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Abstract

This article studies error correction vector autoregressive moving average (EC-
VARMA) models. A complete procedure for identifying and estimating EC-VARMA
models is proposed. The cointegrating rank is estimated in the first stage using an
extension of the non-parametric method of Poskitt (2000). Then, the structure of the
VARMA model for variables in levels is identified using the scalar component model
(SCM) methodology developed in Athanasopoulos and Vahid (2008), which leads to
a uniquely identifiable VARMA model. In the last stage, the VARMA model is
estimated in its error correction form. Monte Carlo simulation is conducted using a
3-dimensional VARMA(1,1) DGP with cointegrating rank 1, in order to evaluate the
forecasting performances of the EC-VARMA models. This algorithm is illustrated
further using an empirical example of the term structure of U.S. interest rates. The
results reveal that the out-of-sample forecasts of the EC-VARMA model are superior
to those produced by error correction vector autoregressions (VARs) of finite order,
especially in short horizons.
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1 Introduction

Cointegration refers to situations where several I(1) variables share at least one common
stochastic trend. The Granger Representation Theorem (Engle and Granger, 1987) states
that all cointegrated time series have a vector error correction representation. Since most
studies on cointegration are set within the context of finite vector autoregressive (VAR)
models, the error correction VARs are commonly referred to as vector error correction
models (VECMs). However, the Granger Representation Theorem allows for the time
series of interest to have vector autoregressive moving average (VARMA) dynamics. In
this paper we provide a methodology for the identification and estimation of the error
correction VARMA models. While we could legitimately call such models VECMs as
well, we refer to them as EC-VARMA models, and use the term “VECM” exclusively for
the error correction VARs of finite order throughout the paper.

The literature on EC-VARMA models is quite limited. Kascha and Trenkler (2011)
generalize the final moving average (FMA) representation proposed by Dufour and Pel-
letier (2008) to cointegrated VARMA models, and use an information criterion to choose
the AR and MA orders for the cointegrated VARMA model in levels. They find promis-
ing results relative to multivariate random walk and standard VECM for predicting U.S.
interest rates. Their specification strategy is simpler by using the FMA representation,
but similar to Dufour and Pelletier (2008), they focus on a special subset of VARMA
models which the MA operator is scalar. Furthermore, the rank of the cointegration
space is taken as given. These limitations restrict the applicability of their methodology
to empirical analyses.

Lütkepohl and Claessen (1997) consider a four variable EC-VARMA model for U.S.
money demand. They find that in general the EC-VARMA model substantially out-
performs the VECM in terms of mean squared errors and mean absolute errors. They
also examine a restricted version of the EC-VARMA model by dropping the insignificant
parameters, which leads to an even better forecasting performance. Poskitt (2003) uses
a six variable model with U.S. macroeconomic data to illustrate the Echelon form EC-
VARMA model. He observes an improvement in the forecasting performance of an
EC-VARMA model over a VECM and a VAR in levels. He also points out that:

“The acquisition of additional hands on experience with EC-ARMAE forecasting
systems would be desirable in order to gain further insight into their practical merits
and possible pitfalls.”1

This is precisely what we pursue in this paper. By proposing a complete algorithm
for identifying and estimating EC-VARMA models, we expect these models to be uti-
lized more broadly in macroeconomic modelling and forecasting.

The first stage of the proposed algorithm determines the number of cointegration
relationships. The usual practice is to use the Johansen procedure (Johansen, 1988, 1991,

1EC-ARMAE stands for the error correction, Echelon canonical form VARMA model.
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1995) for this stage. In particular, Lütkepohl and Claessen (1997) use a likelihood ratio
(LR) type test which is based on the ideas of Johansen (1988). The Johansen procedure
was originally developed as a likelihood-based method, assuming that variables have a
finite VAR representation. Although this can be justified as a valid method for infinite
VARs under certain specific assumptions (see e.g. Lütkepohl and Saikkonen, 1999),2 we
show in this paper that it suffers from size and power distortions in such situations.3

Therefore, we extend the non-parametric approach of Poskitt (2000) to choose the coin-
tegrating rank for any VARMA process. This selection procedure is strongly consistent,
and does not require any assumptions about the functional form of the underlying data
generating mechanism.

The second stage identifies a canonical VARMA model for variables in levels. We
use the scalar component model (SCM) methodology which was originally proposed
by Tiao and Tsay (1989) and further developed by Athanasopoulos and Vahid (2008).
One of the main contribution of this paper is that we establish the validity of the SCM
methodology for non-stationary VARMA models. Specifically, we show that the SCM
methodology can be applied to partially non-stationary time series in exactly the same
way as to stationary time series.4

The third stage of the proposed algorithm puts the uniquely specified VARMA
model into an error correction form that imposes the cointegrating rank restriction, and
then estimates this model using full information maximum likelihood (FIML).

We use Monte Carlo simulation to evaluate the finite sample performance of the
extended Poskitt’s procedure of selecting the cointegrating rank. We also examine the
predictive ability of EC-VARMA models and VECMs when forecasting data generated
from an EC-VARMA DGP. The computational demands of maximum likelihood estima-
tion are impractical for Monte Carlo simulations, so we replace FIML estimation with
iterative OLS (IOLS) suggested by Kapetanios (2003), which we extend to EC-VARMA
models. The proposed algorithm is applied to the modelling of the term structure of U.S.
interest rates. We find that the EC-VARMA models produce forecasts that are superior
to those produced by VECMs, especially in short horizons.

The remainder of this paper is organized as follows. Section 2 defines the notation
used in this paper. We propose the estimation algorithm for the EC-VARMA model in
Section 3. The Monte Carlo simulation is conducted in Section 4 in order to examine the
loss in forecasting accuracy from using VECMs, when the true DGP is an EC-VARMA
process. Section 5 presents an empirical application to forecasting the term structure of
interest rates using the EC-VARMA models. Section 6 concludes.

2Lütkepohl and Saikkonen (1999) show that as long as a consistent model selection criterion is used
to choose the AR lag order in the VAR model, the asymptotic distribution of the LR test statistic for the
cointegration rank remains valid even if the true DGP is of infinite order.

3Lütkepohl and Saikkonen (1999) also find that the small sample properties of the cointegration tests
are strongly dependent on the choice of the AR lag length.

4Alternatively, the canonical Echelon form VARMA model (Poskitt, 1992; Lütkepohl and Poskitt, 1996)
or reverse Echelon form Lütkepohl and Claessen (1997) can also be applied in order to obtain a uniquely
identifiable VARMA structure.
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2 Notation

The general form of a VARMA(p,q) process is

Φ0yt = Φ1yt−1 + · · ·+ Φpyt−p + Θ0ut + Θ1ut−1 + · · ·+ Θqut−q, (1)

where yt is a K-dimensional time series, Φi and Θj are K×K matrices, i = 0, 1, . . . , p,
j = 0, 1, . . . , q, and ut is a K-dimensional vector of i.i.d. Gaussian white noise process
with mean zero and nonsingular covariance matrix Σ = E (ut u′t). Φ0 and Θ0 are
nonsingular, and hence, can be normalized to identity matrices without the loss of gen-
erality. Alternatively, the process in equation (1) can be written as

Φ(L) yt = Θ(L) ut, (1′)

where Φ(L) = Φ0 −Φ1 L− · · · −Φp Lp, Θ(L) = Θ0 + Θ1 L + · · · + Θq Lq, and L is
the lag operator, such that L yt = yt−1. The matrix polynomials satisfy

det Φ(z) 6= 0 |z| ≤ 1, z 6= 1, and det Θ(z) 6= 0 |z| ≤ 1. (2)

We allow for the AR operator Φ(z) to have roots at z = 1, to account for the integrated
and cointegrated components of yt. Each individual time series in yt is at most I(1).
The possibility that some elements in yt may be stationary without first differencing is
not excluded.

Notice that there are no deterministic terms in the underlying true DGP. This as-
sumption is retained to simplify the exposition of our proposed algorithm, although
empirical applications usually require the deterministic terms. In general, our algorithm
will not be affected if the deterministic terms are pre-filtered.

We obtain the EC-VARMA form representation from equation (1) by subtracting
Φ0yt−1 from both sides:

Φ0∆yt = Πyt−1 + Ψ1∆yt−1 + · · ·+ Ψp−1∆yt−p+1 + Θ0ut + Θ1ut−1 + · · ·+ Θqut−q, (3)

where Π = −(Φ0 −Φ1 − · · · −Φp), and Ψi = −(Φi+1 + · · ·+ Φp) for i = 1, . . . , p− 1.
Denote the true cointegrating rank by ρ0, i.e. there exist ρ0 linear combinations of the
components in yt that are stationary, which imposes the restriction that rank(Π) = ρ0.
Hence, Π can be decomposed into Π = αβ′, where α and β are both matrices of
dimension K × ρ0 of full column rank. β represents the cointegrating relationships in
yt (Granger, 1981; Engle and Granger, 1987).

We use the Johansen procedure (Johansen, 1988, 1991, 1995) to test the cointegrating
rank for the VECMs. The hypothesis used in this paper is

H0 : ρ ≤ r or rank(Π) ≤ r. (4)
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The LR test statistic for the above hypothesis is

− T
K

∑
i=r+1

ln (1− λ̂i), (5)

where λ̂r+1, . . ., λ̂K are the K− r smallest sample squared partial canonical correlations
between ∆yt and yt−1 after the effects of lagged differences and a constant term have
been removed.

The three stage algorithm proposed in this paper is based on a realization of time
series with sample size T, { y1, y2, . . . , yT }, generated from equation (1). For ease of
notation, we use yt to denote both the underlying data generating mechanism, and
the realization generated from the true DGP. { y1, y2, . . . , yT } and { yt }T

t=1 are used
interchangeably throughout the paper. Further, symbols of the parameters in the true
DGP are also used to denote the unknown coefficients in the model to be estimated.

