Geometallurgical Mapping and Mine Modelling - Comminution Studies: La Colosa Case Study, AMIRA P843A

by

Paula Andrea Montoya Lopera

CODES – ARC Centre of Excellence in Ore Deposit

Submitted in fulfilment of the requirements for the Master of Science in Geology

University of Tasmania February, 2014
Declaration of originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Paula A Montoya L

Paula Andrea Montoya Lopera
February 2014

Statement of authority of access

This thesis is not to be made available for loan for 24 months from the date this statement was signed. Copying and communication of any part of this thesis is prohibited for 24 months from the date this statement was signed; after that time limited copying and communication is permitted in accordance with Copyright Act 1968.

Paula A Montoya L

Paula Andrea Montoya Lopera
February 2014

Statement of Ethical Conduct

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.

Paula A Montoya L

Paula Andrea Montoya Lopera
February 2014
Acknowledgements

This research is part of a major collaborative geometallurgical project of AMIRA P843 and P843A GEM³ Project being undertaken at CODES (University of Tasmania), JKMRC, BRC and CMLR (Sustainable Minerals Institute, University of Queensland) and Parker Centre (CSIRO).

I would like to express my sincere gratitude to La Colosa Project, in particular Rudolf Jahoda Geology Manager of Colosa, Vaughan Chamberlain Senior Vice President of geology and metallurgy, who have provided financial support and permission to publish. Udo Drews Metallurgy Manager of Colosa, Paul Linton Geometallurgy Manager of Anglogold Ashanti, Stacey Leichliter Senior Geologist of CC&V and all the staff at La Colosa Project. Without your help and assistance, the work in this project would not have been possible.

I would like to say many thanks to: Dr. Ron Berry and Dr Julie Hunt my principal advisors, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. I would also like to thank Dr. Luke Keeney, Dr. Toni Kojovic, Dr. Simon Michaux, Dr Steve Walters for their assistance and willingness to help and explain geometallurgical concepts, and Dr. Khoi Nguyen for his programming assistance over the duration of the project.

Finally, the four pillars of my life: God, my husband and my parents, they have always supported and encouraged me to do my best in all matters of life.
Abstract

La Colosa is a world-class porphyry gold (Au) project located in Colombia, currently undergoing pre-feasibility analysis. As part of collaboration between AngloGold Ashanti and the AMIRA P843A GeMIII Project, the application of emerging ge metallurgical characterisation testing and modelling tools has been incorporated into the early stages of project development.

The aim of the ge metallurgical study is to map inherent comminution variability across the La Colosa deposit providing information critical for mine/mill design and optimisation. In this study, site-based data incorporating 17,505 multi-element assays, 275 QXRD bulk mineralogy measurements, 15,195 EQUOtip rebound hardness values, 9015 sonic velocity measurements, 16,676 density measurements and routine geological logging information from 92 diamond drill holes has been integrated with a range of ge metallurgical com minution tests (i.e. 155 A*b values and 151 BMWi values).

The thesis demonstrates the integration techniques used at La Colosa to link routine data acquisition methods with comminution test results through the development of proxy support models. The integration incorporates a range of statistical techniques including principal component analysis, regression modelling and geostatistics. By creating proxy models, com minution index estimates can be propagated into the geological database enabling comminution processing domains to be defined. These domains provide the first spatial representation of comminution performance and variability at La Colosa and these can be compared with traditional geological domains.

In general, the comminution hardness of the rocks is related to proximity to structural corridors (trending 350), to topographic surface and the western contact between intramineral diorite and hornfels. The study shows that, overall, La Colosa rocks are intermediate to hard in terms of crushing and grinding. Seven hardness domains were identified for crushing and seven for grinding.

This study will provide the foundation for ongoing comminution characterisation as the La Colosa project evolves through project cycles into an operational mine.
Keywords
Geometallurgy, Comminution Modelling, Comminution Mapping, Orebody Knowledge, La Colosa

Australian and New Zealand Standard Research Classifications (ANZSRC)

091414: Mineral Processing/Beneficiation (50%)
0403: Geology (50%)
Chapter 1: Introduction

1.0 Introduction

1.1 Research Aim

1.2 Research Scope

1.3 Project Background

Chapter 2: Literature Review

2.0 Introduction

2.1 Geology of the La Colosa Deposit

2.2 Lithologies of the La Colosa Deposit

2.3 Structural Geology

2.4 Traditional Comminution Tests

2.4.1 Drop Weight Test

2.4.2 Bond Ball Mill Work Index

2.5 Non-Traditional Measurements of Hardness

2.5.1 GeM Comminution Test (GeMCi)

2.5.2 JKRBT Lite Test
2.5.3 JK Bond Ball Lite Test - JKBBL ... 18
2.5.4 EQUOtip Hardness Measurements .. 19
2.5.5 Sonic Velocity Measurements ... 20
2.5.6 Density Measurements ... 21
2.6 Methodology for Geometallurgical Characterization 21

Chapter 3: Data Acquisition and Interpretation .. 24
3.0 Introduction ... 24
3.1 Site Geological and Geotechnical Logging .. 25
3.2 Site Database ... 27
3.2.1 EQUOtip results ... 28
3.2.2 Sonic Velocity results ... 31
3.3 Rock Mineralogy .. 34
3.4 Sampling Strategy for Direct Measurements ... 38

Chapter 4: Geometallurgical Characterization and Integration Modelling 40
4.0 Introduction ... 40
4.1 Geometallurgical Characterization .. 40
4.2 Multivariate Class – Based Analysis .. 42
4.3 Predictive Modelling ... 47

