SOURCE ROUTING AND TRANSPARENT BRIDGING
INTERCONNECTIONS AND THEIR PERFORMANCES

A thesis submitted to the University of Tasmania
in partial fulfilment of the requirement
for the degree of

Master of Technology

-by-

ILHAM SAWA'UN

Department of Electrical and Electronic Engineering
University of Tasmania
Hobart
December 1991
ABSTRACT

The interconnection between IEEE 802.5 and IEEE 802.3 LANs is carried out at layer 2 of OSI model or precisely at Medium Access Control level. Since these two LANs have many different characteristics, and are incompatible so that interoperability becomes a problem during their interconnection. IEEE 802.5 LANs use a strategy which is called Source Routing for their interconnection whereas IEEE 802.3 LANs use different strategy which is called Transparent Bridging. To overcome the problem of internetworking of these two different LANs, IEEE proposes a new standard for routing strategy which is called Source Routing Transparent (SRT). This thesis studies the problems arising from Source Routing and Transparent bridging interconnections and discuss how SRT address the problems of Source Routing and Transparent Bridging. A mathematical analysis is done to analyze the performance of Source Routing and Transparent Bridging. SIMSCRIPT simulation programs are developed to conform with the mathematical analysis. The results of these two approaches agree with each other. Broadly speaking, the performance of Source Routing is deterministic whereas Transparent Bridging is random due to collision of frames at high utilization.
ACKNOWLEDGEMENT

I would like to thank for all people who help in the preparation of this thesis. In particular I wish to acknowledge:

1. Professor D.T. Nguyen, as M Tech program director, for his direction and support in preparing and improving this thesis.

2. Dr. David J.H. Lewis, as project supervisor, who has provided valuable guidance for the development of this thesis.

3. Peter Atkinson, advisory SE of IBM Australia, who has given me the specification of this project thesis and supported me with many references to start with.

4. The Indonesian government for giving me the opportunity to undertake this M Tech course.

5. All postgraduate students especially M Tech students who have helped me in the development of this thesis.

Finally, I wish to thank for my family and my girl friend for their support and encouragement during my study here.

Hobart, December 1991
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>vi</td>
</tr>
</tbody>
</table>

Chapter

1: INTRODUCTION ... 1

2: LAN BRIDGES .. 4
 2.1 IEEE 802 STANDARDS AND OSI MODEL .. 4
 2.2 TOKEN RING NETWORKS .. 5
 2.2.1 Introduction ... 5
 2.2.2 MAC Frame Format ... 6
 2.2.3 Source Routing ... 8
 2.3 802.3 LANs ... 11
 2.3.1 Introduction ... 11
 2.3.2 IEEE 802.3 MAC Frame ... 11
 2.3.3 Transparent Bridging ... 12
 2.4 Source Routing and Transparent Bridging Comparison 17
 2.5 BRIDGE PROBLEM OF 802.3 AND 802.5 LANs 18

3: SOURCE ROUTING TRANSPARENT (SRT) BRIDGE 21
 3.1 INTRODUCTION .. 21
 3.2 MAC SERVICE ... 23
 3.3 PRINCIPLES OF OPERATION .. 26
3.4 THE SPANNING TREE ALGORITHM AND PROTOCOL...........29
3.5 BRIDGE MANAGEMENT..32
3.6 DISCUSSION...34

4: PERFORMANCE ANALYSIS...38
4.1 PERFORMANCE ANALYSIS FOR SOURCE ROUTING.............38
 4.1.1 Mathematical Analysis..38
 4.1.2 Simulation of Token Ring.......................................42
 4.1.3 Simulation of Source Routing..................................42
4.2 PERFORMANCE ANALYSIS OF 802.3 LANs..........................44
 4.2.1 Mathematical Analysis..44
 4.2.2 Simulation of IEEE 802.3 LAN.................................54
 4.2.3 Simulation for Transparent Bridging..........................55
4.3 DISCUSSION...57

5: CONCLUSION...59
REFERENCES...62
APPENDICES..64
1. Simulation Results for one Ring....................................64
2. SIMSCRIPT Programs for one Ring..................................64
3. Simulation Results for Source Routing............................67
4. SIMSCRIPT Programs for Source Routing..........................68
5. Simulation Results for CSMA/CD LAN..............................76
6. SIMSCRIPT Programs for CSMA/CD LAN............................76
7. Simulation Results for Transparent Bridging.....................80
8. SIMSCRIPT Programs for Transparent Bridging...................81
LIST OF FIGURES

FIGURE 2.1 : IEEE 802 STANDARDS AND OSI MODEL .. 4
FIGURE 2.2 : FRAME AND TOKEN FORMAT ... 6
FIGURE 2.3 : FORMAT AND CONTENT OF SD, AC AND FC 7
FIGURE 2.4 : ROUTING INFORMATION FIELD ... 7
FIGURE 2.5 : IEEE 802.3 MAC FRAME FORMAT ... 11
FIGURE 2.6 : A TYPICAL NETWORK ... 13
FIGURE 2.7 : THE OPERATION OF BRIDGE ... 13
FIGURE 2.8 : A TYPICAL LAN CONFIGURATION .. 15
FIGURE 2.9 : BRIDGE FORWARDING & LEARNING FLOW CHART 16
FIGURE 2.10 : PARALLEL BRIDGES ... 17
FIGURE 2.11 : DEVELOPMENT OF A SPANNING TREE ... 17
FIGURE 3.1 : BRIDGE DIAGRAM ... 22
FIGURE 3.2 : SRT BRIDGE OPERATION ... 28
FIGURE 3.3 : BRIDGED LANS .. 31
FIGURE 3.4 : SPANNING TREE TOPOLOGY .. 32
FIGURE 4.1 : THREE CONNECTED LAN SEGMENTS ... 38
FIGURE 4.2 : TOKEN RING QUEUING SYSTEM ... 39
FIGURE 4.3 : DELAY VS THROUGHPUT .. 41
FIGURE 4.4 : DELAY & NUMBER OF FRAMES IN BUFFER VS THROUGHPUT 42
FIGURE 4.5 : DELAY VS THROUGHPUT .. 43
FIGURE 4.6 : PERCENTAGES OF TRAFFIC DESTINATION ... 43
FIGURE 4.7 : CSMA/CD REPRESENTATION ... 45
FIGURE 4.8 : RESCHEDULING TRANSMISSION ... 45
FIGURE 4.9 : DETECTION TIME ... 45
FIGURE 4.10 : TRANSMISSION SCHEDULE ... 47
FIGURE 4.11 : UTILIZATION VS DELAY (CSMA/CD) ... 53
FIGURE 4.12 : UTILIZATION VS DELAY (a = 0.1) ... 53
FIGURE 4.13 : SIMULATION RESULTS FOR a = 0.01 ... 54
FIGURE 4.14 : SIMULATION RESULTS FOR a = 0.1 ... 55
FIGURE 4.15 : BRIDGED LANs' CONFIGURATION ... 56
FIGURE 4.16 : VARIOUS PACKET DELAYS VS UTILIZATION 57
FIGURE 4.17 : PERFORMANCE COMPARISON ... 58
GLOSSARY

AC. Access Control. A particular field in MAC frame.

Bandwidth. The difference between the limiting frequencies of a continuous frequency spectrum.

Baseband. Transmission of signal without modulation. In a baseband local area network, digital signals ('0's and '1's) are inserted directly onto the cable as voltage pulses. The entire spectrum of the cable is consumed by the signal. This scheme does not allow frequency-division multiplexing.

Broadband. The use of coaxial cable for providing data transfer by means of analog (radio-frequency) signals. Digital signals are passed through a modem and transmitted over one of the frequency bands of the cable.

Broadcast. The simultaneous transmission of data to a number of station.

BPDU. Bridge Protocol Data Unit. A protocol data unit which is related to bridge.

Bridge. A device that links two local area networks. It accepts packets from network addressed to devices on the other, buffer them, and retransmits them to other network.

Coaxial Cable. A cable consisting of one conductor, usually a small copper tube or wire, within and insulated from another conductor of larger diameter, usually copper tubing or copper braid.

Collision. A condition in which two packets are being transmitted over a medium at the same time. Their interference makes both unintelligible.
Connectionless. A system for exchanging data in an unplanned fashion and without prior coordination.

