Genesis and Structural Architecture of the CSA Cu-Ag (P-Zn) Mine, Cobar, New South Wales

By

Roisin Kyne,
HBSc

Submitted as full requirements for a Doctorate of Philosophy

Supervisors: Assoc. Prof Ron Berry, Prof. Bruce Gemmell, Dr. Robert Scott and Mr. Derek Webb

CODES, School of Earth Science
University of Tasmania, Hobart Australia
February 2014
Declaration of originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Roisin Kyne
February 8, 2014

Statement of authority of access

This thesis may be made available for loan. Copying and communication of any part of this thesis is prohibited for 12 months from the date this statement was signed; after that time limited copying and communication is permitted in accordance with Copyright Act 1968.

Roisin Kyne
February 8, 2014
Abstract

The CSA Cu-Ag-Pb-Zn deposit, one of the Cobar-style deposits, is located 11km NNW of Cobar in central New South Wales within an area known as the Cobar Mining Field. Historically mined for Pb-Zn, CSA currently recovers Cu-Ag and has a resource base (measured, indicated and inferred) of 11.4 mt at 6% Cu and 22 g/t Ag. While much work has been done on the Cobar-style deposits, there remains a variety of questions regarding the formation of each deposit and the mining field as a whole. Historically, structural studies of the CSA deposit have been restricted to the surface and upper levels of the mine (>9800m RL). Recent mining within the deposit has allowed for further structural analysis up to 1.3 km. A structural and mineralogical study of the CSA mine was undertaken to answer a variety of questions concerning the formation of the deposit, its key characteristics and features (structurally, mineralogically and geochemically) and how this information could be used to explore for similar styles of mineralization both on site and in the Cobar region.

Hosted in the Devonian CSA Siltstone, the deposit resides within the hanging-wall of the steep, west-dipping Cobar Fault. Major ore minerals include acanthite, chalcopyrite, cubanite, pyrrhotite, sphalerite, galena, pyrite, magnetite, and native bismuth. Gangue minerals include quartz, chlorite, calcite, stilpnomelane, plagioclase, biotite, muscovite and talc. The most common alteration styles are Fe-rich chlorite, Fe-Mg-rich chlorite and silicification.

Structural measurements and samples were collected from 45 drill holes across four major ore zones known as the Western, Eastern, QTS North and QTS South systems. Each system is composed of multiple lenses ranging in strike length (13-200 m), width (5-80 m), and vertical extent (200 m-1.2 km). Structural analysis highlighted the presence of two major cleavage groups, one corresponding to the regional cleavage (S2) and another with varying orientations found locally deemed S_X to avoid timing implications. A subset of S_X was found to represent an early cleavage and was deemed S_1. The orientation of S2 changes from 80°/090° at surface and the upper portions of the mine (>92000mRL) to 85°/264 (< 9000mRL) with depth and proximity to the Cobar Fault suggesting drag in the hanging-wall of the fault as it rotated in response to EW compression. Stereographic projections of S2 and S2∧S0 intersection lineations show that S2 transects the regional folding produced early in the EW compression. The presence of a stretching lineation with down-dip orientation suggests the lineation was formed during dip-slip regime with very little transpression. Two cross-cutting fault systems, one sub-parallel with S2 and the other sub-parallel with S_1 were identified and suggested the presence of orthorhombic fault arrays. Dilation occurred along the intersections of these faults allowing mineralizing ore fluids to be focused into pipe-like ore lenses.

A 3D model of the regional stress state was produced using the boundary elements method (Poly3D) in order to ascertain the affect the regional Plug Tank and Cobar Faults had on the formation and spatial location of the CSA deposit. The model showed that, when activated by EW compression, the geometries of these two faults produced a zone of minimum σ3 directly beneath the deposit and caused dilation in the overlying orthorhombic fault arrays. Deep seated ore-forming fluids were driven along the Plug Tank Fault towards the eastern margin of the basin and up the Cobar Fault into this zone of dilation during compression. Ore-forming fluids were then focused along the intersections of the orthorhombic fault arrays producing the pipe-like ore lenses.