3 A Proposed Algorithm for Estimating an EC-VARMA Model

Given { y1, y2, . . . , yT }, the algorithm for identifying and estimating an EC-VARMA
model consists of the following three stages. The details of each stage are presented in
Sections 3.1, 3.2 and 3.3 respectively.

Stage 1 Use an extended version of the non-parametric approach of Poskitt (2000) to
obtain a super-consistent estimate of the cointegrating rank ρ. We extend the
selection procedure of Poskitt (2000) to include the possibility that ρ = K, i.e.,
{ y1, y2, . . . , yT } is stationary in levels, in which case a VARMA model for variables
in levels should be estimated.

Stage 2 Identify a canonical SCM VARMA(p, q) representation for yt in levels, which
takes the form of equation (1)

Φ0yt = Φ1yt−1 + · · ·+ Φpyt−p + ut + Θ1ut−1 + · · ·+ Θqut−q. (1)

Φ0 is a nonsingular matrix with unit diagonal elements. We use the SCM method-
ology (Athanasopoulos and Vahid, 2008) in this stage. This method imposes nor-
malization restrictions and zero restrictions on the coefficients in Φ0, . . . , Φp and
Θ1, . . . , Θq, in order to achieve unique identification of a VARMA(p,q) model. The
coefficient of ut, Θ0 is normalized to identity.

Stage 3 Estimate an EC-VARMA model in the form of equation (3)

Φ0∆yt = Πyt−1 + Ψ1∆yt−1 + . . . + Ψp−1∆yt−p+1

+ ut + Θ1ut−1 + · · ·+ Θqut−q (3)
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using FIML. Both the estimated cointegrating rank from stage 1 and the coefficient
constraints in the canonical VARMA representation from stage 2 will carry over to
the error correction form in equation (3).

3.1 Stage 1: Determining the Cointegrating Rank

The usual Johansen procedure for testing the cointegrating rank in the context of VECMs
will be disadvantageous for EC-VARMA models due to the presence of the moving
average component. Lütkepohl and Saikkonen (1999) show that the asymptotic distribu-
tion of the test statistic in Johansen’s sequential LR test for cointegrating rank remains
unchanged even if the true DGP is an infinite order VAR, or equivalently, a VARMA
process. However, the power and size of the test in finite samples depend crucially on
the choice of the lag length. The lag length of the truncated VAR should be chosen
using a consistent information criterion, which ensures that the chosen lag length goes
to infinity with the sample size. Unfortunately this condition cannot be satisfied in
practice. In particular, the available sample size is rather limited for applied macroeco-
nomic research, which is typically less than 400 observations. In such circumstances, the
empirical distribution of the LR test statistic is likely to be distant from its asymptotic
distribution. Hence, we resort to alternative methods that have better finite sample prop-
erties. In this paper we use the non-parametric method of Poskitt (2000) to determine
the cointegration rank.

Lütkepohl and Poskitt (1998) and Gonzalo and Pitarakis (1995) point out that the
statistics for testing the cointegration rank of a multivariate system can be used to
construct model selection criteria for estimating the rank consistently. The Poskitt (2000)
method that we adopt here is such a model selection procedure, built on a canonical cor-
relation based testing procedure which was first proposed by Yang and Bewley (1996).
This method does not require that the true DGP is a finite order VAR process. In fact it
does not make any assumptions about the short run dynamics due to its non-parametric
nature.

One of the advantages of using a model selection procedures is that the probability
that this method chooses the correct cointegrating rank, ρ̂ = ρ0, converges to 1 as the
sample size goes to infinity. In contrast, the performances of hypothesis testing type
methods are bounded by 1− α, where α is the test size.

Given a sample of T observations {yt}T
t=1, denote the sample squared canonical

correlations between yt and yt−1 (both in levels), in ascending order, as

λ(1),T ≤ λ(2),T ≤ · · · ≤ λ(K),T. (6)

For ρ = 0, . . . , K − 1, let ΛT(ρ) be the ratio of the arithmetic to the geometric mean of
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the K− ρ largest squared canonical correlations, ΛT(ρ) = λ̄ρ,T/λ̄
g
ρ,T, where

λ̄ρ,T = (K− ρ)−1
K

∑
i=ρ+1

λ(i),T, and λ̄
g
ρ,T =

(
K

∏
i=ρ+1

λ(i),T

)1/(K−ρ)

. (7)

We choose the cointegrating rank ρ̂ to be the one that minimizes the following criterion
function:

ζT(ρ) = T(K− ρ) ln(ΛT(ρ)) + ρ(2K− ρ + 1)PT/2, for ρ = 0, . . . , K− 1. (8)

The choice of the penalty term PT in equation (8) should satisfy the following conditions
(see Poskitt, 2000, Theorem 1.2):

lim
T→∞

PT/T = 0, and lim
T→∞

ln(ln T)/PT = 0. (9)

Under condition (9), the value of ρ̂ that minimizes equation (8) will converge to the
true cointegrating rank ρ0 with probability 1 under certain regularity conditions. We
set PT = ln T throughout the paper.

Notice that in the construction of the criteria in equation (7), ρ cannot take the value
K, to ensure that there are some λ(i),T to calculate ΛT(ρ). Hence the primary drawback
of this selection criterion is that it rules out the possibility that ρ = K, i.e., all of the
individual components in the process yt are I(0) series. Although in practice, one
always starts with univariate unit root tests, and no one would consider cointegration
when all series are I(0), we extend the selection procedure to deal with this scenario
for completeness, using the same rationale as the Poskitt (2000) method. The following
lemma is utilized in constructing this selection criterion (see Poskitt, 2000, Lemma 1.1).

Lemma 1 Let λ(i),T, i = 1, . . . , K be the ordered sample squared canonical correlations in
equation (6), and denote their population counterparts by λ(1) ≤ λ(2) ≤ · · · ≤ λ(K). Then,
with probability 1,

λ(i),T = λ(i) + O(

(
ln T

T

)1/2

), for i = 1, . . . , ρ0,

λ(i),T = 1 + O(

(
ln ln T

T

)1/2

), for i = ρ0 + 1, . . . , K,

where 0 ≤ λ(i) < 1, for i = 1, . . . , ρ0 when the cointegrating rank in the true DGP is ρ0.

A significant consequence of Lemma 1 is that for large values of T, λ(ρ0+1),T, . . .,
λ(K),T can be arbitrarily close to unity, while λ(1),T, . . . , λ(ρ0),T are strictly less than unity.
Hence, to decide whether ρ = K, we can simply take the largest squared canonical
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correlation λ(K),T, and compare it to 1− C(ln T/T)1/2. The decision rule is

ρ̂ = K if λ(K),T ≤ 1− C
(

ln T
T

)1/2

, (10)

where C is some positive constant. We choose C = 1 for ease of exposition. According
to Lemma 1, in the situation when ρ0 = K, the criterion in equation (10) will choose
ρ̂ = ρ0 with probability 1. This criterion is designed to be an extra step of the original
selection criterion of Poskitt (2000). They can be used in combination, as specified in the
following steps:

Step 1 For a given sample of K-dimensional time series { yt }T
t=1, we first determine the

sample squared canonical correlations between yt and yt−1, in ascending order,
as λ(1),T ≤ λ(2),T ≤ · · · ≤ λ(K),T.

Step 2 Compare λ(K),T to 1 − (ln T/T)1/2. If λ(K),T ≤ 1 − (ln T/T)1/2, let ρ̂ = K.
Otherwise, go to step 3.

Step 3 Construct the criterion in equation (8), and choose the cointegrating rank ρ̂ such
that

ρ̂ = arg min
ρ∈{0,1,...,K−1}

ζT(ρ). (11)

This procedure for selecting the cointegration rank is not confined to the class of
VARMA models due to its non-parametric nature. This is preferable from both the
theoretical and practical perspectives, because it allows us to determine the cointegrating
rank consistently without specifying the form of the short run dynamics.5

3.2 Stage 2: Specifying the VARMA Model in Levels

The scalar component model (SCM) is initiated by Tiao and Tsay (1989) and further de-
veloped by Athanasopoulos and Vahid (2008). We adopt this methodology in this paper,
because the canonical SCM VARMA representation is generally more parsimonious than
the canonical Echelon form (Hannan and Kavalieris, 1984; Hannan and Deistler, 1988;
Poskitt, 1992; Lütkepohl and Poskitt, 1996; Lütkepohl, 2005) by allowing for different AR
and MA orders in each row. More importantly, it will become clear later that the SCM
methodology shares the same theoretical foundation with Poskitt’s method of selecting
the cointegrating rank. This section demonstrates that the testing procedure of the SCM
methodology is still valid for nonstationary VARMA models.

5There are also other system cointegration tests that use a VAR as an adjustment for short run dynamics,
in order to eliminate the effect of the unknown nuisance parameters (e.g. the principal components test of
Stock and Watson, 1988). Generalizing from a VAR to a VARMA adjustment may potentially improve the
performances of such tests as well, but we do not explore this possibility here.
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3.2.1 Canonical Correlations Framework

We first present the SCM methodology for a stationary and ergodic process yt. Exten-
sion to nonstationary systems is discussed in Section 3.2.2 and onwards.