Connection-oriented. A system for exchanging data in which a logical connection is established between the endpoints.

CSMA. Carrier Sense Multiple Access. A media access control technique for multiple-access transmission media. A station wishing to transmit first senses the medium and transmits only if the medium is idle.

CSMA/CD. Carrier Sense Multiple Access with Collision Detection. A refinement of CSMA in which a station ceases transmission if it detects a collision.

CRC. Cyclic Redundancy Check. An error detecting code in which the code is the remainder resulting from dividing the bits to be checked by a predetermined binary number.

DA. Destination Address. The address of destination station.

Data Link Layer. Layer 2 of the OSI model. Converts unreliable transmission channel into reliable one.

ED. Ending Delimeter. A special field of MAC frame.

Encapsulation. The addition of control information by a protocol entity to data obtained from a protocol user.

Error rate. The ratio of the number of data units in error to the total number of data units.

FC. Frame Control. A field of MAC frame. This field defines the type of the frame and certain MAC and information frame function.

FCS. Frame Check Sequence. An error-detecting code inserted as a field in a block of data to be transmitted. The code serves to check for errors upon reception of the data.

FDDI. Fibre Distributed Data Interface. FDDI is a standard for high-speed ring LAN. It employs the Token ring algorithm.
FIFO. First In First Out. A queuing system where the first incoming frame will be firstly served.

FS. Frame Status. A field in MAC frame.

Gateway. A device that connects two system, especially if the systems use different protocols. For example, a gateway is used to connect two independent local networks, or to connect a local network to a long-haul network.

Hosts. In any network there exists a collection of machines intended for running user (i.e. application) program. It is common to call these machines Hosts.

IEEE. Institute Electrical and Electronic Engineering.

ISO. International Standard Organization.

LAN. Local Area Network. A general-purpose local network that can serve a variety of devices. Typically used for terminals, microcomputers and minicomputers.

LLC. Logical Link Control. A sub layer of Data Link Layer.

LPDU. Link Protocol Data Unit.

MAC. Medium Access Control. For broadcast networks, the method of determining which device has access to the transmission medium at any time. CSMA/CD and Token are common access methods. This is a sub layer of Data Link Layer.

Mbps. Mega bits per second.

M/M/1. A queuing system with Exponential interarrival time, and Exponential service time and one server.
Optical Fibre. A thin filament of glass or other transparent material through which a signal-encoded light beam may be transmitted by means of total internal reflection.

OSI. Open System Interconnection. A communication model defined by ISO.

PDF. Probability Density Function.

Physical Layer. Layer 1 of the OSI model. Concerned with the electrical, mechanical, and timing aspects of signal transmission over a medium.

Protocol. A set of rules that govern the operation of functional units to achieve communication.

Protocol Data Unit. A block of data exchanged between two entities via a protocol.

RI. Routing Information. Routing information field contains a series of LAN and bridge numbers to be passed when transmitting a frame in Source routing method.

RII. Routing Information Indicator. This information indicates whether the frame contains Routing information field or not.

Ring. A local network topology in which stations are attached to repeaters connected in a closed loop. Data are transmitted in one direction around the ring, and can be read by all attached stations.

SA. Source Address. The address of source station.

SD. Starting Delimeter.

SR. Source Routing. A type of routing strategy in transmitting of frames in Bridged LANs.

SRT. Source Routing Transparent. A new standard for interconnection of Source Routing and Transparent Bridging.

SR/TB. Source Routing / Transparent Bridge.
TB. Transparent Bridge. A Bridging strategy for bridged 802.3 LANs.

Token Ring. A medium access control technique for rings. A token circulates around the ring. A station may transmit by seizing the token, inserted a packet onto the ring, and then retransmitting the token.

Topology. The structure, consisting of paths or switches, that provides the communications interconnection among nodes of a network.

Tree. A local network topology in which stations are attached to a shared transmission medium. The transmission medium is a branching cable emanating from a headend, with no closed circuits. Transmissions propagate throughout all branches of the tree, and are received by all stations.

Twisted Pair cable. A transmission medium consisting of two insulated wires arranged in a regular spiral pattern.

XID. Exchange Identification.
IEEE 802.3 and IEEE 802.5 LANs have many different characteristics. In physical layer level, the bit rate of an IEEE 802.3 LAN is 10 Mbps and IEEE 802.5 is 4 Mbps or 16 Mbps. In MAC level, the structure of frames and access method are different. For example, IEEE 802.3 uses a CSMA/CD access method and IEEE 802.5 uses token ring access method. Furthermore, in the network layer, IEEE 802.3 follows the connectionless oriented type and IEEE 802.5 follows the connection oriented type.

Both networks have advantages and disadvantages. They have been implemented by many organizations. It is not uncommon to implement a Token ring network in one division and an Ethernet in other division of organization so the compatibility becomes a problem.

Interconnection between two networks of the same type is commonly done by using a bridge. Before study its technology, it is better taking a look at some common situations why a single organization may end up with multiple LANs and uses bridges to connect them. Some of the reasons are [1]:

Organization Factor

Many Universities and Corporate Departments have their own LANs. Since the goal of each department is different, different departments may choose different LANs. Sooner or later, they will need to communicate with each other and bridges are needed to connect them.

Geographic Factor

Universities or Corporations may be geographically spread over several buildings, so that it will be cheaper to run a LAN in each building and use bridges to connect them.
Splitting the Load

In the case of higher loads, it will be necessary to split up LANs in order to reduce delay time.

Distance

In some cases, the distance between workstations may be too great (more than 2.5 km), in which case it will be better to use separate LANs to avoid excessive long round-trip delay.

Reliability

It is better to split up a big LAN into several small LANs because if there is a problem on one LAN, the others still work; furthermore it provides opportunity to expand them.

Security

In terms of security, a bridge can examine a packet and choose not to forward sensitive traffic.

The use of bridges to connect two different and incompatible LANs will involve several problems. Token Ring networks use a source routing strategy to transmit a frame from one end to another end whereas Ethernets use a transparent bridging technique. To enable interconnection between token ring and ethernet networks, IEEE, in 1990, proposed a standard of conversion in the IEEE 802.1d standard.

This thesis studies the operation of source routing and transparent bridging, and identifies technical advantages and disadvantages of each method. Other aims are to describe the Source Routing Transparent (SRT) Bridging mechanism of IEEE 802.1d standard, to describe how SRT addresses any of the previous disadvantages of source routing and transparent bridging, and to identify whether there are new disadvantages which are introduced by SRT. For the last aim a computer model is developed,
using a SIMSCRIPT simulation package, in order to determine the relative performance of Source Routing and Transparent bridging under certain conditions.
Chapter 2
LAN BRIDGES

2.1 IEEE 802 STANDARDS AND OSI MODEL

This section will explain the relationship between IEEE 802 protocol structure for LANs and the ISO Open System Interconnection Model. Figure 2.1 shows the relationship between the IEEE 802 standards and the OSI model[13].

![Diagram of IEEE 802 Standards and OSI Model]

The differences lie in the Physical layer and Data Link layer. In the IEEE 802 model, the Data Link layer is supposed to be on two levels i.e. Logical Link Control (IEEE 802.2) and Media Access Control. In Media Access Control, IEEE specifies the access strategy where 802.3 uses CSMA/CD (Carrier Sense Multiple Access and Collision Detect), 802.4 uses Token Bus

Page -4-
and 802.5 uses Token Ring. The IEEE 802.1 standard is responsible for the interface between the 802 Model and OSI Model. This task is done by IEEE 802.1a which describes the relationship between the IEEE 802 standard and the ISO-OSI Model; IEEE 802.1b specifies the Media Access Control; and IEEE 802.1d specifies the architecture and protocol for the interconnection of 802 LANs.

The IEEE 802.1d standard explains the interconnection between 802.3 and 802.5 LANs. Source Routing and Transparent Bridge, which is commonly called SR/TB, is used to interconnect IEEE 802.3 and IEEE 802.5 LANs. Such Interconnection requires a conversion software in the bridge because they have many differences in MAC level. Recently, IEEE develops new bridging method, which is called SRT (Source Routing Transparent) bridging method, to provide more interoperability between Source Routing and Transparent Bridging methods. The implementation of SRT bridge requires some modifications of Source Routing so that a conversion software is no longer needed.