Geochemical analysis suggests that enrichments of Se, Cd, Fe, Mn, Sn, Tl, and Ge and depletions of Ba, K Na, and Rb occur within 100 m of ore lenses and can be used as vectors to ore. The most useful distal vector to ore was determined to be the depletion in Sr and Na occurring up to 500 m from mineralization. Fe-Mg-rich chlorite alteration is recognizable within 10 m of ore lenses.

Ore forming fluids are most likely sourced from the deepest part of the Cobar Basin during inversion. The amount of Cu and the presence of abnormally high fluorine within CSA suggest that
the source of the ore-forming fluids was most likely a basal unit in the rift package containing basalts and carbonates and/or rhyolites. Once the fluids sourced from the rift package travelled along the Plug Tank and Cobar faults into the orthorhombic fault arrays, they mixed with a cooler, locally sourced fluid already circulating through the faults causing precipitation of the Cu-Ag-Pb-Zn minerals.

Overall, this study concluded that the CSA deposit was formed via the interaction of far field stresses acting on regional faults to focus ore-forming fluids into the hanging-wall of the Cobar Fault. This study suggests that exploration done both on the mine site and within the region should include analysis of regional folding and faulting patterns as well as conventional geophysical and geochemical methods.
Acknowledgements

To describe this as a journey is an understatement. It has been hard work, ridiculously difficult at times, but extremely rewarding, and I am so thankful to have made it through. I have a number of people to thank for their support in getting me through this doctorate.

I would like to begin by thanking my advisors Assoc. Prof. Ron Berry and Prof. Bruce Gemmell for their knowledge, guidance, inspiration and support throughout this entire process. Their unwavering assistance and encouragement helped keep me grounded and expand my mind at the same time. For that I will always be grateful. Bruce was a beacon of light in an otherwise dark sea of chemistry, numbers and elements. Without his expert knowledge and constant encouragement, I would not have been able to navigate through to the light at the end of the proverbial geochemical tunnel. Ron, probably the smartest geologists I know, helped this 2D thinker learn to see the world of geology through a 3D lens. His never ending patience, and open door, allowed me to expand my thinking and to solidify my love for structural geology. Thank you both for all you have done over the past 4 years, I could not have asked for better advisers and I can only hope that one day I will be as amazing an adviser as you both were to me.

I would also like to thank my mentor, and former adviser, Dr. Pete Hollings at Lakehead University for not only forcing me to apply to CODES, but for providing support both academically and emotionally. He is truly an amazing role model and without his help I would not be the geologist I am today. I would like to thank him for the tough love as well as for always being there to answer questions or provide encouragement. I especially appreciated the speedy responses to e-mails sent at all hours of the night.

A big thank you goes to Cobar Management Pty Ltd for their support and for allowing me this opportunity. Without them, none of this would have been possible. I would like to thank the team at CSA for being so enthusiastic and welcoming. The support I received from each and every one of them was truly remarkable. First, I would like to thank Eliseo for always being there to help me gather data and for taking the time to help me find the best possible cross-sections. His unique skills and easy going attitude made it possible for me to organise and complete all my work. Second, I would like to thank Pakup for his fantastic insights and questions. His knowledge of the deposit and enthusiasm for understanding CSA encouraged me to delve deeper and to look at aspects I had not yet considered. Third, I would like to thank John-Michael for helping me to acquire data even at the last minute. His friendly demeanour and willingness to help out a poor PhD student who could not retrieve data on her own was much appreciated. Fourth, I would like to thank Joe and Kerry for putting up with a demanding student in constant need of new core. The amount of heavy lifting and organising these two have provided over the years is astounding. This study would have been impossible if it were not for their help. I will always remember our time in the core yard and your kindness. I would especially like to thank Kerry for not only providing support in the core yard but for the many hours of fantastic conversation on the drive to and from the mine. Finally, I would like to thank our fearless leader Derek Webb for bringing me onto the team. I cannot thank Derek enough for his support and encouragement and for always insisting I make posters for my presentations so the engineers wouldn’t miss out.