Definition 1 (SCM) For a K-dimensional process yt, a non-zero linear combination zi,t =

a′(i)yt is said to follow an SCM(pi,qi) structure if there exist pi K-dimensional vectors v1, . . . , vpi

where vpi 6= 0, such that the linear combination

ξi,t = a′(i)yt +
pi

∑
s=1

v′syt−s (12)

satisfies the condition

E(yt−jξi,t)

{
6= 0 if j = qi

= 0 if j > qi
. (13)

It follows from equation (13) that zi,t = a′(i)yt has an SCM(pi,qi) structure, with
v1, . . . , vpi being the associated vectors, if and only if

E

(
yt−j[y′ta(i) +

pi

∑
s=1

y′t−svs]

)
= 0 for j > qi. (14)

Let Γj = E(yt−jy′t) be the j-th lag autocovariance matrix of yt. Then equation (14)
becomes

Γja(i) +
pi

∑
s=1

Γj−svs = 0 for j > qi. (15)

We construct the following vectors and matrices to utilize the relationship in equation

(15) in the specification procedure. First, let v =
(

a′(i), v′1, . . . , v′pi

)′
. For integers

m ≥ 0 and l ≥ 0, denote the two K(m + 1)-dimensional vectors Ym,t and Ym,t−l−1 by

Ym,t =
(

y′t, · · · , y′t−m

)′
, (16)

and Ym,t−l−1 =
(

y′t−l−1, · · · , y′t−l−1−m

)′
, (17)

where t and t − l − 1 denote the starting points and m denotes the number of lags.
It will become clear later that m controls the order of the autoregressive component of
the underlying SCM, and l controls the order of the moving average component.

Then, let the K(m + 1)-dimensional square matrix

Γ(m, l) = E(Ym,t−l−1Y ′m,t) =


Γl+1 Γl · · · Γl+1−m

Γl+2 Γl+1 · · · Γl+2−m
...

...
. . .

...
Γl+1+m Γl+m · · · Γl+1

 (18)
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be the covariance matrix of Ym,t and Ym,t−l−1. Combining equations (15) and (18), there
exists an SCM(pi,qi), if and only if

Γ(pi, qi) v =


Γqi+1 Γqi · · · Γqi+1−pi

Γqi+2 Γqi+1 · · · Γqi+2−pi
...

...
. . .

...
Γqi+1+pi Γqi+pi · · · Γqi+1




a(i)

v1
...

vpi

 = 0. (19)

Such a vector v is called a right vector of Γ(pi, qi) corresponding to zero.

Definition 2 (Right Vector) For a real matrix A of dimension m × n, m ≥ n, the n-
dimensional non-zero vector x is a right vector of A corresponding to zero if Ax = 0. Further,
rank(A) = n− r, where r is the number of linearly independent right vectors of A.

According to Definition 2, if rank[Γ(pi, qi)] = K(pi + 1) − r, there exist r linearly
independent vectors a(1), . . . , a(r), such that the linear transformations zj,t = a′(j)yt ∼
SCM(pi,qi), j = 1, . . . , r. Hence, we can design a procedure to test the rank of the series
of Γ(m, l), or equivalently, the number of non-zero eigenvalues of Γ(m, l), m = 0, 1, . . . , p
and l = 0, 1, . . . , q, in order to detect the number of SCMs.

In practice, we estimate the rank of Γ(m, l) within the canonical correlation frame-
work. Consider the matrix

A(m, l) =
[
E
(
Ym,tY ′m,t

)]−1
Γ′(m, l)

[
E
(

Ym,t−l−1Y ′m,t−l−1

)]−1
Γ(m, l). (20)

The eigenvalues of A(m, l) are the squared population canonical correlations of Ym,t and
Ym,t−l−1 (Anderson, 2003). Furthermore, assuming that ut, the innovation process has
a nonsingular covariance matrix Σ, the multiplicity of zero eigenvalues of A(m, l) is
the same as the number of linearly independent right vectors of Γ(m, l) corresponding
to zero, and the linearly independent right eigenvectors of A(m, l) corresponding to
the zero eigenvalues are the right vectors of Γ(m, l). Hence testing for SCM(pi,qi) is
equivalent to testing for zero eigenvalues in A(pi, qi).

We can decompose A(m, l) = β∗(m, l)β(m, l), where

β∗(m, l) =
[
E
(
Ym,tY ′m,t

)]−1
Γ′(m, l), (21)

β(m, l) =
[
E
(

Ym,t−l−1Y ′m,t−l−1

)]−1
Γ(m, l). (22)

Note that β∗(m, l) and β(m, l) are the probability limits of the OLS estimators β̂∗(m, l)
and β̂(m, l), which are the regression coefficients of the following forward and backward
autoregressions:

Y ′m,t−l−1 = Y ′m,t β∗(m, l) + e∗t , (23)

Y ′m,t = Y ′m,t−l−1 β(m, l) + et. (24)

10



For a given finite sample of size T, the sample counterparts are Â(m, l) = β̂∗(m, l)β̂(m, l),
where β̂∗(m, l) and β̂(m, l) are the OLS estimates of equations (23) and (24). The se-
quence of hypothesis tests are constructed using the series of Â(m, l) for different values
of m and l.

Denote the ordered eigenvalues of Â(m, l), i.e. the ordered sample squared canonical
correlations between Ym,t and Ym,t−l−1, as

λ̂1(m, l) ≤ λ̂2(m, l) ≤ · · · ≤ λ̂K(m+1)(m, l). (25)

Generally the null and alternative hypotheses that test for r zero eigenvalues in Â(m, l)
are as follows:

H0 : λ̂r(m, l) = 0; against H1 : λ̂r(m, l) 6= 0. (26)

The test statistic is

C(m, l) = −(T −m− l)
r

∑
j=1

ln

{
1−

λ̂j(m, l)
dj(m, l)

}
a∼ χ2

r2 under H0, (27)

where

dj(m, l) = 1 + 2
l

∑
i=1

ρ̂i( f̂ ′i Ym,t)ρ̂i(ĝ′iYm,t−1−l); (28)

ρ̂i(xt) is the i-th lag sample autocorrelation of the process xt ; and f̂i and ĝi are the
left and right canonical covariates corresponding to the eigenvalue λ̂j(m, l).

3.2.2 Nonstationary Environment

Given a sample of T observations, we denote the sample counterpart of A(m, l) by

Â(m, l) = (
1
T

T

∑
t=1

Ym,tY ′m,t)
−1(

1
T

T

∑
t=1

Ym,tY ′m,t−l−1)

(
1
T

T

∑
t=1

Ym,t−l−1Y ′m,t−l−1)
−1(

1
T

T

∑
t=1

Ym,t−l−1Y ′m,t). (29)

We can now turn to investigate the nonstationary situation. If yt has some non-
stationary components, E(yt−jy′t) depends on both t and j, and hence a time invari-
ant Γ(m, l) does not exist. Rather than solving the eigenvalue-eigenvector problem of
Â(m, l) directly, we consider a different normalization of the process yt.

For a time series yt that comes from a VARMA(p,q) process, there exists a K × K
nonsingular transformation matrix H such that Hyt = ( s′t n′t )

′, where st is a purely
stationary process. Given the cointegrating relationship in yt, st has dimension ρ0 × 1.
Thus, the difference stationary component nt has dimension (K − ρ0)× 1 (see Poskitt,
2000, for an example of such a transformation). For any scalar of m, let Im denote the

11



m×m identity matrix; then let

xt = GT Hyt =

(
st

nt/T1/2

)
, where GT =

(
Iρ0 0
0 IK−ρ0 /T1/2

)
. (30)

Consider the sample moment matrices for yt and the normalized process xt as defined
above:

Γ̂
y
i,j =

1
T

T

∑
t=1

yt−iy′t−j, (31a)

Γ̂x
i,j =

1
T

T

∑
t=1

xt−ix′t−j = GT H Γ̂
y
i,j H ′ G′T, (31b)

where Γ̂x
i,j has a well defined probability limit for any finite numbers i, j, denoted by

Γx
i,j := plim

T→∞
Γ̂x

i,j; see Hamilton (1994), Proposition 18.1, or Phillips and Durlauf (1986).

We can construct Âx(m, l) in the same way as in equation (29), replacing Ym,t and
Ym,t−l−1 with Xm,t and Xm,t−l−1.

3.2.3 Testing for SCM(0,0)

First consider the case of testing for SCM(0,0), i.e. m = l = 0. By making use of the
relationship in equation (31), Âx(0, 0) can be expressed as

Âx(0, 0) = (Γ̂x
0,0)
−1 Γ̂x

0,1 (Γ̂
x
1,1)
−1 Γ̂x

1,0 = (H ′ G′T)
−1 Â(0, 0) (H ′ G′T). (32)

If the eigendecomposition of Â(0, 0) is Â(0, 0) = FΛF−1, where Λ is a diagonal matrix
with the eigenvalues of Â(0, 0) being the diagonal elements, and the i-th column of F
is the eigenvector corresponding to [Λ]ii, then the eigendecomposition of Âx(0, 0) is

Âx(0, 0) = Fx Λ F−1
x , where Fx = (H ′ G′T)

−1F. (33)

Hence, the eigenvalues of Â(0, 0) are the same as those of Âx(0, 0). Notice that Âx(0, 0)
also has a well defined probability limit. Due to the fact that eigenvalues are continu-
ous functions of the matrix, we only examine the eigenvalues of the limiting matrix
Ax(0, 0) := plimT→∞ Âx(0, 0).

We analyze the rank property of Ax(0, 0) in order to detect SCM(0,0) for the origi-
nal process yt. Using the notation for stationary VARMA process in Section 3.2.1, there
exist r linearly independent vectors a(1), . . . , a(r), such that zj,t = a′(j)yt ∼ SCM(0, 0),
j = 1, . . . , r, if and only if rank[ Ax(0, 0) ] = K − r, or equivalently, the multiplicity of
the zero eigenvalues of Ax(0, 0) is r. The eigenvalues of Ax(0, 0) are the squared
population canonical correlations between xt and xt−1, which are the same as the
squared population canonical correlations between yt and yt−1.