2.2 TOKEN RING NETWORKS

2.2.1 Introduction

The Token Ring uses star-wired ring topology and follows the IEEE 802.5 standard protocol for signalling and token passing. The transmission media which are used can be shielded or unshielded twisted pair cables. The speed can be 4 Mbps or 16 Mbps. The maximum number of devices that can be attached is 260 and each device or workstation uses an adapter to handle token recognition and data transmission. The adapter is also responsible for frame recognition, token generation, address recognition, error checking and logging, timeout control and link-fault detection.

A few Multistation Access Units (MAU) are used as a wiring concentrator. Each MAU provides ring access to a maximum of eight workstations and works at Physical layer level. To enlarge the network, a
bridge can be used to connect one ring to another ring. The bridge appears to be a normal node in a ring and it is normally a PC which has two adapters attached to each ring.

2.2.2 MAC Frame Format

The basic transmission unit is a frame which consists of a number of fields of one or more bytes. When there is no information to be sent then the frame changes to be a token[13].

A Token has only three fields i.e. a Starting Delimiter (SD), an Access Control (AC) and an Ending Delimiter (ED) as shown in Figure 2.2. A valid token or frame will start with the Starting Delimiter byte. The next field is the Access Control field which consists of Priority Bits, a Token Bit, and a Monitor Bit (see Figure 2.3 for details). A workstation can have a frame with low priority (000) or high priority (111). A Token bit has a value of one for frame and zero for token. A Monitor bit is used to prevent continuous circulation of frames or non-zero priority tokens.

A Frame Control Field consists of Frame Type Bits and Control Bits. Frame Type Bits will be 00 for the MAC frame and 01 for the LLC frame and the others are currently undefined frames. Control Bits indicate how the frame is to be buffered.

FIGURE 2.2: FRAME AND TOKEN FORMAT

A Frame Control Field consists of Frame Type Bits and Control Bits. Frame Type Bits will be 00 for the MAC frame and 01 for the LLC frame and the others are currently undefined frames. Control Bits indicate how the frame is to be buffered.
The routing information is an optional field; this field is omitted if the frame is not leaving the source ring. The Routing Information Field consists of a Routing Control Field and several segment numbers (Figure 2.4).

![Routing Information Field Diagram](image)

FIGURE 2.4: ROUTING INFORMATION FIELD

There are four functions of the routing control field i.e. as Broadcast Indicator, Length Bit, Direction Bit and Largest Frame Bit Statement.

BROADCAST INDICATOR BITS: The purpose of the Broadcast Indicator is to indicate whether the frame is; Non-broadcast or B'0xx' (the frame is sent along a specific path); All-route broadcast or B'10x' (the frame is sent to all segments in the network or all interconnected rings), and the Single-route broadcast or B'11x' (the frame is sent to all segments but only one
copy of the frame appears on each segment). Further explanation is in the
next section.

LENGTH BITS: Length bits are used to indicate the length of the routing
information field.

DIRECTION BIT: The Direction bit enables the bridge to interpret the
route; if this bit is set to zero the bridge interprets and reads the routing
information field from left to right or vice versa.

LARGEST FRAME BITS: The Largest frame bits indicate the length of the
information field to be read. The Typical value of Largest Frame Bits are
'000' (516 bytes in the information field), '001' (1500 bytes), '010' (2052
bytes) and the biggest value is '110' (17800 bytes in the information field).

Each ring has a specific number called a segment or ring number
and each bridge is assigned a bridge number. Ring and Bridge Numbers
will form a route designator with 12 bits for a ring number and 4 bits for a
bridge number.

2.2.3 Source Routing

To establish an interconnection between two networks a bridge is
required which works at the data link layer. In source routing, a frame
flows through bridges from an originating station to a destination station
by following a defined route in the routing information field of the frame.
Routing information is obtained by a route determination process as
described below.

An alternative solution is to maintain the routing information in
tables at the level of participating bridge. The destination address can be
on the same ring or different ring. If the destination address is unknown
then the workstation will perform a determination process i.e. On-ring
determination for the same ring and Off-ring determination for different
rings.
ON-RING DETERMINATION PROCESS: In on-ring determination, the source station sends a XID (Exchange Identification) command LPDU (Link Protocol Data Unit) on the local ring with the address of the destination and without any routing information. The destination station responds with a XID response LPDU. If there is no response LPDU returned within a specific amount of time then the destination is not on the local ring and the off-ring determination is initiated.

OFF-RING DETERMINATION PROCESS: In off-ring determination, there are two main dynamic route discovery processes, namely an all-route broadcast route determination and a single-route broadcast route determination.

All-route broadcast route determination

The source station sends a test or XID command LPDU to all rings where the first two bits of the RI (Routing Information) field are set to binary '10x'. This triggers all bridges to copy the LPDU frame and forward it until the destination address is reached. The frame will accumulate routing information as it passes through bridges along the way. It is possible that there is more than one route available to the destination address so that more than one LPDU reaches the destination station. Any received command LPDU will be returned as a response LPDU to the originating station by setting the first RI (Routing Information) bit to binary '0' and the direction bit to binary '1'. This forces the frame to flow back to the source station via the route as developed in the LPDU frame when it is received. The source station selects the preferred route from all returned response LPDUs.

Single-route broadcast route determination

The source station sends a XID command LPDU to all rings where the first two bits of the RI field are set to B'11x' so that exactly one copy appears on each ring. The frame will accumulate routing information as it
passes through bridges along the way. The XID command LPDU is then returned as a response LPDU with the first two RI-bits set to B'10' indicating all-routes broadcast. Again, multiple response LPDUs may be received by the source station. The source station chooses the routing information from the received responses.

When a bridge receives a frame to forward to a ring, the bridge compares the route designators in the routing information field with its attached ring numbers and bridge number. Four conditions might occur in the bridge:

1. If there is a target ring number in bridge address table for all-route or single-route broadcast frame; then the bridge discards the frame because it has already circled the target ring.

2. If there is no target ring number in bridge address table for all-route or single-route broadcast frame; then the bridge adds its route designator to the frame's routing information field and forwards it.

3. If there is a ring number, bridge number and ring number combination in bridge address table for non-broadcast frame; then the bridge forwards the frame to the indicated ring.

4. If there is no ring number, bridge number and ring number combination, match in a non-broadcast frame; then the bridge discards the frame.

When the frame reaches its destination, the sequence of route designators describes the path from the source ring to the destination ring.
2.3 802.3 LANs

2.3.1 Introduction

An IEEE 802.3 LAN (example Ethernet) uses a bus topology and follows the CSMA/CD access protocol (Carrier Sense Multiple Access and Collision Detection). It uses baseband transmission method at 10 Mbps on a common shielded 50 ohm coaxial cable. A repeater is used in every 500 metre segment to intensify the signal; the maximum number of segments (groups of workstations) that can be attached to a particular segment is five. For the total LAN, 1024 attachments (segment, workstation and peripherals) can be allowed in a distance not exceeding 2.5 kilometres.

2.3.2 IEEE 802.3 MAC Frame

Figure 2.5 shows the MAC frame format of the IEEE 802.3 LAN[13].

The Preamble allows the physical layer signalling circuitry to synchronize with the received frame timing circuitry. SA or DA can be either 2 or 6 bytes, but all stations must use the same addressing structure, otherwise it will cause an issue when two LANs are connected by a bridge.
The Length field (LF) indicates the actual length of the information field. The maximum frame length is 1518 bytes. The Padding field contains padding characters in case the minimum frame length requirement is not met (512 bits). The FCS uses a cyclic redundancy check algorithm.

An invalid frame is not passed to the next higher protocol layer, but it is discarded at the MAC level. This can occur when the frame does not contain an integral number of bytes, or frame length field is inconsistent with the actual frame length, or the FCS value calculated by the destination station does not match the FCS value contained within the frame.

2.3.3 Transparent Bridging

This section will study the use of bridges in an 802.3 LAN. Before studying the use of bridges, it is first desirable to understand the functional differences between repeaters, bridges and gateways.

REPEATERS: Repeaters work on the physical layer and their tasks are only to copy individual bits between cable segments.

BRIDGES: Bridges work on the data link layer and their tasks are to store and forward the frames between the LANs.

GATEWAYS: Gateways work on the network layer and their tasks are to store and forward packets between dissimilar networks.