Next, I would like thank the staff in the Earth Science department at UTAS. I will forever be grateful for the help I received from all around the department. To the academic staff at UTAS, I would like to thank you for challenging me and always being open to discuss new concepts and ideas. In particular, I would like to thank Prof. David Cooke for his unique insights and ability to make me
look at a problem from a different perspective. I would also like to thank Dr. Mike Roach for his help with the geophysical aspects of this project. Thank you the gentlemen of the CSL for putting up with my questions over and over. Their professionalism and unique insight helped me complete a variety of analyses I would never have been able to otherwise. I would like to thank the taff of the LA-ICPMS especially Jay, Sarah and Sebastian for teaching me a variety of new techniques. Their friendly and professional demeanours allowed me to accomplish far more than I ever expected. To the staff of the Lapidary, thank you for providing me with thin sections and mounts without which I could not have analysed any of my samples. Finally, I would like to thank the wonderful women of the Administration staff, Karen, Helen, Chris, Izzy and Christine. Without these amazing ladies, this researcher would still be lost in the world of forms, accounts, travel documents, receipts, claims and rocks. Thank you for your support and your patience. I will forever be grateful to you ladies for all you have done for me.

I am also indebted to variety of people from around the world for their help and support throughout this project. I would like to thank Stafford McKnight for his thorough XRD work. He provided much more than we could ever have hoped for and allowed for a much more robust study. I would also like to thank Anne Hammond at Lakehead University who has given me a large amount of support throughout the years. Her ingenuity and astounding quality provided the best thin sections for important analyses. I would like to thank Dr. Mike Hamilton at the University of Toronto for allowing me to finish off last minute work in his laboratory. His welcoming nature and willingness to help an unknown student was truly fantastic and inspiring.

I would like to thank my friends for their perpetual confidence and optimism. I could not have come this far without any of you. To Dr. Victoria Brannif, I cannot thank you enough for the long talks and discussions we have had over the years. You helped keep me sane throughout it all. Not every researcher is lucky enough to have someone travel the same journey at the same time and thus knows exactly what you are going through. Thank you for your wisdom and for always making me laugh. To my team of Canadian supporters both here in Australia and back in Canada (Angela, Marc, Selina, Dan, Karen and Roald) I would like to thank you for your continued support in all my endeavours. You have been my constant cheerleaders and footholds. I am blessed to have you in my life. To the Castle Crew, thank you for the laughs and the memories and for keeping me sane. Your support has been invaluable throughout this entire process. To my room 214 office mates’ thank you for keeping me on track and for the welcome breaks when we just couldn’t stare at those computer screens any longer. I could not have asked for better office mates and I hope the sign I put up keeps those undergrad students at bay at least for the remainder of your studies.

I am exceptionally grateful and would like to say a very special thank you to Rose Pongratz, the best roommate I have ever had. Her encouragement and support has truly been invaluable throughout this entire process. From late-night pep-talks and food runs, to her incredible help in actually putting this thesis together, Rose is a constant source of support and faith. Her willingness to put up with my frustrations and irrational stress-based behaviours just proves what an amazing person she is, I mean Rose is. Sorry, “she’s” the cats mother. I could not have asked for a better friend and I am so thankful to have her in my life now and forever whether she likes it or not.