Based on the result of Lemma 1, the ordered eigenvalues of Ax(0, 0), λ(1) ≤ λ(2) ≤
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· · · ≤ λ(K), can be classified into two groups in the following fashion. When the true
cointegrating rank of yt is ρ0,

λ(ρ0+1) = · · · = λ(K) = 1, (34)

are the squared canonical correlations between nt/T1/2 and nt−1/T1/2; and

λ(1) ≤ · · · ≤ λ(ρ0) < 1, (35)

are the squared canonical correlations between st and st−1.6 Hence, the multiplicity of
zero eigenvalues and the rank of Ax(0, 0) are determined by st, the stationary compo-
nents of yt, simply because the canonical correlations between the normalized nonsta-
tionary components are unity in the limit. The true cointegrating rank ρ0 implies that
the dimension of the stationary component, and hence the number of SCM(0,0) in yt

should not exceed ρ0. These parameter restrictions will be discussed further in Section
3.3.1.

Above analysis shows that if there is some nonstationary component in yt, the
behavior of the canonical correlations are the same as in the stationary case, when the
sample size T goes infinity. However, the SCM methodology is valid in this case only
if the test statistic retains the same distribution and degree of freedom. In what follows
we establish the normality of the canonical correlations that are used in the construction
of the test statistic in equation (27), and then examine the degree of freedom of the test
statistic.

We first examine the asymptotic distributions of λ(1) ≤ · · · ≤ λ(ρ0) when the non-
stationary component nt exists. Since st is purely stationary, it has well defined
population autocovariance matrices Γs

i,j := E(st−is′t−j), for any i and j. Further, st

has a stationary VMA(∞) representation,

st =
∞

∑
c=0

Υc εt−c, (36)

where εt is a ρ0-dimensional vector of i.i.d. N ( 0, Σε) random variables. Then, we can
examine the finite sample property of st. First, it is straightforward that the following
result holds:

plim
T→∞

Σ̂ε = Σε, Σ̂ε =
1
T

T

∑
t=1

εtε
′
t, (37)

where T1/2(Σ̂ε − Σε) has a limiting normal distribution. Based on the analysis above,
in finite samples, the ρ0 smallest eigenvalues of Âx(0, 0) converge in probability to the
squared canonical correlations between st and st−1, i.e. the eigenvalues of

Âs(0, 0) = (Γ̂s
0,0)
−1 Γ̂s

0,1 (Γ̂
s
1,1)
−1 Γ̂s

1,0, where Γ̂s
i,j =

1
T

T

∑
t=1

st−is′t−j. (38)

6The proof of this result is provided in the appendix of Poskitt (2000).
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Given the relationship in equation (36), it follows immediately that

plim
T→∞

Γ̂s
i,j = Γs

i,j, (39)

and further, T1/2(Γ̂s
i,j − Γs

i,j) has a limiting normal distribution. Hence, the asymptotic
distributions of λ(1),T ≤ · · · ≤ λ(ρ0),T are not affected by the existence of the nonstation-
ary component nt.

We then examine the degrees of freedom of the test statistic given in equation (27).
For a stationary K-dimensional time series, the degrees of freedom for testing the ex-
istence of r SCM(0,0) are calculated on the basis of the K × K square matrix Â(0, 0)
having rank K − r. However, for a nonstationary K-dimensional process, there is a
separation between I(0) and I(1) variables based on the above results. Furthermore, the
multiplicity of zero eigenvalues of A(0, 0) only depends on st, which is of dimension
ρ0× 1. Thus, in this situation, the degrees of freedom for testing r SCM(0,0) is based on
a ρ0 × ρ0 matrix Âs(0, 0) having rank ρ0 − r. Fortunately, they both have r2 degrees
of freedom according to the test statistic given in Section 3.2.1. Therefore, we have ver-
ified that the testing procedure of Tiao and Tsay (1989) for SCM(0,0) is still valid in the
nonstationary case.

3.2.4 Testing for SCM(pi,qi)

The same reasoning will carry through to the test for SCM(m, l) in general, m =

0, 1, . . . , p and l = 0, 1, . . . , q. The eigenvalues of Â(m, l), are the same as those of
Âx(m, l), and the probability limit of the latter, Ax(m, l) := plim

T→∞
Âx(m, l), exists. The

matrix Ax(m, l) is a K(m + 1)-dimensional square matrix. There exists a nonsingular
K(m+ 1)×K(m+ 1) transformation matrix H to partition Ym,t into a purely stationary
part and a difference stationary part,

HYm,t =

(
s̃m,t

ñm,t

)
; and hence, HYm,t−l−1 =

(
s̃m,t−l−1

ñm,t−l−1

)
. (40)

For any finite number l, s̃m,t−l−1 and ñm,t−l−1 will have the same stationarity properties
as s̃t and ñt, respectively. As with the rank property of Ax(0, 0), the nonstationary
components ñm,t will not affect the number of zero canonical correlations between Ym,t

and Ym,t−l−1, and thus the multiplicity of zero eigenvalues in Ax(m, l).
Therefore, the nonstationary components have no effect on the rank property of

Âx(m, l). The statistical procedures needed to test for zero canonical correlations for
a given sample are the same for both stationary and nonstationary cases. We do not
discuss the testing procedure further, because it is not the focus of the present paper.
Interested readers can refer to the work of Athanasopoulos and Vahid (2008); Athana-
sopoulos (2007) and Tiao and Tsay (1989) for details of the steps for the SCM testing
procedure.

14



3.3 Stage 3: Estimating the EC-VARMA Model

Suppose that the identified canonical SCM VARMA model for yt in levels is

Φ0yt = Φ1yt−1 + · · ·+ Φpyt−p + ut + Θ1ut−1 + · · ·+ Θqut−q, (41)

where Φ0 is a nonsingular matrix with unit diagonal elements. The error correction
model can be obtained from equation (41) by subtracting Φ0yt−1 from both sides of the
equation and rearranging terms:

Φ0∆yt = Πyt−1 + Ψ1∆yt−1 + · · ·+ Ψp−1∆yt−p+1 + ut + Θ1ut−1 + · · ·+ Θqut−q, (42)

where

Π = −(Φ0 −
p

∑
j=1

Φi), and Ψi = −
p

∑
j=i+1

Φj, i = 1, . . . , p− 1. (43)

3.3.1 Parameter Restrictions in the EC-VARMA Model

In general, there are certain zero restrictions placed on Φi, i = 1, . . . , p. According to
the relationships in equation (43), Ψi will satisfy the same identification restrictions as

∑
p
j=i+1 Φi, i = 1, . . . , p− 1, and the zero rows of Π will be the same as those of Φ0−Φ1.

Hence, in the case where all of the elements in Φ1 are free-varying parameters, there
will be no zero elements in Π, keeping in mind that Φ0 has full rank.

The cointegrating rank ρ and the number of zero rows in Φ1 are related, because
they both imply parameter constraints on Π. Denote the number of zero rows in Φ1 by
τ. It implies that rank(Π) = ρ0 ≥ τ, because the τ rows that come from Φ0 are linearly
independent. In the context of SCM procedure, τ is the number of SCM(0,j) process in
yt, j = 0, 1, . . . , q. Given the derivations in Section 3.2, the number of SCM(0,j) cannot
exceed ρ0, i.e. the dimension of the stationary component st. Hence, τ ≤ ρ0 should
always hold for a canonical SCM VARMA representation.

3.3.2 An Iterative Procedure

The VARMA(p,q) model to be estimated is in the error correction form:

Φ0∆yt = αβ′yt−1 + Ψ1∆yt−1 + · · ·+ Ψp−1∆yt−p+1 + ut + Θ1ut−1 + · · ·+ Θqut−q, (44)

where α and β are both K × ρ̂ dimensional matrices of full column rank, and there
are proper restrictions imposed on the coefficient matrices in order to ensure unique
identification. The traditional approach in the literature is to estimate all unknown
parameters simultaneously using FIML, which is the exact method that we use for the
empirical application in Section 5. However, it is both infeasible and computationally
inefficient to use FIML with large scale simulations in Section 4, because it may occa-
sionally fail to converge. Thus, we use the following iterative procedure to estimate
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model (44) in the Monte Carlo simulation. This procedure is built upon the iterative
OLS (IOLS) estimation suggested by Kapetanios (2003) for stationary VARMA models.

The initial estimate of the error sequence û0
t is obtained from the residual of a VAR,

where the lag length of the VAR is an increasing function of the sample size T, and is
larger than the AR order of the identified VARMA DGP. We let the lag length be dln Te,
i.e. the smallest integer that is greater than ln T, as was suggested by Lütkepohl and
Poskitt (1996). The residual obtained from this VAR(dln Te), namely û0

t , is a consistent
estimate of the true error ut.

The cointegrating vectors in the error correction model are estimated in the first step
of the IOLS procedure. We calculate the partial canonical correlations between ∆yt and
yt−1 after controlling for ∆yt−1, . . ., ∆yt−p+1 and û0

t−1, . . ., û0
t−q. The canonical covari-

ates corresponding to the largest ρ̂ squared partial canonical correlations are taken as
the estimated cointegrating vectors, β̂0. (β̂0)′yt−1 is commonly referred to as the error
correction term. The rest of the parameters are then estimated by the OLS regression
of equation (44) with (β̂0)′yt−1 and û0

t−1, . . ., û0
t−q taken as known, subject to its zero

restrictions in equation (44).
There are a few important issues which should be noted in the OLS estimation of

equation (44). First, the zero restrictions imposed by the SCMs on the coefficient matrices
Ψi and Θj should be taken into account in the estimation, i = 1, . . . , p, j = 1, . . . , q.
To put it differently, if some elements of Ψi or Θj are restricted to be zero, then the
corresponding variables need to be excluded from the OLS estimation.