Figure 2.6 shows how they are connected and Figure 2.7 shows how the bridge works[1].
The 802.3 LAN uses a transparent bridge for connecting buses. This bridge is designed with complete transparency, so that when the bridge is plugged in, it will work instantly without requiring hardware changes, software changes, setting of address switches, downloading of routing tables or parameters. Furthermore, the existing LANs are not affected by plugging in a new bridge.
The Transparent bridge accepts the frames and then decide whether to discard or forward an incoming frame and on which LAN to put it. These decisions are based on the address table inside the bridge. This table will list every possible destination, which LAN it belongs to, and which LAN can be passed through to get to it. Routing procedures are as follows [1];

* If the destination and source LAN are same then discard the frame.
* If the destination and source LAN are different then forward the frame.
* If the destination LAN is unknown then use "flooding"[1], explanation below.

When the bridge is initially plugged in, its address table is empty so that it does not know any addresses in any of the LANs. This also occurs when a new workstation is initially plugged in, and its address is not known by any bridge in the cascade. If this happens the bridge will use the Flooding Algorithm. This algorithm is stated as follows: every incoming frame is sent out on every outgoing line except the one it arrives on, so that it generates a vast number of duplicate frames[1]. When the frame arrives, the bridge will know its address, its LAN, or the LAN which can be passed to reach the incoming frame address, for example (see Figure 2.8) if bridge 1 sees a frame of station C in LAN 2 then bridge 1 will know that station C can be reached by passing LAN 2. This is a typical example of Baran's backward learning method[1]. This approach make it possible to move the workstation or the bridge to the other end of bridged LANs and it also allows dynamic topology because whenever a frame comes into the bridge, the bridge will update its address table to current connections. Figure 2.9 shows a bridge forwarding and bridge learning flow chart[4,14].
To increase reliability, parallel bridges can be used for connection of two LANs as shown at Figure 2.10[1]. However, this can cause another problem where it creates loops in the topology if a frame with an unknown destination comes to the bridge. Bridge 1 sees the unknown frame F in LAN 1 and copies it to F1 in LAN 2. On the other hand, Bridge 2 copies F to F2 in LAN 2. Furthermore, Bridge 1 sees F2 in LAN 2 and copies it to F3 in LAN 1 and on the other hand Bridge 2 sees F1 and copies it to F4 in LAN 1 and so on, causing a looping. To solve this problem, the Transparent bridge uses a "Spanning Tree"[4] to guarantee that there is only one path between the source address and the destination address, thereby making looping impossible.

To develop a Spanning Tree, every few seconds each bridge broadcasts its identity (a serial number installed by the manufacturer and guaranteed to be unique). By using a distributed algorithm, one bridge is then selected as the root of the tree, usually the bridge with lowest serial number. The tree is constructed by selecting the shortest path to the root. This algorithm is continually updated to keep the tree current.
FIGURE 2.9: BRIDGE FORWARDING & LEARNING FLOW CHART
Figure 2.10: Parallel Bridges

Figure 2.11 shows the way to develop the tree. Each node represents a bridge and each line is a LAN.

Figure 2.11: Development of a Spanning Tree

2.4 Source Routing and Transparent Bridging Comparison

The main difference between source routing and transparent bridging is in the orientation of transmission. Transparent bridging is connectionless whereas source routing is connection oriented. Furthermore, Transparent bridging is fully transparent and source routing is not transparent. This means that the source station does not need to know
which bridges will be based because the bridges learn the location of the destination address by using "backward learning". In source routing, if the destination address is unknown then a discovery frame has to be sent out to discover the routing information.

The workstation at transparent bridging does not need to worry about the bridging scheme because it is arranged by the bridge. In source routing the workstation must actively participate, so that the complexity is in the workstation rather than in the bridge. Furthermore, a failure or change of bridge position or network topology, will be handled by the workstation. In contrast, in transparent bridging those changes will be handled by the bridge.

The Transparent bridge will automatically configure the network topology and does not need network management. In source routing, the address and bridge number must be manually installed and must be unique. It may be difficult to relocate the bridge or workstation because it needs to be arranged again. If there is a mistake in this arrangement, it may be difficult to detect. On the other hand, there is no collision in source routing so the channel utilization can be increased. In this case, source routing has deterministic performance[15].

2.5 BRIDGE PROBLEM OF 802.3 AND 802.5 LANS

General problems of Token ring and Ethernet are different frame formats, different data rates, different maximum frame lengths[1]. The transmission of a frame from token ring to ethernet or vice versa requires reformatting of the frame in the bridge. This process is likely to end up with errors which are difficult to detect.

When transmitting a continuous stream of frames from ethernet (10 Mbps) to token ring (4 Mbps), the bridge has to buffer those frames in
enough memory, otherwise overloading occurs and some information will be missed. Another problem which is related to the different speeds of Ethernet and Token ring, suppose ethernet transmits a long frame to token ring, and after sending the last bit it sets a timer and waits for acknowledgment. There is a big problem when the timer goes off before the bridge forwards whole bits to the slower LAN. This will cause the source LAN to retransmit the same frames again, and after several attempts it will stop and tell the higher layer that the destination station is off.

Token Ring and Ethernet have different frame lengths where the maximum frame length for the 10 Mbps Ethernet is 1518 bytes and for Token Ring, 17800 bytes. This is the most serious problem. Suppose the Token Ring wants to transmit a frame of 17800 bytes to Ethernet. The Ethernet that has a maximum frame length of 1518 bytes can not accept that long frame. Splitting the long frame into a number of small frames is not the task of the bridge. In this case there is no way, and the frame must be discarded.

This section examines the specific problems between 802.3 to 802.3, 802.5 to 802.5 and 802.3 to 802.5 or vice versa, more explanation see [1]. From 802.3 to 802.3, basically there is no major problem. The only problem is if the bitrate of the bridge is slower than the bitrate of the LAN. Then the memory of the bridge may be out of buffer and drop some frames when transmitting a long continuous run of frames.

From 802.3 to 802.5, the problems are different frame formats and different speeds. Another problem is that 802.5 has priority bits whereas 802.3 has not. So when reformatting the frame, priority bits must be inserted. The best way is to insert the high priority so that the frame can reach the destination address faster because it has probably suffered a long delay due to collision.
From 802.5 to 802.5, there is no major problem in this connection. The only problem is that the frame has A and C bits in the Frame Status field. This field is 'ACrrACrr' where A is to indicate that the destination station has recognized the frame, B is to indicate that the destination station has copied the frame and r is a reserve bit. These bits are set by the destination to tell the sender. The bridge may tell the sender that the frame has been copied, whereas in fact the destination station is off.

From 802.5 to 802.3, the problems are due to different frame formats, and different maximum frame lengths. Problems with A and C bits can also occur here as mentioned before. A problem with priority bits is where those bits may be discarded by the bridge so that high priority frame becomes a common frame. For instance, if a token ring transmits a frame to another token ring via ethernet then priority bits will be lost in the intermediate LAN.
Chapter 3
SOURCE ROUTING TRANSPARENT (SRT) BRIDGE

3.1 Introduction

Source Routing and Transparent Bridging are different methods for interconnecting two LANs. Transparent bridging is easier to connect and manage so that it is a widely accepted standard in the market. Source Routing performs better but it is not fully compatible with the Transparent Bridge. This incompatibility causes problems if the 2 systems are connected to each other. These problems are, difficult interconnection, interoperability problems and degraded network operation. From the customer’s point of view, they want an "agreement" between the Source Routing Bridge and the Transparent Bridge so that they can be more compatible and can fulfil the following conditions.

- Transparent Bridge can be used for non-Source Routing stations.
- Source Routing Bridge can be used for Source Routing stations.
- Freedom to mix Source Routing and Transparent Bridges on the same LAN.
- Freedom to mix Source Routing and Transparent stations on the same LAN.
- Guaranteed Connectivity between any pair of stations.

In solving these compatibility problems, the IEEE working group proposed a draft for the SRT bridge[12]. In this draft there are changes for SR bridge (802.1 bridging operation) and the SR station (802.5 and 802.1 end system operation), on the other hand there is no change for the TB bridge and the TB station. This draft mentions that the MAC of the SRT bridge should conform to the following conditions.