Finally, my deepest gratitude goes to my whole family for their steadfast support, encouragement and love. My parents in particular have truly been the only “rocks” I have ever really needed. Thank you for inspiring me to be geologist and for always backing me and being there for me no matter what I chose to do. I would like to especially thank you both for putting up with any late night calls you may have received because I either forgot what time it was or forgot the time change. You both have always believed in me even when I doubt myself and for that I will always be grateful.
Table of Contents

Declaration of Originality/Authority of Access... iii
Abstract ... v
Acknowledgments ... vi
Table of Contents .. ix
List of Figures ... xv
List of Tables ... xix

Chapter 1: INTRODUCTION

1.1 Preamble ... 1
1.2 Study Location ... 2
1.3 History and Economic Significance of the CSA Mine .. 3
 1.3.1 History of Mining in the Cobar Region ... 3
 1.3.2 History of the CSA Deposit ... 4
1.4 Previous Work ... 6
1.5 Project Aims ... 6

Chapter 2: GEOLOGICAL SETTING

2.1 Lachlan Orogen ... 9
2.2 Cobar Basin .. 12
 2.2.1 Cobar Basin Formation: Lithological Unit and Groups .. 12
 2.2.1.1 Mulga Downs Group .. 12
 2.2.1.2 Winduck Group ... 14
 2.2.1.3 Amphitheatre Group .. 14
 2.2.1.3.1 Upper Amphitheatre Group ... 15
 2.2.1.3.2 Lower Amphitheatre Group ... 15
 2.2.1.3.3 CSA Siltstone ... 15
 2.2.1.4 Nurri Group .. 16
 2.2.1.4.1 Great Cobar Slate ... 16
 2.2.1.4.2 Chesney Formation .. 16
 2.2.1.5 Kopyje Shelf ... 17
 2.2.1.6 Girilambone Group .. 17
 2.2.2 Cobar Basin Evolution .. 18
 2.2.3 Cobar Basin Deformation ... 19
 2.2.4 Cobar Basin Metamorphism ... 22
 2.2.5 Cobar Basin Deposits and Mineralization ... 23
2.3 CSA Deposit .. 24
 2.3.1 Lithological Units of the CSA Deposit ... 24
 2.3.2 Mineralization ... 26
 2.3.3 Ore Systems ... 28
 2.3.3.1 Western System .. 28
 2.3.3.2 Eastern System .. 29
Chapter 3: STRUCTURAL GEOLOGY

3.1 Introduction .. 39
3.2 Previous Work ... 39
3.3 Methods .. 41
3.4 Mesostructures ... 44
 3.4.1 Bedding ... 44
 3.4.2 Cleavage ... 46
 3.4.2.1 Predominant Cleavage (Regional Cleavage) ... 47
 3.4.2.2 Other Cleavage (Sx) .. 52
 3.4.3 Lineations ... 53
 3.4.3.1 S1, S0 ... 55
 3.4.3.2 Stretching Lineations ... 57
 3.4.3.3 Silickenlines .. 57
 3.4.4 Folding .. 58
 3.4.5 Breccias ... 72
 3.4.6 Faulting ... 73
 3.4.6.1 Talc Shear Zone .. 74
 3.5 Calcite Twinning and Palaeostress Indication ... 74
3.6 Regional Structures (Macrostructures) ... 82
3.7 Microstructures .. 84
 3.7.1 Quartz ... 84
 3.7.2 Calcite .. 87
 3.7.2 Sulfide Minerals ... 89
3.8 Discussion .. 94
 3.8.1 Timing of Cleavage Formation ... 94
 3.8.2 Timing of Mineralization ... 95
3.9 Summary .. 95

Chapter 4: MINERALOGY, VEINS, MINERALIZATION AND ALTERATION

4.1 Introduction ... 99
4.2 Mineralogy .. 99
 4.2.1 Methods ... 99
 4.2.1.1 Microprobe Analysis ... 100
 4.2.1.1.1 Sulfide Analysis .. 100
 4.2.1.1.2 Silicate Analysis .. 101