More importantly, the restrictions on Φ0 should be reflected in the estimation as
well. Recall that Φ0 is a non-singular matrix with unit diagonal elements for the SCM
representation. Consider the OLS estimation of the i-th row of the system equation
(44), i = 1, . . . , K. If the ij-element of Φ0 is non-zero, j = 1, . . . , K and j 6= i,
the j-th contemporaneous variable, ∆yj,t should be put on the right hand side as an
explanatory variable. Specifically, the OLS estimation should be conducted using the
following equation

∆yt = α(β̂0)′yt−1 + Ψ1∆yt−1+ · · ·+ Ψp−1∆yt−p+1

+(I −Φ0)∆yt + Θ1û0
t−1 + · · ·+ Θqû0

t−q + ut, (45)

where ut is the residual.
The contemporaneous variables (I −Φ0)∆yt are not included in the estimation of

the cointegrating vectors, because it will not affect the estimated values of β̂0. This can
be seen by pre-multiplying both sides of equation (44) by Φ−1

0 :

∆yt = Φ−1
0 αβ′yt−1 + Φ−1

0 Ψ1∆yt−1 + · · ·+ Φ−1
0 Ψp−1∆yt−p+1

+ Φ−1
0 ut + Φ−1

0 Θ1ut−1 + · · ·+ Φ−1
0 Θqut−q

= α̃β′yt−1 + Ψ̃1∆yt−1 + · · ·+ Ψ̃p−1∆yt−p+1 + ũt + Θ̃1ut−1 + · · ·+ Θ̃qut−q, (46)
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where α̃ = Φ−1
0 α, ũt = Φ−1

0 ut, Ψ̃i = Φ−1
0 Ψi, and Θ̃j = Φ−1

0 Θj, i = 1, . . . , p − 1,
j = 1, . . . , q. Hence equation (46) will give rise to different estimates of the coefficient
matrices, but the estimates of interest— β̂0 will not change.

The same set of rules applies to each iteration of the OLS estimation hereafter,
although we do not state this explicitly in each case. The estimated residual is denoted
by û1

t . In the subsequent iteration of estimating β̂1 and the OLS regression in the form
of equation (44), û1

t is used in place of û0
t . Formally, suppose that the j-th iteration is

evaluated and ûj
t is obtained. Let Ω̂j be the sample covariance matrix of ûj

t. The IOLS
procedure takes the following steps for an error correction VARMA model.

In the (j + 1)-th iteration, we first calculate the partial canonical correlation between
∆yt and yt−1 after controlling for ∆yt−1, . . ., ∆yt−p+1 and ûj

t−1, . . ., ûj
t−q. The

estimated cointegrating vectors β̂j+1 are formed by the canonical covariates correspond
to the largest ρ̂ sample squared partial canonical correlations. We then use OLS to
estimate the regression model of the following form:

∆yt = α(β̂j+1)′yt−1 + Ψ1∆yt−1+ · · ·+ Ψp−1∆yt−p+1

+(I −Φ0)∆yt + Θ1ûj
t−1 + · · ·+ Θqûj

t−q + ut. (47)

Denote the residual estimates obtained from equation (47) by ûj+1
t , and its covariance

matrix estimate by Ω̂j+1. If the iterative procedure converges such that ‖ ln |Ω̂j+1| −
ln |Ω̂j|‖ < ε for some pre-specified constant ε > 0, then the OLS estimates of the
coefficients in equation (47) are adopted. Otherwise, we should proceed to evaluate the
(j + 2)-th iteration.

The sequence of the residual ûj
t is redefined with each iteration j, and therefore

there is no guarantee that this iterative process will converge. Kapetanios (2003) points
out that iterations of ûj

t will converge if this procedure produces a contraction mapping.
Hence, he suggests to check the eigenvalues of the Jacobian at each iteration. If any of
these eigenvalues are greater than unity, then this signals that the iterative process is
unlikely to converge. However, it is difficult to implement this procedure in practice
when the dimension of the parameter space is high. Hence, it is necessary to set
a pre-specified maximum number of iterations, Mmax. If the convergence condition
‖ ln |Ω̂j+1| − ln |Ω̂j|‖ < ε cannot be achieved within Mmax iterations, there are a few
possible solutions to resort to.

Similar to the numerical maximum likelihood methods, good starting values of the
parameters are important for convergence of the iterative algorithm. We can perturb
the initial estimates of the coefficients using û0

t , and repeat the iterative procedure a
few times. Alternatively, we can use other estimators as the starting values. To name a
few, the Hannan-Rissanen method (Hannan and Rissanen, 1982), the Hannan-Kavalieris
procedure (Hannan and Kavalieris, 1984) and the generalized least squares procedure
proposed by Koreisha and Pukkila (1990) can all serve this purpose. Kascha (2012)
conducts an extensive comparison of these estimators for stationary VARMA DGPs via
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Monte Carlo simulations. His results suggest that the algorithm of Hannan and Kava-
lieris (1984) is generally preferable to other algorithms. Hence, if all attempts to ini-
tialize the IOLS procedure with good starting values fail and convergence still cannot
be achieved, we suggest to use the estimator given by Hannan and Kavalieris (1984) to
produce the final estimates.

4 Monte Carlo Simulation

We use Monte Carlo simulation to evaluate the predictive ability of EC-VARMA model
and VECMs, when the data are in truth generated from an EC-VARMA DGP. This sim-
ulation also serves the purpose of examining the finite sample performance of our ex-
tension of Poskitt’s selection criterion for determining the cointegrating rank, compared
to the usual Johansen procedure.

DGP used in the simulation is a 3-dimensional cointegrated VARMA(1,1) process:

yt =

 0.75 0.25 0
0.11 0.89 0
−0.1 0.1 1

 yt−1 + ut +

 −0.35 0.2 −0.54
0.7 0.5 0.1
−0.4 0.75 0.6

 ut−1, (48)

where ut is i.i.d. N (0, I3). The AR and MA orders are both one to simplify the il-
lustration. The EC-VARMA(0,1) representation is ∆yt = Πyt−1 + ut + Θ1ut−1, where
Π = αβ′, α = (−0.25, 0.11, −0.1)′ and β = (1, −1, 0)′. Hence the true cointegrating
rank ρ0 = 1. All three eigenvalues of Θ1 are close to 0.8, indicating the presence of a
relatively strong propagation mechanism in the MA dynamics.

We simulate four different sample sizes: T = 100, 200, 400 and 1000, and perform
100 replications for each sample size. The forecasting horizons are h = 1, . . . , 24. We
consider two measures of forecasting accuracy: the trace of mean squared forecast errors
(tr(MSFE)) for yt in levels and the generalized forecast error second moment (GFESM).
The latter metric of forecasting accuracy is proposed by Clements and Hendry (1993).
The GFESM is the determinant of the forecast error second moment matrix pooled across
all horizons,

GFESMh =
(

det
(

E[vec(e1, . . . , eh) vec(e1, . . . , eh)
′]
) )1/h

, (49)

where ei is the K × 1 dimensional vector of i-th step ahead forecasting error, i =

1, . . . , h. The main advantage of GFESM is that it is invariant to non-singular, scale
preserving linear transformations for all forecast horizons (see Clements and Hendry,
1993, for details).

The forecast errors generated from the estimated VECMs and EC-VARMA model are
compared to the theoretical forecast errors, which are generated from the EC-VARMA(0,1)
models with the true parameters. We refer to these models as the “oracle”.
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4.1 Selection of Cointegrating Rank, Lag Length and the SCM Structure

The first step of the propose algorithm is to determine the cointegrating rank using
the extended Poskitt (2000) procedure for the VARMA models. We compare its finite
sample performance with that of the usual Johansen procedure combined with three
different information criteria — AIC, HQ and BIC — for the VARs in the simulation.
Due to the non-parametric nature of the modified Poskitt (2000) procedure, it can be
used in conjunction with either VARs or VARMA models. Given the DGP in equation
(48) and the simulation setting outlined above, the Poskitt’s procedure select the true
cointegrating rank ρ̂ = ρ0 = 1 for all simulated sample paths, even using only 100
observations.7

The Johansen procedure is dependent on the lag length of the VECMs, hence we
first specify the lag lengths for VARs using the three information criteria. Figure 1 plots
the distribution of the estimated lag length for VARs with different sample sizes. The
maximum lag length is set to 20 considering the available sample size. All three of
the information criteria choose longer lags as the sample size T increases. AIC has
the tendency to choose very long lags when the sample size T = 100. The empirical
distributions of the estimated cointegrating rank ρ̂ selected by the Johansen procedure
are plotted in Figure 2.

Figure 1: Distribution of the estimated lag length for VAR with different sample sizes
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It is evident from Figure 2 that the actual size of the Johansen procedure is far
from its nominal size of 5%. This phenomenon in finite samples is in accord with the
observation by Lütkepohl and Saikkonen (1999) when the true DGPs are cointegrated
VARMA processes.