1. Conform to the MAC standard of the IEEE 802.3, the IEEE 802.4 and the IEEE 802.5 and conform to the LLC of the IEEE 802.2.
2. Relay and filter frames on the basis of information contained in the Filtering Database.
3. Provide the capability to control the mapping of the priority of forwarded frames.
4. Maintain the address information table required to make frame filtering decisions and state the value of database size and the maximum number of entries that can be held in the filtering database.
5. Use either a 48-bit Universally Administered Address, or a 48-bit Locally Administered Address, or a 16-bit Locally Administered Address.
6. Implement the Spanning Tree Algorithm to reduce the Bridged Local Area Network Topology to a single spanning tree.
7. Provide the capability to assign the value of a Bridge Priority, Port Priority and Path Cost for each port to allow configuration of the Spanning Tree Topology.
8. Support the Management of Bridges, explanation in Section 3.5.

The SRT bridge is actually a twin function bridge[12]. It acts as a TB bridge if it receives TB frames and acts as a SR bridge if it receives SR frames. The bridge works at MAC level and it can distinguish whether the frame is an SR frame or a TB frame by using a Routing Information Indicator (RII). In this case, if the value of RII is equal to 1 then the bridge will consider the frame as an SR frame; otherwise as a TB frame. The following diagram (Figure 3.1) shows the situation of how the SRT bridge works.

![Bridge Diagram](image-url)
To further understand the SRT bridge, the next sections will explain MAC service support, principles of operation, the spanning tree algorithm and bridge management.

3.2 MAC SERVICE

The function of the MAC bridge in Bridged Local Area Network is to connect several LANs by providing MAC services to the MAC service user in the end stations, and relaying frames between the separate MACs of the Bridged LANs. The services provided are request primitives and corresponding indication primitives conveying user data with unconfirmed service. The use of confirmed service by end stations communicating across the bridge is not supported.

The quality of MAC services provided by a bridge should not be inferior to that provided by a single LAN. The parameters to be considered are those relating to the following[12].

1. Service Availability
2. Frame loss
3. Frame misordering
4. Frame duplication
5. The transit delay experienced by frames
6. Frame lifetime
7. The undetected frame error rate
8. Maximum size of service data unit supported
9. User priority and throughput

Service Availability

Service availability is measured as the total time during which the service is provided to the end station. The service availability can be increased by automatic reconfiguration of bridged LANs in order to avoid
the use of failed components (e.g. repeater, cable, or bridge itself) in the data path. A bridge may deny service and discard a frame of a station in order to preserve other aspect of the MAC service when automatic reconfiguration takes place; hence service availability is lowered for that end station. To maximize the service availability, no loss of frame or delay of service should be caused by the bridge except as a consequence of a failure, removal or insertion of a bridge or as a consequence of the movement of an end station.

Frame Loss

A frame transmitted by a source station can fail to reach the destination station due to the corruption in transmission at the physical layer level. The use of the bridge can cause frame loss and it should introduce minimum additional frame loss. The bridge may discard a frame for the following reasons.

1. The maximum frame lifetime is exceeded.
2. The internal buffering capacity is full due to continuous arriving of frames at a rate in excess of that at which they can be transmitted.
3. The size of frame exceeds the maximum frame length supported by the medium access control procedures employed on the LAN to which the frame is to be relayed.
4. The frame arrives at a time when the topology of the bridge LAN is being changed to maintain other aspects of quality of services.

Frame Misordering

The operation of bridge does not misorder the frames with the same user priority. The bridge is capable of connecting the individual MACs in such a way that multiple paths between a source station and destination station may exist. To ensure that there is one active path to be followed between any pair of stations, the operation of protocol is required
in order to preserve the order of arriving frames.

Frame Duplication

The bridge MAC sublayer does not permit frame duplication. The duplication is possible if there is more than one path between the source and destination stations. Once more, the protocol needs to guarantee one active path available in any pair of stations.

Transit Delay

Transit delay is the time taken to receive a frame plus that taken to access the media onto which the frame is to be relayed. Since the MAC service is provided at an abstract interface it is not possible to specify the total frame transit delay precisely. However, it is possible to measure those components of delay associated with media access; hence the transit delay introduced by the bridge can be measured. This transit delay has to be short to ensure that the maximum life time of the frame is not exceeded.

Frame Lifetime

The Frame has a maximum lifetime and it will be discarded by the bridge if that value is exceeded. The maximum frame lifetime is necessary to ensure the correct operation of higher layer protocols.

Undetected Frame Error Rate

Each frame has a Frame Check Sequence (FCS) field which is appended by the MAC sublayer of the source station prior to transmission and checked by the destination station on reception. Undetected errors are protected against by the use of FCS. Recalculation of the FCS is necessary within a bridge providing a relay function between IEEE 802 MACs of dissimilar types. This introduces the possibility of additional undetected errors arising from the operation of the bridge.
Maximum Service Data Unit Size

The Maximum service data unit size varies with the MAC method and its associated parameters e.g. speed. Within bridged LANs, this value is the smaller of that supported by the LANs. The bridge should not relay a frame to a LAN which does not support the size of service data unit conveyed by that frame.

Priority

The bridge MAC sublayer can provide the priority of service to the end station. A request primitive with a high priority may be given precedence over other request primitives made at the same station or at other stations attached to the same LAN.

Throughput

The total throughput of the bridged LANs can be greater compared to an equivalent single LAN because the bridge can localise traffic within a smaller size of LAN by filtering frames. In some cases, the throughput may be lowered by frame discard due to inability to transmit at the required rate of the LAN.

3.3 PRINCIPLES OF OPERATION

Three main principal elements of bridge operation are; (1) Relaying and Filtering of frames, (2) Maintenance of the information required to make frame filtering and relaying decisions, (3) Management of the bridge[12]. The bridge functions that supports the relaying of frames include;

a. Frame reception
b. Frame discard if it receives in error due to corruption
c. Frame discard if the frame_type is not user_data_frame
d. Frame discard due to the application of filtering information
e. Frame discard if service data unit size is exceeded
f. Frame discard if maximum bridge transit delay is exceeded
g. Mapping of service data units and recalculation FCS
h. Selection of outbound access priority
i. Forwarding of received frames to other bridge ports
j. Frame transmission

The functions that support the use of filtering information in the bridge include:

a. Permanent configuration of reserved address
b. Explicit configuration of static filtering information
c. Automatic learning of dynamic filtering information
d. Updating the address filtering database
e. Calculation and configuration of bridged LAN topology

Frames are accepted at one port and delivered to other ports for transmission. The processes included in this MAC relay entity are the Forwarding process, Learning process and Filtering process. The Forwarding process is applied when passing the frame filtering address on the basis of information contained in the filtering database. The Learning process is a process to update the address in the filtering database by source address of the receiving frame. The Filtering process looks at the address information database and decides whether forward or discard the frame.

Each bridge port supports the operation of LLC procedures in order to support the other types of LLC procedure which may be used by other protocols. Figure 3.2 shows the reception and transmission of the Bridge Protocol Data Unit by the Bridge Protocol Entity. Port state information is active when the bridge management permits the port to participate in relaying frames if it is capable of doing so.

A frame received on a bridge port and submitted to the Forwarding Process shall be queued for transmission on each of the other bridge ports.
if and only if;

1. The port on which the frame was received was in a forwarding state, and
2. The port on which the frame is to be transmitted is in a forwarding state, and
3. Either; (a) The filtering database indicates that frames with the value of destination address should be forwarded, or. (b) The value of the source and destination address are the same, and the bridge is configured to not filter such frames in order to support the optional LLC duplicate address check function and
4. The maximum data unit size supported by the LAN to which the transmission port is attached would not be exceeded.

The forwarding process provides buffer storage for queued frames and the order of queued frames should be maintained. A frame queued by the forwarding process shall be removed from the queue if:

a. On submission to the MAC entity port; no further attempt should
be made to transmit the frame on that port even if the transmission is known to have failed.
b. If the time of buffering storage is exceeded for that frame, and not subsequently transmitted.
c. If the frame lifetime is exceeded.

The frame forwarding process considers the priority of forwarded frames. The CSMA/CD access method treats all values of access priority equally.

The learning process observes the source address of frames received on each port and updates the filtering database. If a frame with a new source address is received then the bridge will file it in filtering database, and if the filtering database is full when a new entry is made then the existing address will be removed to make room for the new entry.

The filtering database contains the address information which is configured by management action (static value) or automatically entered by the learning process (dynamic entry). Static entries can not be removed without management permission.

