to acknowledge the following people who helped complete my thesis. Foremost should be my supervisors, Anthony Koutoulis, Susan Blackburn, Peter Nichols and Graeme Dunstan, all of whose invaluable knowledge and guidance made this journey stimulating and enjoyable. I am blessed to work with them and they have shown endless patience and made important comments during the thesis writing. I am grateful to Geoff Dumsday and Carol Nichols for providing invaluable input during the fermentation study.

I would like to thank all those in CSIRO who have so kindly offered their time, assistance on various matters, in particular Malcolm Brown, Lesley Clementson, Guy Abell, Ian Jameson, Peter Mansour, Lucas Rye, Dave Batten, Tim Grant, Dion Frampton, Cathy Johnston, Sharon Appleyard, Elisabeth Albinsson, Tim Fountain, Rob Gurney, Mina Brock, Danny Holdsworth and Birgit Unterweger.

In addition, I am indebted to the Australian government for the Australian Postgraduate Award (APA) and the CSIRO Office of the Chief Executive (OCE) top-up scholarship through the CSIRO Energy Transformed Flagship for funding my PhD study.

My family and friends have been equally supportive and any accomplishments of mine are due in no small part to their company. They include Wang Heong Lee, Moi Yeng Chiang, Kim Par Lee Chang, Rachel Yong, Don Soh, Shiok Cheng Lee, Shwuyi Patulski, Kurt Patulski, David Keys, Shelley Keys, Ming Teck Lim, Bob Lavis, Michael Carnes and Eric Hsu.

Last but not least, Sia Wee Lim, my girlfriend, for replenishing my soul.