THE MORPHOLOGY AND LONG TERM SHORELINE CHANGES

OF LONG BEACH, SANDY BAY

Stuart J. Anstee

A thesis submitted in partial fulfillment of the requirements of
Bachelor of Science (Honours)

November, 2000

School of Geography and Environmental Studies,
University of Tasmania
Declaration

This thesis contains no material that has been submitted for credit in any other degree or graduate diploma in any tertiary institution. To the best of the author's knowledge, this thesis contains no material previously published or written by other persons, except when due reference is made in the text of the thesis.

Stuart J. Anstee
Department of Geography and Environmental Studies,
University of Tasmania
November, 2000
Abstract

This project has analysed the long term changes in shoreline position and morphology of Long Beach, located 3 kilometres south of the Hobart CBD in southern Tasmania. Also of interest was the effect of the seawall on shoreline recession rates on Long Beach, offshore bathymetry and the sediment cycling in the area.

Aerial photography and Geographic Information Systems (GIS) is used to create graphical change maps of the study area from 1947 to 1998, in order to interpret regions of change. This information was interpreted to obtain numerical values for the rates of recession or accretion. The changes in offshore bathymetry were also investigated through the production of a digital elevation model. Spot height data was analysed and interpolated in order to effectively locate offshore sand stores.

Results have shown extensive shoreline retreat from 1947, with sand loss being most severe on the mid-regions of Long Beach and on Long Point to the north. In comparison, accretion is prevalent on Nutgrove Beach indicated by a developed dune system. Rates of recession have averaged 2 metres/year during periods of maximum erosion. This figure is comparable to other shoreline studies completed in the region. The variations in sediment supply were analysed in relation to the effect of coastal processes and various coastal engineering structures.

It was found that the erosion on Long Beach has been a direct result of a combination of natural and human-induced changes.

- A shift in the balance of northerly and southerly winds has altered the sediment equilibrium that existed prior to the 1950s, as a result sediment is no longer able to reach Long Beach from the northern beach.
- The extension of a sewage outfall pipe on Blinking Billy Point has possibly restricted sediment movement from the south.
- The presence of the seawall on Long Beach combined with a narrow beach has resulted in waves impacting on the beach during storm events resulting in increased erosion due to wave reflection and scouring.
- Foreshore development, the presence of bridges to the north and damming of the Derwent River may all have influenced wind patterns and sediment supply to Long Beach which has resulted in the poor condition of the beach.
Acknowledgements

I would like to thank several people for their assistance and contributions during the year, their help ensured the successful completion of this thesis.

Firstly, my sincere thanks to my supervisor, Dr, Kate Brown, who helped come up with the topic of the thesis and was always available to answer questions, give advice and read countless numbers of drafts.

Thanks also to Dr. Eleanor Bruce in the School of Spatial Information Science for giving up so much time and providing the knowledge and assistance required for the completion of the GIS component of the thesis.

Many thanks to Greville Turner at the Hobart City Council who provided the aerial photographs, background reports and much of the information that contributed to the thesis.

Thanks to my wonderful girlfriend Anita for her help and support during the last year. Her assistance in the field and her support and understanding was greatly appreciated.

Finally, I would like to thank my family for their support throughout my entire University studies. Without their help the completion of this thesis (or degree) would have been impossible. Thanks to my brothers Rob and Paul who provided the inspiration to complete an honours year. I am extremely grateful to Paul whose computer made the task much easier.

There are many other people who have contributed in someway to the completion of this thesis, thank you.
TABLE OF CONTENTS

1. **INTRODUCTION** ... 1
 1.1 BACKGROUND ... 1
 1.2 PREVIOUS STUDIES ON THE AREA ... 3
 1.3 AIMS AND OBJECTIVES ... 5
 1.4 STRUCTURE OF THE THESIS .. 5

2. **BACKGROUND TO THE STUDY AREA** .. 7
 2.1 LOCATION AND ACCESS ... 7
 2.2 CLIMATIC CONDITIONS .. 13
 2.3.1 Wave Climate .. 16
 2.3.1.1 Swell Waves .. 17
 2.3.1.2 Wind Waves .. 17
 2.3 GEOLOGY AND SOILS .. 19
 2.4 HISTORY OF LAND USE .. 21
 2.4.1 Commercial Operations .. 21
 2.4.2 Recreation .. 21
 2.5 PRESENT LAND USE ... 22
 2.5.1 Commercial and Residential landuse ... 22
 2.5.2 Recreation .. 22
 2.6 VEGETATION .. 23
 2.7 HUMAN IMPACTS ... 24
 2.8 CHAPTER SUMMARY .. 26

3. **FORM AND PROCESS** ... 27
 3.1 INTRODUCTION ... 27
 3.2 FORMATION AND EROSION OF ESTUARINE BEACHES .. 29
 3.3 THE EFFECT OF WAVES ON THE DYNAMICS OF BEACH SYSTEMS 31
 3.3.1 Swell waves .. 33
 3.3.2 The effect of Southern Ocean Swell Waves on the Study Area 36
 3.3.3 Wind waves .. 36
 3.3.4 The Effect of Estuary Wind Waves within the Study Area 37
 3.4 THE EFFECT OF CURRENTS ON THE DYNAMICS OF BEACH SYSTEMS 38
 3.4.1 Long-shore currents ... 38
 3.4.2 Shore-normal currents ... 40
 3.4.2.1 Bed Return Currents .. 40
 3.4.2.2 Tidal Currents ... 40
 3.4.2.3 Wind Currents ... 41
 3.4.3 The Effect of Currents within the Study Area ... 41
 3.5 AEOLIAN SEDIMENT TRANSPORT .. 42
 3.5.1 Aeolian Sediment Transport in the Study Area ... 45
 3.6 HUMAN IMPACTS ON BEACH MORPHOLOGY .. 44
 3.7 CHAPTER SUMMARY .. 47

4. **METHODS AND RESULTS** ... 48
 4.1 INTRODUCTION ... 48
 4.2 METHODS .. 48
 4.2.1 Creating spatial data sets from aerial photographs ... 49