3.4 THE SPANNING TREE ALGORITHM AND PROTOCOL

The spanning tree algorithm and its associated bridge protocol operate to support the quality of the MAC service. This algorithm and protocol will meet the following goals.

1. To configure the active topology of bridged LANs into a single spanning tree so that there is one route between any pair of end stations.
2. To provide fault tolerance by automatic reconfiguration of topology as a result of bridge or cable failure.
3. To keep the structure of active topology in a period of time in order to minimize unavailable time of service.

4. Allowing the management to reconfigure the topology to meet the goals of performance management.

5. Operate transparently to the end stations.

6. The communication bandwidths consumed by the bridges in establishing and maintaining the spanning tree should be a small percentage of the total available bandwidths and the high throughput.

In order to develop the Spanning Tree Topology, MAC Bridges require:

1. A unique MAC group address, recognized by all the bridges, which identifies the Bridge Protocol Entities of all bridges attached to an individual LAN.

2. A unique identifier for each bridge.

3. A port identifier for each bridge port.

4. A means of assigning the relative priority of each bridge within Bridged LANs.

5. A means of assigning the relative priority of each port within an individual bridge.

6. A means of assigning a path cost component to each port.

The bridge with the highest priority bridge identifier is selected as the root; this is the identifier with the lowest numerical value. Once the root is known, every bridge port will calculate the Root Path Cost. The designated port for each LAN is the bridge port for which the value of the Root Path Cost (time) is the lowest.
The components of the bridge identifier of each bridge, the path cost and port identifier of each bridge port can be managed allowing a manager to select the active topology. Figure 3.3 shows a bridged LAN and Figure 3.4 is its Spanning Tree Topology.

Bridges send a type of Bridge Protocol Data Unit (BPDU) to other bridges which carries the configuration of the bridge and consists of the unique identifier of the bridge, the cost of the path to the root from transmitting port, the identifier of transmitting bridge and the identifier of transmitting port.
3.5 BRIDGE MANAGEMENT

MAC bridge provides management facilities in order to support the principles and concepts of the OSI management framework. These facilities supports the planning, organization, supervision, control, protection and security of communication resources and may be further categorized into configuration, fault, performance, security and accounting management.
The configuration management is responsible for the identification of communication resources, the supply of operational parameters, and the establishment and discovery of the relationship between resources. These facilities allow management to:

a. identify all bridges and their respective location and
b. identify the location of specific end stations for a particular individual LAN in bridged LANs.
c. be able to remotely reset and reinitialize specified bridges.
d. be able to control the priority of bridge port in forwarding frames.
e. be able to set up a specific configuration of the spanning tree.
f. be able to control the transmission of frames with specific group addresses to certain parts of bridged LAN.

The fault management is responsible for fault prevention, detection, diagnosis and correction. This facility provides the ability to identify and correct the bridge malfunction including error logging and reporting.

The performance management is responsible for evaluation of the performance of communication resources, and is also responsible for evaluating the effectiveness of communication activities. These facilities provide the means to acquire statistics regarding performance and traffic analysis.

The security management is only responsible for protection of resources. The accounting management provides the identification and distribution of cost and the setting of charges. Unfortunately, there is no specific facility for the security and accounting management.

The resources of MAC bridge to be managed are actually the entities and processes incorporated within the bridge. The processes are including
frame receiving, frame filtering, frame discarding, frame forwarding and other functions of frame relaying. The entities includes bridge configuration, and port configuration. For further information is in [12].

3.6 DISCUSSION

Source Routing Transparent Bridge (SRT) overcomes the interoperability problems between Source Routing and Transparent Bridging in bridged Local Area Network. This bridge acts as a Source Routing Bridge when forwarding Source Routing Frames and acts as a Transparent Bridge when forwarding Ethernet Frames. This mechanism is based on Routing Information Field of frames containing a Routing Information Indicator. When Routing Information Indicator is equal to one then the frame is treated as Source Routing Frame and if a frame contains Routing Information Indicator which is equal to zero then the frame is treated as Ethernet Frame. The main advantage of such bridge is that there is no translator required for connecting 802.3 and 802.5 LANs. In general, this concept is excellence but some difficulties remain unclear because this proposal is still not complete yet.

As mentioned in Section 2.5, the general problems of this interconnection are different frame format, different maximum frame length and different data rate. The problem of different data rate is mainly a technical problem, and the effect of this difference is a frame being discarded at the bridge due to the limitation of buffer capacity. Such problem can be simply avoided by using larger buffer capacity as required. The different maximum frame length is actually a small problem and easy to overcome, and the effect of this problem is a frame discarding which occurs when Token Ring sends a maximum frame length of about 17 kilobyte to Ethernet which only has maximum frame length of about 1.5 kilobyte. Such problem can be overcome by changing the algorithm of Source Routing in Source Routing Station where Source Routing Station is asked not to send large frame or to split the large
frame before sending to Ethernet. As mentioned in SRT Draft that some small changes for Source Routing Operation should be done so that a small change of Source Routing Algorithm can be included whereas Transparent bridge remains unchanged. The maximum frame length is the maximum frame size that is supported by all LAN types in bridged LANs. Otherwise, it may be constrained by the owner.

The problem of different frame format is not mentioned in the SRT draft proposal. This problem can be simply handled by one of the following categories of bridge operation [3]:

a. Passthrough Bridge: A bridge between two local area networks whose Data Link functions and addressing system are identical can pass frames through without changes.

b. Translation bridge: A bridge between two local area networks whose Data Link functions and addressing system are sufficiently similar (but not identical) may translate Data Link protocol to communicate between dissimilar networks.

c. Encapsulation Bridge: A bridge between two local area networks whose Data Link functions and addressing system are sufficiently dissimilar (infeasible for translation) may encapsulate a frame. In this case a frame that come from LAN A will be encapsulated by the bridge using Data Link format of LAN B so that the frame can then easily travel on LAN B.

Usually, the transmission of frames from Token Ring to Ethernet or vice versa requires a translating software for converting or reformating the frames in the bridge before passing them through. SRT bridge does not need a translator because it is designed to act as a Transparent bridge when passing the frames through Ethernet stations and act as a Source Routing bridge when passing the frames through Token ring stations. SRT bridge may just pass frames to the other end stations because Token ring and Ethernet have the same addressing system.
of 6 bytes, but it may be necessary for a station to have a particular software in order to extract the information contents of frames. This software should have the ability to decide which frame is Token ring frame or Ethernet frame because the extraction of information is different between Token ring frame and Ethernet frame. Using such a system, the different frame formats are no longer a problem.

In Section 2.5, it is mentioned that 802.5 MAC frames have priority bits whereas 802.3 MAC frames have none. A small problem arises concerning the priority bits when Ethernet station sends frames to Token ring stations. In such case, bridge may give high priority to Ethernet frames before sending them to Token ring stations because they have been probably suffered a long delay due to collision.

The problem about A and C bits in the frame status field of 802.5 MAC frames still remain unclear in the SRT draft proposal. These bits are set by the destination station to tell the sender that the frame has been already copied. To overcome this problem, the bridge must wait for a replay from destination station before informing the source station whether the frame has been copied or not. Unfortunately, such solution will increase the transmission delay. The best way is to provide a command for checking the destination station whether it is on or off, before sending a stream of frames.

The advantages of SRT bridge are obvious. It overcomes the compatibility problems between established LANs, i.e. Token ring and Ethernet LANs, furthermore it will give more interoperability for FDDI and even SRT bridge makes easier way for FDDI to specify Source routing [12]. There is an "agreement" between Source routing and Transparent bridging. Conceptually, Source routing becomes a subset of Transparent bridging and Transparent bridging becomes a subset of Source routing. The important thing of SRT bridge is its participation in developing a
spanning tree configuration thus guaranteeing a path along the spanning tree for frames sent without routing information, on the other hand SRT bridge supports Source Routing and provides at least one path for connecting two LANs. From customer's point of view, SRT bridge provides an opportunity to expand the existing LANs by connecting it to other similar LANs.