x
Chapter 5: GEOCHEMISTRY

5.1 Introduction .. 149
 5.1.1 Previous Work .. 149
 5.1.2 Current Study .. 150
5.2 Methods .. 150
 5.2.1 Whole Rock Analysis ... 150
 5.2.2 X-Ray Diffraction ... 151
 5.2.3 Short-Range Infrared Wavelength (SWIR) Analysis .. 151
 5.2.4 Scanning Electron Microscope ... 151
 5.2.5 LA-ICPMS Analysis .. 152
 5.2.5.1 Spot Analysis and Elemental Mapping .. 152
5.3 Alteration ... 141
 5.3.1 Chloritization .. 141
 5.3.2 Silicification .. 142
5.4 SAS Zone .. 130
5.5 Mineralization .. 133
 5.5.1 Introduction .. 133
 5.5.2 MSGS (Massive Sulfide with Galena and Sphalerite) .. 133
 5.5.3 Pyrrhotite-Rich Ore (Po-Rich) ... 133
 5.5.4 SMSQ (Semi-Massive Sulfide with Quartz) .. 135
 5.5.5 SMSC (Semi-Massive Sulfide with Chlorite) .. 136
 5.5.6 MS (Massive Sulfide) .. 137
 5.5.7 Distribution of Ore Types Within the Deposit .. 137
5.6 Summary .. 142
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.3.2.2</td>
<td>Source of F</td>
<td>211</td>
</tr>
<tr>
<td>6.6.3.2.3</td>
<td>Source Rocks Conclusions</td>
<td>211</td>
</tr>
<tr>
<td>6.7</td>
<td>Proposed Genetic Model and Formation of the CSA Deposit</td>
<td>211</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Glen (1990) Model for the Formation of the Cobar Basin</td>
<td>212</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Proposed Formation of the CSA Deposit and Cobar Basin</td>
<td>213</td>
</tr>
<tr>
<td>6.8</td>
<td>Deposit Comparison</td>
<td>216</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Sedimentary-Hosted Copper Deposits</td>
<td>216</td>
</tr>
<tr>
<td>6.8.1.1</td>
<td>Similarities with the CSA Deposit</td>
<td>216</td>
</tr>
<tr>
<td>6.8.1.2</td>
<td>Difference Compared to the CSA Deposit</td>
<td>216</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Nifty Deposit</td>
<td>219</td>
</tr>
<tr>
<td>6.8.2.1</td>
<td>Similarities with the CSA deposit</td>
<td>219</td>
</tr>
<tr>
<td>6.8.2.2</td>
<td>Difference Compared to the CSA Deposit</td>
<td>219</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Kipushi Deposit</td>
<td>221</td>
</tr>
<tr>
<td>6.8.3.1</td>
<td>Similarities with the CSA Deposit</td>
<td>221</td>
</tr>
<tr>
<td>6.8.3.2</td>
<td>Difference Compared to the CSA Deposit</td>
<td>221</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Mammoth Deposit</td>
<td>222</td>
</tr>
<tr>
<td>6.8.4.1</td>
<td>Similarities with the CSA Deposit</td>
<td>222</td>
</tr>
<tr>
<td>6.8.4.2</td>
<td>Difference Compared to the CSA Deposit</td>
<td>222</td>
</tr>
<tr>
<td>6.8</td>
<td>Summary</td>
<td>223</td>
</tr>
</tbody>
</table>

Chapter 7: CONCLUSION

7.1 Introduction | 225 |
7.2 Major Conclusions of Study | 225 |
7.3 Implications for Exploration | 232 |
| 7.3.1 Exploration within the Cobar Region | 232 |
| 7.3.2 Further Exploration within the CSA Deposit | 232 |
7.4 Suggestions for Further Research | 233 |

References | 235 |

Appendix A - X-Ray Diffraction Analysis | CD Attachment |
Appendix B - Core Sample Information | CD Attachment |
Appendix C - Zircon Dating | CD Attachment |
Appendix D - Monazite Dating | CD Attachment |
Appendix E - Structural Log Re-Oriented | CD Attachment |
Appendix F - Jeffrey (1994) Structural Measurements | CD Attachment |
Appendix G - Microprobe Data | CD Attachment |
Appendix H - Whole Rock Data | CD Attachment |
Appendix I - Core logs | CD Attachment |