Chapter 5: Spatial Analysis .. 54
5.0 Introduction ... 54
5.1 Domains .. 54
5.1.1 Descriptive Statistics .. 54
5.1.2 Experimental Variograms .. 56
5.2 Wireframes ... 62
Appendix D La Colosa Comminution Test Program ... D-1

Appendix E Metallurgical test results for this study..E-1

Appendix F Estimating mineralogy from Assays .. F-1
List of Figures

Figure 1.1 Geometallurgical Mapping and Mine Modelling Methodology 3
Figure 2.1 Location of the La Colosa deposit within Colombia 6
Figure 2.2 Relative abundance of rock types at La Colosa .. 8
Figure 2.3 Relative abundance of alteration types ... 9
Figure 2.4 Most common alteration types at the La Colosa deposit 9
Figure 2.5 Examples of veinlet types at La Colosa ... 10
Figure 2.6 La Colosa geology map .. 13
Figure 2.7 JKMRC Drop Weight Tester ... 15
Figure 2.8 Specific comminution energy ECs (kWh/t) .. 15
Figure 2.9 JKRBT Device ... 18
Figure 2.10 JKBBL test results compared to those of conventional Bond testing 19
Figure 2.11 EQUOtip hardness measuring device in normal application 20
Figure 2.12 Direction of P-wave propagation .. 20
Figure 2.13 La Colosa geometallurgy methodology ... 23
Figure 3.1 A*b and BMWi probability plots by rock logging type 26
Figure 3.2 A*b and BMWi probability plots divided by alteration logging type 27
Figure 3.3 BMWi and A*b values classified by EQUOtip hardness values 29
Figure 3.4 Down hole profile of drill hole number 15 and EQUOtip results by rock types 30
Figure 3.5 EQUOtip probability plot by rock types ... 31
Figure 3.6 A*b and BMWi values classified by Sonic Velocity values 32
Figure 3.7 Sonic Velocity Probability plot by rock types .. 33
Figure 3.8 Sonic velocity probability plot by alteration types 33
Figure 3.9 EQUOtip probability plot displays relationships with mineralogy 36
Figure 3.10 Sonic velocity probability plot displays relationships with mineralogy 37
Figure 3.11 Spatial distribution of comminution samples in La Colosa 39
Figure 4.1 La Colosa Comminution Groups ... 41
Figure 4.2 La Colosa sample variation in principle components 1 and 2 44
Figure 4.3 La Colosa class diagram, sulphides trend .. 45
Figure 4.4 La Colosa class diagram, magnetite, sonic velocity and density trends 46
Figure 4.5 La Colosa class diagram, carbonate trends 46
Figure 4.6 La Colosa class diagram, micas and clay trends 47
Figure 4.7 Results of class-based multiple linear regression models for BMWi and A*b 48
Figure 4.8 Estimated BMWi (BMWi Model and A*b Model) versus BMWi and A*b values . 50
Figure 4.9 An example of BMWi and A*b estimated for each assay interval in drill hole 11 . 52
Figure 4.10 Comminution footprint of the La Colosa samples 53
Figure 5.1 Histogram of La Colosa BMWi values ... 55
Figure 5.2 Histogram of La Colosa A*b values ... 56
Figure 5.3 Spherical variogram model fitted to the experimental variograms points 57
Figure 5.4 Anisotropy parameters per direction plane for BMWi 58
Figure 5.5 Anisotropy parameters per direction plane for A*b 58
Figure 5.6 Variogram maps and experimental variogram for BMWi estimated values 59
Figure 5.7 Variogram maps and experimental variogram for A*b estimated values 60
Figure 5.8 Faults corridors and BMWi < 15 values .. 61
Figure 5.9 Faults corridors and A*b > 35 values ... 62
Figure 5.10 Weast- East section 4120N of BMWi estimated values 64
Figure 5.11 A*b and BMWi domain locations ... 64
Figure 5.12 3D view of the block model showing A*b domains developed for the La Colosa deposit .. 68
Figure 5.13 3D view of the block model showing BMWi domains developed for the La Colosa deposit .. 68
List of Tables

Table 2.1 RBT Breakage experimental conditions ... 18
Table 3.1 La Colosa quantitative and qualitative continuous data 25
Table 3.2 Typical sonic velocity for minerals common at La Colosa 35
Table 3.3 La Colosa comminution test program ... 38
Table 3.4 Phase 2 sampling selection .. 39
Table 4.1 La Colosa – final set of PCA input variables ... 43
Table 4.2 Principal component analysis results ... 43
Table 5.1 La Colosa A*b and BMWi domains ... 63
Table 5.2 Statistical analysis of BMWi and A*b geometallurgical domains for the La Colosa deposit ... 67
Abbreviations Contained in this Thesis

AMIRA: Australian Minerals Industry Research Association
CODES: Centre of Excellence in Ore Deposit Studies (University of Tasmania)
JKMRC: Julius Kruttschnitt Mineral Research Centre
GeMIII: Geometallurgical Mapping and Mine Modelling, the parent project of this thesis
GML: Geometallurgical Matrix level
JKRBT: Julius Kruttschnitt Rotary Breakage Tester
BMWi: Bond Ball Mill Work index
kWh/t: Kilowatt Hours per Tonne
GeMCi: GeM Comminution Index
ICP: Inductively Coupled Plasma
QAQC: Quality Assurance/Quality Control
PCA: Principal Component Analysis