Another interesting observation from these two plots is the case when T = 100. AIC

7A more comprehensive simulation using 100 different DGPs shows that the extended Poskitt (2000)
procedure can choose the true cointegrating rank for at least 95% of the time when T = 100. These
simulation results are available upon request.
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Figure 2: Distribution of the estimated cointegrating rank ρ̂ with different sample sizes

1 2 3
0

20

40

60

80

100
(a) T=100

pe
rc

en
ta

ge
 (

%
)

1 2 3
0

20

40

60

80

100
(a) T=200

 

 

AIC
HQ
BIC

1 2 3
0

20

40

60

80

100
(a) T=400

rank

pe
rc

en
ta

ge
 (

%
)

1 2 3
0

20

40

60

80

100
(a) T=100

rank

chooses very long lags (i.e. higher than 12) more than 20% of the time. In line with
the findings of Vahid and Issler (2002), we would expect such an over-parameterization
by AIC to cause a large estimation error, especially in small samples. Correspondingly,
Figure 2 shows that when T = 100, the Johansen procedure with lag length selected
using AIC chooses the correct specification of the cointegrating rank for roughly 60% of
the time. This phenomenon also reveals that the cointegrating rank estimated using the
Johansen procedure depends crucially on the lag length of the VECM.

Overall, Figures 2 provides supporting evidence in favor of the modified Poskitt
(2000) method for choosing the cointegrating rank when the true DGP is a VARMA
process. We then proceed to the second stage of the proposed algorithm to identify the
underlying SCM structure of each simulated path.

Various studies (see e.g. Athanasopoulos and Vahid, 2008; Athanasopoulos et al.,
2012) have found that the identification procedure for specifying the canonical SCM
VARMA models is quite successful. We find similar results using the cointegrated
VARMA DGP in equation (48). The true SCM structure implied by equation (48) is
three SCM(1,1). The testing procedure outlined in Section 3.2 is able to pick up the
correct structure for more than 95% of the time. Other identified SCM specifications are
listed in Appendix A.

4.2 Forecasting with EC-VARMA models and VECMs

Tables 1 and 2 present the percentage differences in tr(MSFE) and GFESM between the
estimated models and the “oracle” at each forecasting horizon. For instance, the first
number in Table 1 denotes that when the sample size is T = 100, the trace of the one-
step MSFE obtained from the EC-VARMA models estimated using IOLS is 16.3% larger
than the trace of one-step MSFE from the “oracle”. Similar interpretations can be drawn
from Table 2 for GFESM.
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In addition to the estimated EC-VARMA models, we also fit VECMs with lag lengths
selected by AIC, HQ or BIC to each simulated data path separately. Conditional on the
selected AR lag length, the cointegrating rank is then chosen by the Johansen procedure.
VECMs with the cointegrating rank determined by the modified Poskitt (2000) approach
are also estimated here. The tr(MSFE) and GFESM are reported in Tables 1 and 2 for
both specifications of the cointegrating rank, in columns labeled ρ̂J and ρ̂P respectively.
The symbol “\” indicates the model specification that produces the most accurate fore-
cast. The evidences provided in Tables 1 and 2 are conclusive, that in general, given
the typical sample sizes available for macroeconomic data, using EC-VARMA models
reduces the forecasting error, especially with large sample sizes. For small sample sizes,
the advantages of EC-VARMA models are quite substantial in short horizons.

The columns labeled ρ̂J and ρ̂P in Tables 1 and 2 allow us to examine the effects
on the forecasting accuracy of using different cointegrating ranks. The lag lengths of
VECMs are selected by the same information criteria, but the cointegrating ranks are
chosen by the Johansen procedure and the extended Poskitt (2000) method, respectively.
The tables show that using the extended Poskitt (2000) method produces smaller forecast
error mostly when the sample size is small.

5 Term Structure of Interest Rates

It is commonly accepted that interest rates with different maturities are cointegrated (see
Hall et al., 1992). The cointegrating vector between any two interest rate series should
be close to (1, −1), i.e. the interest rate spreads should be stationary, despite the fact that
most interest rates are regarded as I(1) series. Many studies of interest rates have been
conducted within the VECM framework, with the aim of forecasting interest rates. To
name one among others, Hall et al. (1992) find that yields to maturity of U.S. treasury
bills specify an error correction model with post-1982 data, which proves to be useful in
forecasting changes in yields.

The use of VARMA models to capture the dynamics in the term structure of interest
rates is not new. Kascha and Trenkler (2011) show that a cointegrated VARMA model
generates superior forecasts of U.S. interest rates. Nevertheless, our study differs from
theirs in several aspects. First, Kascha and Trenkler (2011) extend the FMA represen-
tation of Dufour and Pelletier (2008) to specify their VARMA model. This is simpler
but less general and parsimonious than the SCM representation (Athanasopoulos and
Vahid, 2008) employed here. Moreover, Kascha and Trenkler (2011) take the cointegrat-
ing rank as given (ρ = K − 1) for their forecasting evaluation, whereas we test for the
cointegrating rank for each sample.

5.1 Data

We use monthly data of the U.S. federal funds rate, and 3-month and 6-month treasury
bill rates to form a three variable system. Let yt = ( f ft, i3t, i6t)′. The available sample
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period is from 1958:12 to 2011:09, which leads to a total of 634 observations. Figure
3 plots the three interest rate series over the entire sample period. The movements in
the three series clearly share a similar pattern, especially for the 3-month and 6-month
treasury bill rates.8

Figure 3: The three interest rate series (%)
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We use the first 400 observations as the initial estimation sample to forecast future
interest rates for up to 12-steps ahead. We use an expanding window,9 and the same
forecasting exercise is repeated 222 times. In addition to tr(MSFE) for yt in levels and
GFESM, the determinant of MSFE (det(MSFE)) for yt in levels is also examined.

5.2 Selection of Cointegrating Rank and Lag Length

We first estimate the VECMs and EC-VARMA models using the theoretical cointegrating
relationships — for a K-dimensional model, the cointegrating rank is fixed to be ρ =

K− 1. Furthermore, the cointegrating vectors are specified as follows:

β =
[(

1, −1, 0
)′

,
(

1, 0, −1
)′]

. (50)

The AR order of the finite VAR is determined using AIC, HQ and BIC. The maximum
AR lag is set to be 24 which is two years for monthly data. The distributions of the

8One may want to drop the observations during the last global financial crisis (2008:01-2011:09, the last
45 observations), due to the possibility of a structural break. We experiment with this shorter sample as
well, and it produces qualitatively similar results. The forecast errors are smaller in almost all cases, but
the ranking of the competing models does not change.

9We also use rolling window to generate forecasts of future interest rates, which can account for the
possible structural breaks over the time span that we considered. The forecasting results are very similar to
what are reported below using expanding window, and hence are omitted here. Those results are available
upon request.
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selected AR lag length for 222 sets of estimation samples are tabulated in Table 3. All
of the models specified by AIC are heavily parameterized, choosing a VAR(21) for yt

in levels for all 222 sets of estimation samples. BIC seems to choose a much shorter lag
length for this dataset. Surprisingly, HQ only chooses three different lag lengths — 3,
9 and 16, which do not increase gradually, but this is what is observed from the data
using an expanding window.

Table 3: Distribution of the estimated lag length for VAR
with theoretical cointegration

Information AR Lag Length
Criteria 2 3 9 16 21

AIC 0 0 0 0 100%
HQ 0 64.9% 12.1% 23.0% 0
BIC 70.3% 29.7% 0 0 0

Table 4: Distribution of the estimated lag length and
cointegrating rank (data-specified cointegration)

Information
Lag

Cointegration Rank
Criteria 0 1 2

AIC 21 48.2% 51.8%

HQ
3 64.9%
9 0.9% 11.3%
16 23.0%

BIC
2 70.3%
3 29.7%

Poskitt’s Method 100%

Empirical researchers usually estimate the cointegrating relationships from the data
rather than fix them beforehand. Thus, we also investigate the forecasting performances
of models with data-specified cointegration. We use the algorithm proposed in Section
3 to identify the structure of the EC-VARMA models. The first step of the procedure
determines the cointegrating rank. The extended non-parametric approach (Poskitt,
2000) applied to this three variable system chooses ρ̂ = 2 consistently for all 222 sets
of estimation samples. On the other hand, the Johansen procedure chooses different
cointegrating ranks based on the lag lengths selected by different information criteria.
The lag length and cointegrating rank specified by the two methods are tabulated in
Table 4. AIC once again shows a tendency toward over-parameterization. The joint use
of the Johansen procedure and AIC chooses ρ̂ = 0 or ρ̂ = 1. Neither of these comply
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with economic theory. VECM with lag length selected using BIC chooses a reasonable
lag length and an expected cointegrating rank ρ̂ = 2.

5.3 Canonical SCM VARMA Representation

There is no evidence in the literature showing that a system of interest rates follows a
VARMA process. Hence, the second stage of identifying the VARMA model is necessary
in order to justify the choice of this model. We use the SCM methodology to determine
the lag orders and the corresponding canonical structure of the VARMA model, keeping
in mind that even if the true DGP is a finite order VAR process, the SCM searching
procedure is able to identify a VARMA(p,0) model asymptotically.

Conditional on the identified tentative overall order VARMA(1,1) for yt in levels,
we search for each individual SCM. Starting from the most parsimonious SCM(0,0), the
underlying SCMs are identified as SCM(1,1) ∼ SCM(1,1) ∼ SCM(1,0). After testing the
SCM structure of the sub-systems and imposing identification restrictions on Φ0 (see
Athanasopoulos, 2007; Athanasopoulos and Vahid, 2008), the canonical SCM VARMA
model has the following error correction representation:

 1 0 0
0 1 0
a0 0 1

∆yt =

α11 α12

α21 α22

α31 α32


 1 β12

β21 1
β31 β32


′

yt−1 + ut +

θ1
11 θ1

12 θ1
13

θ1
21 θ1

22 θ1
23

0 0 0

 ut−1. (51)

We find exactly the same SCM structure for all 222 sets of estimation samples. There
are no zero restrictions imposed on Φ1 by the canonical SCM structure. Hence, the rank
restrictions on Π only come from the cointegration relationships. We estimate equation
(51) using FIML. In order to provide good initial estimates for maximum likelihood
estimation, we put the algorithm of Hannan and Rissanen (1982) into the context of EC-
VARMA models, as the starting values of the unknown parameters for the maximum
likelihood iteration. This initial estimate works well for this empirical example. The
model structure in equation (51) is also used for the estimation with the theoretical
cointegrating vectors.