If the SRT bridge is developed by following the underlying concepts of MAC service as mentioned in Section 3.2, there would be no disadvantages introduced. The things that have to be considered in developing such a bridge are the speed and buffer capacity. If the speed is too slow and buffer capacity is too small then many problems will arise. From the customer's point of view, the only problem is cost of expansion.
Chapter 4
PERFORMANCE ANALYSIS

This chapter will consider performance analysis for both Source Routing and Transparent Bridging Methods in bridged Local Area Networks. In each method, it sets up a model of the system and then both simulation and queuing analysis will be employed. The simulation analysis will use the SIMSCRIPT simulation program to calculate the delay and throughput of the system. The queuing analysis will be derived based on the access strategy which is used in each bridged LAN.

4.1 PERFORMANCE ANALYSIS FOR SOURCE ROUTING
4.1.1 Mathematical Analysis

The bridged LANs topology which will be analyzed is made up of three serially connected LAN segments with one bridge connecting each of the two links. This topology is simply drawn as follows:

![Figure 4.1: Three Connected LAN Segments](image)

To analyze this queuing problem, it is better to consider one ring first and derive the formula. If we examine the system of one ring, it can be shown in the following diagram[9,10].
FIGURE 4.2: TOKEN RING QUEUING SYSTEM

Since the token ring uses a token circulated around the ring of N stations, it is apparent that the system has one server and there are N queues of station around the ring. The arrival rate of frames at all stations is assumed to follow Poisson Distribution and the service time follows Exponential Distribution. The service time of this system consists of two components which are the frame transmission time in each station and the propagation delay around the ring/round trip delay.

If \(\tau \) = round trip / propagation delay

\(t_i \) = frame transmission time at station i

\(N \) = the number of station in particular ring

then the service time \((t_s) \) will be

\[t_s = \tau + \sum_{i=1}^{N} t_i \] \hspace{1cm} (4.1)

Let the average length of frames is \(m \) and the speed of station i on that particular LAN is \(c_i \) then,

\[t_i = \frac{m}{c_i} \] \hspace{1cm} (4.2)

If the speed of a station is the same as the other stations then Equation (4.1) will be,

\[t_s = \tau + N \cdot t_{\text{frame transmission time}} \] \hspace{1cm} (4.3)
As shown in Figure 4.2 that λ_i is the average arrival rate of frames in station i. For the whole system the average arrival rate of frame is λ, where:

$$\lambda = \sum_{i=1}^{N} \lambda_i \quad \text{(4.4)}$$

To further deal with queuing analysis, the following symbols are required to simplify the problem.

- $t_w = \text{waiting time in the queue}$
- $t_q = \text{total time spent in the system}$
 - $(\text{waiting time in the queue} + \text{service time})$
- $q = \text{the number of frames in the system}$
- $w = \text{the number of frames in the waiting room/buffer}$
- $\rho = \text{the utilization factor of the system}$
- $E(t_w) = \text{average waiting time}$
- $E(t_q) = \text{average service time}$
- $E(t_{q}) = \text{average total time spent in the system}$

$$t_q = t_w + t_s \quad \text{(4.5)}$$
$$E(t_q) = E(t_w) + E(t_s) \quad \text{(4.6)}$$

From Little's Formula:

$$\rho = \lambda . E(t_q) \quad \text{(4.7)}$$
$$E(w) = \lambda . E(t_w) \quad \text{(4.8)}$$
$$E(q) = \lambda . E(t_q)$$
$$= \lambda . E(t_w) + \rho \quad \text{(4.9)}$$

By assuming that the buffer capacity is unlimited then the average number of frames in the system is $E(q)$, where

$$E(q) = \frac{\rho}{1-\rho} \quad \text{(4.10)}$$
hence,

\[
E(tq) = \frac{E(q)}{\lambda} = \frac{\rho}{\lambda(1-\rho)}
\]

\[
= \frac{E(t_s)}{(1-\rho)} \hspace{10cm} (4.11)
\]

A particular LAN which will be analyzed has a speed of 4 Mbps, the number of stations attached to the ring is 25 and the ring size is about 600 m. The propagation delay of the twisted pair cable is taken as 5 μs per km. If the average frame size is 1 kbyte (1024 bytes), according to Equation 4.3, the service time would be:

\[
t_s = t + N t_{\text{syncronization}}
\]

\[
= 3 \mu s + 25 \times (1024 \times 8 / 4.10^6) s = 51.203 \text{ ms}
\]

The average time spent in the system is a function of system utilization or throughput (utilization * max bitrate), see Equation 4.11. Using this equation the time delay will increase as the increasing of throughput as shown in Figure 4.3. It can be seen that the delay is small as the throughput is increased to 75 % of utilization or at the throughput of 3 Mbps.

![Figure 4.3: Delay vs Throughput](image)
4.1.2 Simulation of Token Ring

The characteristics of the delay using simulation agrees with the mathematical analysis. Figure 4.4 shows the curve of delay vs throughput and the number of frames waiting for the server vs throughput. This simulation data can be seen in the appendices (Appendix 1).

![Figure 4.4: Delay & Number of Frames in Buffer vs Throughput](image)

The average number of frames waiting and the delay time increase rapidly when the throughput is more than 75%. In the simulation, the utilization is increased by adjusting the average of the arrival rate of frame in every station. It assumes that every station has the same priority to access the token so that the queuing system is FIFO (First In First Out), and every station has the same average frame of arrival rate.

4.1.3 Simulation of Source Routing

For three rings connected in cascade as shown in Figure 4.1, the results of simulation are described in appendices (Appendix 3) and those results are plotted as a graph as shown in Figure 4.5. The delay of the frame within a LAN, in this case LAN 1, is almost constant at the throughput below 3 Mbps whereas the delay of the frame from LAN 1 to LAN 2 increases and the delay from LAN 1 to LAN 3 increases sharply.
due to the queue in the bridges.

This simulation assumes that the frames generated in every station in LAN 1 have a probability of 60% to travel within the local ring (LAN 1), 20% to travel to LAN 2 and another 20% to travel to LAN 3. The frames generated in LAN 2 have a probability of 60% to travel within ring 2 (LAN 2), 20% to travel to LAN 1 and another 20% to travel to LAN 3. The frames generated in LAN 3 have a probability of 60% to have a destination station within LAN 3, 20% within LAN 2 and another 20% within LAN 1. The generation of random numbers is needed to decide whether a frame is travelling within a local ring or a different ring. These values are selected for convenience and are representative of real traffic destination. Figure 4.6 describes these percentages.
The speed of the bridge chosen is very slow at 56 Kbps[16] whereas the LAN speed is 4 Mbps so that the delay in the bridge is big for the frame length of 1 Kbyte as follows.

\[
\text{Delay} = \frac{1024 \times 8}{56000} = 146.286 \text{ ms}
\]

Because of this high delay in the bridge, the frame which travels to different rings suffers long delay due to the queue at utilization above 60%. Ring 2 suffers the highest delay compared to ring 1 and ring 3 because ring 2 is responsible for the passage of frames from LAN 1 to LAN 3 and from LAN 3 to LAN 1. Ring 1 and ring 3 suffer delays which are almost the same. These data can be seen in the appendices (Appendix 3).

4.2 PERFORMANCE ANALYSIS OF 802.3 LANs

4.2.1 Mathematical Analysis

The 802.3 standard uses CSMA/CD access protocol. The basic concept of CSMA/CD is simple. All stations listen for transmission on the line; if the channel is idle do transmission. This is called the Carrier Sensing (CS) procedure. It is very likely that more than one station is listening, discovers that the channel is idle, and transmits simultaneously causing collision. This is typical of the Multiple Access (MA) mode. After transmission, its station sets up the timer and waits for acknowledgment; if the sending and receiving packets are different then the collision has occurred. This is a Collision Detection (CD) strategy. If this occurs then the station will send a special signal notifying all other stations to abort their transmission. The station then reschedules transmission to another time following "Binary back off strategy". This strategy reschedules transmission based on a random period of time which is a uniformly distributed random number. A CSMA/CD model in Figure 3.7 shows the end to end delay (t).
Suppose \(m \) is a message length in seconds which is message length/channel speed. Figure 4.8 shows how to reschedule transmission.

In collision interval, there is a number of retransmissions. Suppose \(j \) is the average number of retransmissions before success. The worst-case detection of collision is twice the end-to-end delay, as shown in Figure 4.9.