5.4 Forecast Evaluation of Interest Rates

The measures of forecasting accuracy calculated from all types of models are presented
in Table 5. We take the EC-VARMA model with theoretical cointegration relationships
as the benchmark. The first three columns are models with theoretical cointegration
relationships, and the last four columns are models with data-specified cointegration,
denoted by the subscript “d”. It is worth reminding ourselves that the modified Poskitt’s
method always chooses a cointegrating rank of ρ̂ = 2 = K − 1. Hence, the only differ-
ence between SCMd and the benchmark model in this application is due solely to the
estimation of the two cointegrating vectors.
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Table 5: Percentage difference in measures of forecast accuracy between other models
and the EC-VARMA models with theoretical cointegration

Theoretical Data-specified
Cointegration Cointegration

VECMs VECMs
SCMdh AIC HQ BIC AICd HQd BICd

tr(MSFE)

1 56.6 31.5 14.7 59.0 33.1 16.3 0.9
4 40.1 12.1 6.1 43.1 13.8 5.1 3.8
8 23.0 1.8 3.8 21.3 6.8 4.7 6.9

12 17.8 −1.1\ 4.4 11.9 5.6 6.0 7.3

det(MSFE)

1 112.4 52.0 17.7 118.9 54.7 28.8 −4.8\

4 72.4 35.3 16.9 85.4 25.5 14.6 −22.6\

8 20.0 16.7 17.0 37.2 1.9 1.5 −35.8\

12 −0.0 0.8 16.5 14.5 −26.4 −19.9 −48.9\

GFESM

1 112.4 52.0 17.7 118.9 54.7 28.8 −4.8\

4 101.5 39.0 6.2 105.2 36.4 6.2 −6.9\

8 97.9 29.9 2.0 99.7 29.2 1.0 −3.9\

12 90.3 23.9 0.8 23.8 23.8 −0.0 −2.2\

\ : indicates the smallest measure of forecasting accuracy in each row.

The numbers in Table 5 indicate the percentage by which the measures of forecast-
ing accuracy calculated from each type of model are larger than the measures calculated
from the benchmark model. Hence, a negative number indicates an improvement in
forecasting accuracy over EC-VARMA model with theoretical cointegration on average.
The symbol “\” denotes the type of model that produces the smallest measure of fore-
casting accuracy in each row. No “\” in a row indicates that the benchmark model is
most accurate.

In Table 5, VECMs with lag lengths chosen using AIC usually lead to the largest
forecast error. Such results are not surprising, taking into account the presumably large
estimation error caused by the over-parameterization of AIC. It is evident that if the
theoretical cointegrating relationships are imposed, EC-VARMA models have smaller
tr(MSFE) than VECMs in most of the scenarios considered here. Their advantages over
VECMs are more pronounced in the short run. EC-VARMA models with data-specified
cointegrating vectors generate the smallest det(MSFE) and GFESM of all of the different
model specifications up to 12-step ahead forecasts. In terms of the determinant of the
MSFE, there are considerable gains from estimating the cointegrating vectors from the
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data rather than using the theoretical ones. The values of det(MSFE) can be reduced by
nearly 50% by the use of the EC-VARMA models with estimated cointegrating vectors.
The other two measures calculated from the EC-VARMA models with either estimated
or theoretical cointegrating relationships are of roughly the same sizes.

5.5 Diebold-Mariano Tests

One may be concerned about the importance of the results reported in Tables 5, since
most of the differences between these measures of forecasting accuracy generated from
VECMs and EC-VARMA models are very small in magnitude. We use the Diebold-
Mariano test (Diebold and Mariano, 1995; West, 1996; Giacomini and White, 2006) to
compare the predictive accuracies of these two classes of models. The hypotheses are

H0 : E
[
e2

1,i,h
]
−E

[
e2

2,i,h
]
= 0, against H1 : E

[
e2

1,i,h
]
−E

[
e2

2,i,h
]
< 0, (52)

where e1,i,h and e2,i,h denote the h-step ahead forecast errors of the i-th component
of yt, generated from the estimated EC-VARMA model and VECMs, respectively, with
i = 1, 2, 3. The forecast errors of ff t, i6t and i3t are tested individually. Newey-West
heteroskedasticity and auto-correlation robust standard errors are used in these tests,
because the forecast errors are generally correlated with each other for h ≥ 2. The test
statistics are tabulated in Table 6. A negative test statistic indicates a smaller MSFE from
the EC-VARMA model than from the VECM.

Examining the MSFEs of the three interest rate series individually, the gain from
using EC-VARMA models is most substantial when forecasting the federal funds rate,
especially in the short to medium horizons. At 10% significance level, the MSFE of
the federal funds rate generated from the estimated EC-VARMA models is significantly
lower than the MSFEs of VECMs with BIC up to 4-steps ahead, lower than VECMs
with HQ up to 5-steps ahead, and lower than VECMs with AIC up to 8-steps ahead.
Statistically significant differences are also seen for 3-month and 6-month treasury bill
rates. VECMs with AIC produce largest forecast errors in most cases, possibly due
to their over-parameterization and mis-specification in the long run dynamics among
interest rate series. We also observe that in the cases where the EC-VARMA models
produce larger MSFEs than the VECMs, the differences are all insignificant.

Table 6 also reports the results of a generalization of the Diebold-Mariano test to
multivariate models to test the differences in the values of tr(MSFE). The null and alter-
native hypotheses for the h-steps ahead tr(MSFE) are

H0 : E

[
3

∑
i=1

e2
1,i,h

]
−E

[
3

∑
i=1

e2
2,i,h

]
= 0, (53a)

H1 : E

[
3

∑
i=1

e2
1,i,h

]
−E

[
3

∑
i=1

e2
2,i,h

]
< 0. (53b)
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The testing outcomes of tr(MSFE) are consonant with those for individual series. All
in all, we can conclude that EC-VARMA models can forecast at least as accurately as
VECMs for all of the forecast horizons considered here. Furthermore, EC-VARMA
models produce significantly smaller MSFEs than VECMs over short horizons.

6 Conclusion

This paper combines cointegration relationship among nonstationary time series with
VARMA models, which have been shown to improve the forecasting accuracy of time
series models. We then investigate whether the use of EC-VARMA models can improve
the predictive ability of nonstationary time series.

Applied researchers have tended to favor finite order VARs and VECMs rather than
the more general and flexible VARMA models in macroeconomic modelling. This is
due mainly to the specification and estimation difficulties encountered with VARMA
models. We propose a complete three stage algorithm for identifying and estimating an
EC-VARMA model, in order to overcome this problem. The proposed procedure extends
the non-parametric approach for determining the cointegrating rank of Poskitt (2000) to
include the possibility of I(0) time series. Simulations show that the modified version of
the Poskitt (2000) method has good finite sample performances in correctly specifying
the true cointegrating rank. Its advantage over the traditional Johansen procedure is
manifest for cointegrated VARMA DGP. In order to avoid the computational inefficiency
of maximum likelihood estimation, the iterative OLS procedure proposed by Kapetanios
(2003) is generalized to estimate EC-VARMA models in the Monte Carlo simulation.
When evaluating the forecasting accuracies of the estimated EC-VARMA models and
VECMs, the loss from using finite order VECMs is evident when the true DGP is a
VARMA process.

We apply the proposed algorithm for identifying and estimating the EC-VARMA
model to an empirical dataset for illustration. In this model of the term structure of
interest rates, EC-VARMA models and VECMs are estimated with the cointegration re-
lationships being either dictated by economic theory or specified from the data. The
EC-VARMA models with either theoretical or data-specified cointegration always pro-
duce the most accurate forecasts. Diebold-Mariano tests show that the EC-VARMA
model is superior to finite order VECMs in forecasting future interest rates, especially
in the short run.

This paper contributes to the growing body of literature on the identification and
estimation of VARMA models, and suggests that VARMA models can be both beneficial
and relatively straightforward to estimate using our proposed algorithm. In particular,
we focus on the error correction VARMA models in this paper, which incorporate cointe-
grating relationships among multiple time series. Given the empirical evidence in favor
of EC-VARMA models, these models are expected to be utilized more comprehensively
in macroeconomic modelling and forecasting.
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A Identified SCM Structure in the Monte Carlo Simulation

% SCM Structure % SCM Structure

T = 100 T = 200

95 (1,1)∼(1,1)∼(1,1) 95 (1,1)∼(1,1)∼(1,1)
4 (1,2)∼(1,1)∼(1,1) 3 (1,2)∼(1,1)∼(1,1)
1 (1,2)∼(1,2)∼(1,1) 1 (1,2)∼(1,2)∼(1,1)

1 (2,3)∼(2,3)∼(1,2)

T = 400 T = 1000

96 (1,1)∼(1,1)∼(1,1) 96 (1,1)∼(1,1)∼(1,1)
2 (2,2)∼(1,1)∼(1,1) 3 (1,2)∼(1,1)∼(1,1)
1 (2,2)∼(2,2)∼(1,1) 1 (2,2)∼(1,1)∼(1,1)
1 (1,3)∼(1,3)∼(1,1)

References

Anderson, T. W. (2003), An Introduction to Multivariate Statistical Analysis, Wiley, New
York.

Athanasopoulos, G. (2007), Essays on Alternative Methods of Identification and Estima-
tion of Vector Autoregressive Moving Average Models, PhD thesis, Monash Univer-
sity.

Athanasopoulos, G., Poskitt, D. S. and Vahid, F. (2012), ‘Two Canonical VARMA Forms:
Scalar Component Models Vis-à-Vis the Echelon Form’, Econometric Reviews 31(1), 60–
83.

Athanasopoulos, G. and Vahid, F. (2008), ‘A Complete VARMA Modelling Methodology
Based on Scalar Components’, Journal of Time Series Analysis 29(3), 533–554.

Clements, M. P. and Hendry, D. F. (1993), ‘On the Limitations of Comparing Mean
Squared Forecast Errors (with discussion)’, Journal of Forecasting 12, 617–637.

Diebold, F. X. and Mariano, R. S. (1995), ‘Comparing Predictive Accuracy’, Journal of
Business and Economic Statistics 13, 253–263.

Dufour, J.-M. and Pelletier, D. (2008), ‘Practical Methods for Modelling Weak VARMA
Processes: Identification, Estimation and Specification with a Macroeconomic Appli-
cation’, Discussion Paper, Department of Economics, McGill University, CIREQ and
CIRANO .

31



Engle, R. F. and Granger, C. W. J. (1987), ‘Co-integration and Error Correction: Repre-
sentation, Estimation, and Testing’, Econometrica 55, 251–276.

Giacomini, R. and White, H. (2006), ‘Tests of Conditional Predictive Ability’, Economet-
rica 74, 1545–1578.

Gonzalo, J. and Pitarakis, J. (1995), ‘Specification via Model Selection in Vector Error
Correction Models’, Economic Letters 60, 321–328.

Granger, C. (1981), ‘Some Properties of Time Series Data and Their Use in Econometric
Model Specification’, Journal of Econometrics 16(1), 121 – 130.

Hall, A. D., Anderson, H. M. and Granger, C. W. J. (1992), ‘A Cointegration Analysis of
Treasury Bill Yields’, The Review of Economics and Statistics 74(1), pp. 116–126.

Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press, Princeton.

Hannan, E. J. and Deistler, M. (1988), The Statistical Theory of Linear Systems, John Wiley.

Hannan, E. J. and Kavalieris, L. (1984), ‘Multivariate Linear Time Series Models’, Ad-
vances in Applied Probability 16, 492–561.

Hannan, E. J. and Rissanen, J. (1982), ‘Recursive Estimation of Mixed Autoregressive-
Moving Average Order’, Biometrika 69, 81–94.

Johansen, S. (1988), ‘Statistical Analysis of Cointegrating Vectors’, Journal of Economic
Dynamics and Control 12, 231–254.

Johansen, S. (1991), ‘Estimation and Hypothesis Testing of Cointegration Vectors in
Gaussian Vector Autoregressive Models’, Econometrica 59, 1551–1580.

Johansen, S. (1995), Likelihood-based Inference on Cointegrated Vector Auto-regressive Models,
Oxford University Press, Oxford.

Kapetanios, G. (2003), ‘A Note on an Iterative Least-squares Estimation Method for
ARMA and VARMA Models’, Economics Letters 79, 305–312.

Kascha, C. (2012), ‘A Comparison of Estimation Methods for Vector Autoregressive Mov-
ing Average Models’, Econometric Reviews 31(3), 297–324.

Kascha, C. and Trenkler, C. (2011), Cointegrated VARMA models and Forecasting US
Interest Rates, ECON - Working Papers econwp033, Department of Economics - Uni-
versity of Zurich.

Koreisha, S. and Pukkila, T. (1990), ‘A Generalized Least-squares Approach for Es-
timation of Autoregressive Moving Average Models’, Journal of Time Series Analysis
11(2), 139–151.

32



Lütkepohl, H. (2005), The New Introduction to Multiple Time Series Analysis, Springer-
Verlag, Berlin.

Lütkepohl, H. and Claessen, H. (1997), ‘Analysis of cointegrated VARMA processes’,
Journal of Econometrics 80, 223–239.

Lütkepohl, H. and Poskitt, D. S. (1996), ‘Specification of Echelon Form VARMA Models’,
Journal of Business and Economic Statistics 14, 69–79.

Lütkepohl, H. and Poskitt, D. S. (1998), Consistent Estimation of the Number of Coin-
tegration Relations in a Vector Autoregressive Model, Working papers, Humboldt
University, Sonderforschungsbereich 373.

Lütkepohl, H. and Saikkonen, P. (1999), ‘Order Selection in Testing for the Cointegration
Rank of a VAR Process’, Cointegration, Causality and Forecasting. A Festscherift in Honour
of Clive W.J. Granger pp. 168–199.

Phillips, P. C. B. and Durlauf, S. N. (1986), ‘Multiple Time Series Regression with Inte-
grated Processes’, Review of Economic Studies 53(4), 473–95.

Poskitt, D. S. (1992), ‘Identification of Echelon Canonical Forms for Vector Linear Pro-
cesses Using Least Squares’, The Annals of Statistics 20, 195–215.

Poskitt, D. S. (2000), ‘Strongly Consistent Determination of Cointegrating Rank via
Canonical Correlations’, Journal of Business and Economic Statistics 18, 77–90.

Poskitt, D. S. (2003), ‘On the Specification of Cointegrated Autoregressive Moving Aver-
age Forecasting Systems’, International Journal of Forecasting 19, 503–519.

Stock, J. H. and Watson, M. W. (1988), ‘Testing for Common Trends’, Journal of the Amer-
ican Statistical Association 83(404), pp. 1097–1107.

Tiao, G. C. and Tsay, R. S. (1989), ‘Model Specification in Multivariate Time Series (with
discussion)’, Journal of the Royal Statistical Society B 51, 157–213.

Vahid, F. and Issler, J. V. (2002), ‘The Importance of Common Cyclical Features in VAR
Analysis: A Monte-Carlo Study’, Journal of Econometrics 109, 341–363.

West, K. D. (1996), ‘Asymptotic Inference About Predictive Ability’, Econometrica
64, 1067–1084.

Yang, M. and Bewley, R. (1996), ‘On Cointegration Tests for VAR Models with Drift’,
Economics Letters 51(1), 45 – 50.

33



 

TASMANIAN SCHOOL OF BUSINESS AND ECONOMICS 
WORKING PAPER SERIES 

2014-08 How Many Stocks are Enough for Diversifying Canadian Institutional Portfolios? Vitali Alexeev and Fran-
cis Tapon 

2014-07 Forecasting with EC-VARMA Models, George Athanasopoulos, Don Poskitt, Farshid Vahid, Wenying Yao 

2014-06 Canadian Monetary Policy Analysis using a Structural VARMA Model, Mala Raghavan, George Athana-
sopoulos, Param Silvapulle 

2014-05 The sectorial impact of commodity price shocks in Australia, S. Knop and Joaquin Vespignani 

2014-04 Should ASEAN-5 monetary policymakers act pre-emptively against stock market bubbles?  Mala 
Raghavan and Mardi Dungey 

2014-03 Mortgage Choice Determinants: The Role of Risk and Bank Regulation, Mardi Dungey, Firmin Doko 
Tchatoka, Graeme Wells, Maria B. Yanotti 

2014-02 Concurrent momentum and contrarian strategies in the Australian stock market, Minh Phuong Doan, Vi-
tali Alexeev, Robert Brooks 

2014-01 A Review of the Australian Mortgage Market, Maria B. Yanotti 

2013-20 Towards a Diagnostic Approach to Climate Adaptation for Fisheries, P. Leith, E. Ogier, G. Pecl, E. Hoshino, 
J. Davidson, M. Haward 

2013-19 Equity Portfolio Diversification with High Frequency Data, Vitali Alexeev and Mardi Dungey 

2013-18 Measuring the Performance of Hedge Funds Using Two-Stage Peer Group Benchmarks, Marco Wilkens, 
Juan Yao, Nagaratnam Jeyasreedharan and Patrick Oehler 

2013-17 What Australian Investors Need to Know to Diversify their Portfolios, Vitali Alexeev and Francis Tapon 

2013-16 Equity Portfolio Diversification: How Many Stocks are Enough? Evidence from Five Developed Markets, 
Vitali Alexeev and Francis Tapon 

2013-15 Equity market Contagion during the Global Financial Crisis: Evidence from the World’s Eight Largest Econ-
omies, Mardi Dungey and Dinesh Gajurel 

2013-14 A Survey of Research into Broker Identity and Limit Order Book, Thu Phuong Pham and P Joakim 
Westerholm 

2013-13 Broker ID Transparency and Price Impact of Trades: Evidence from the Korean Exchange, Thu Phuong 
Pham 

2013-12 An International Trend in Market Design: Endogenous Effects of Limit Order Book Transparency on Vola-
tility, Spreads, depth and Volume, Thu Phuong Pham and P Joakim Westerholm 


	Introduction
	Notation
	A Proposed Algorithm for Estimating an EC-VARMA Model
	Stage 1: Determining the Cointegrating Rank
	Stage 2: Specifying the VARMA Model in Levels
	Canonical Correlations Framework
	Nonstationary Environment
	Testing for SCM(0,0)
	Testing for SCM(pi,qi)

	Stage 3: Estimating the EC-VARMA Model
	Parameter Restrictions in the EC-VARMA Model
	An Iterative Procedure


	Monte Carlo Simulation
	Selection of Cointegrating Rank, Lag Length and the SCM Structure
	Forecasting with EC-VARMA models and VECMs

	Term Structure of Interest Rates
	Data
	Selection of Cointegrating Rank and Lag Length
	Canonical SCM VARMA Representation
	Forecast Evaluation of Interest Rates
	Diebold-Mariano Tests

	Conclusion
	Identified SCM Structure in the Monte Carlo Simulation