The average transmission delay can be calculated as follows[2] :

\[
t_v = m + \tau + 2\tau j
\]

(4.12)
if \(a = \frac{\tau}{m} \) then
\[
t = m[1 + a(1 + 2j)]
\] (4.13)

Channel utilization will be
\[
\rho = \frac{m}{t} = \frac{1}{1 + a(1 + 2j)}
\] (4.14)

where \(a = \frac{\text{end-to-end delay}}{\text{packet length/ channel speed}} \)

It is shown in the above formula that 'a' is an important factor to adjust channel utilization. The utilization can be increased by keeping the value of 'a' small. This can be done either by shortening the cable length or by reducing the transmission capacity in bps (bits per second) to increase the value of \(m \).

To further analyse the system, it is necessary to find out the value of \(j \). It is assumed that the length of the collision interval is geometrically distributed in units of \(2\tau \) with a probability parameter \(v \) [2]. The probability of one unit long \((2\tau) \) is \(v \), the probability of two units long \(2(2\tau) \) is \(v(1-v) \), the probability of three units long \(3(2\tau) \) is \(v(1-v)^2 \) and so on. Using this assumption, the average number of retransmissions \(j \) is shown in Equation 4.15.

\[
j = \sum_{k=1}^{\infty} kv (1 - v)^{k-1} = \frac{1}{v}
\] (4.15)

Suppose there are \(n \) stations \((n \gg 1)\) involved in the system. Let the probability that one station wants to transmit a frame in a \(2\tau \) interval is \(p \) then the probability that exactly one station transmits and succeeds is shown in the following equation.

\[
v = np (1 - p)^{n-1}
\] (4.16)

The value of \(v \) is maximum when the value of \(p \) is \(1/n \) where \(n \) is
the number of station \(n \geq 1 \).
\[
v_{\max} = (1 - 1/n)^{v_{\max}} \tag{4.17}
\]

If the number of stations \(n \) is very large \((n \to \infty) \) then the value of \(v_{\max} \) approaches
\[
v_{\max} \equiv e^{-1} \text{ for } n \to \infty
\]
Using this value then the minimum value of \(j \) in Equation 4.15 becomes \(e \) or 2.71828 and Equations 4.13 and 4.14 become respectively 4.18 and 4.19.

\[
t_{\gamma_{\text{minimum}}} = m (1 + 6.44 a) \tag{4.18}
\]

\[
\rho_{\max} = \frac{1}{1 + 6.44a} \tag{4.19}
\]

The analysis of transmission delay of CSMA/CD has been derived in detail in [11,10,2]. Figure 4.10 is an illustration of the "Transmission schedule". Assume the message arrival follows the Poisson distribution process with \(\lambda \) messages per seconds. The transmission time of each message is assumed to be independent identically distributed random variable with Probability Distribution Function (PDF) \(\beta(x) \), mean value \(m \), second moment \(m^2 \) and its Laplace transform \(\beta^*(s)[11] \). Refer to Figure 4.9 and 4.10, the transmission time is actually

\[
FIGURE 4.10: TRANSMISSION SCHEDULE
\]
the packet length in seconds. For simplicity, the following random variables are defined as follows [11]:

\[q_n = \text{the number of stations which want to transmit after the departure of the } n^{\text{th}} \text{ transmission (Cn)} \]

\[y_{n+1} = \text{time from the departure of Cn to the beginning of the next successful transmission} \]

\[u_{n+1} = \text{the number of new arrivals during } y_{n+1} \]

\[x_{n+1} = \text{the transmission time of Cn+1} \]

\[v_{n+1} = \text{the number of new arrivals during } x_{n+1} + \tau \]

Let \(\beta(x) \) be the probability function of \(x_{n+1} \) and \(B(x) \) be the probability function of \(x_{n+1} + \tau \); then the corresponding Laplace Transform is

\[B^*(s) = \beta^*(s) e^{sr} \]

The \(y_{n+1} \) is actually the summation of two independent random time intervals

\[y_{n+1} = (l_{n+1} + r_{n+1}) T \]

where \(T \) is a time slot of 2\(\tau \), \(l_{n+1} \) is the number of slots in an idle period after departure of Cn and \(r_{n+1} \) is the number of slots within the collision time until the beginning of the next successful transmission. It is apparent that the slot in an idle time \((l_{n+1}) \) is non zero if and only if \(q_n = 0 \) and \(r_{n+1} \) will be zero if there is no collision before Cn+1 begins.

\(p_j \) is defined as the probability of \(j \) new arrivals within a time slot and is a function of \(\lambda \) as follows (according to Poisson Distribution)

\[p_j = \frac{(\lambda T)^j e^{-\lambda T}}{j!}, \text{ where } j = 0, 1, 2, \ldots \]
Assume that [11]

\[\text{Prob}[I_{n+1} = k/q_n] = (1-p_0)p_0^{k-1}, \text{ where } k = 1, 2, 3, \ldots \] \hspace{1cm} (4.23)

\[\text{Prob}[r_{n+1} = k/collision occurred] = (1-S)S^{k-1}, \] \hspace{1cm} (4.24)

where \(k = 1, 2, 3, \ldots \) and \(S \) is the probability of a successful transmission in the next time slot. The Laplace transform of this last equation is as follows

\[C^*(s) = \frac{Se^{-sT}}{1 - (1-S)e^{sT}} \] \hspace{1cm} (4.25)

which has a mean of \(T/S \) and second moment of

\[T^2 \frac{2(1-S)}{S^2} \]

From the Figure 4.10,

\[q_{n+1} = q_n + u_{n+1} + v_{n+1} - 1 \] \hspace{1cm} (4.26)

In this case \(u_{n+1} \) is an independent random variable with the z-transform \(B^*(\lambda - \lambda z) \) and \(v_{n+1} \) depends on the value of \(q_n \) in the following manner:

\[
\begin{cases}
1 & \text{with Prob. } \frac{P_1}{1-p_0} \\
\text{j+no. of arrivals} & \text{with Prob. } \frac{P_j}{1-p_0} \\
\text{during a contention period} & j=2,3,\ldots
\end{cases}
\]
If $q_n = 1$ then $u_{n+1} = 0$

If $q_n \geq 2$ then $u_{n+1} =$ number of arrivals during contention period

The equilibrium queue length probabilities Q_k exist if

$$\lambda(s+\tau+T/S)<1,$$

where $Q_k = \lim_{n \to \infty} \text{Prob}[q_n=k]$, $k=0,1,2,...$

Define z-transform as $P(z) = \sum_{n=0}^{\infty} p_n z^n$, by considering Equation 4.26 and suppose $n \to \infty$, $Q(z)$ is obtained by algebraic manipulations as follows[11]:

$$Q(z) = B(\lambda-\lambda z)\left[Q_1 z[1-C*(\lambda-\lambda z)] + \frac{Q_0}{1-p_0} [p_1 z(1-C*(\lambda-\lambda z)-C*(\lambda-\lambda z)(1-e^{-\lambda T(1-z)})]\right]$$

$$*(z-B(\lambda-\lambda z)C*(\lambda-\lambda z))^{-1} \hspace{1cm} \text{(4.27)}$$

where

$$Q_0 = \frac{1-\lambda(m+1)}{\lambda T(\frac{1}{1-p_0} - \frac{1}{B*(\lambda)})} \hspace{1cm} \text{(4.28)}$$

$$Q_1 = (\frac{1}{B*(\lambda)} - \frac{p_1}{1-p_0})Q_0 \hspace{1cm} \text{(4.29)}$$

Using Equations 4.27-4.29 and the application of Little's formula, the mean transmission delay (t_v) can be obtained as follows:

Page -50-
Refer to [2], \(B^*(\lambda) \) in the denominator of Equation 4.30 is actually the Laplace transform of the frame length distribution \(\beta(t) \) (earlier assumption), so that

\[
B^*(\lambda) = \int_0^\infty \beta(t)e^{-\lambda t} dt \quad \text{(4.31)}
\]

If the frame length or service time \(m \) is a constant or deterministic value then \(\beta(t) = \delta(t - m) \), where \(\delta(t) \) is the unit impulse function, furthermore

\[
B^*(\lambda) = e^{-\lambda m} \quad \text{and} \quad \frac{m^2}{m^2} = 1 \quad \text{(4.32)}
\]

If the frame length follows exponential distribution with the average length of \(m \) then

\[
B^*(\lambda) = \frac{1}{1+\lambda} \quad \text{and} \quad \frac{m^2}{m^2} = 2 \quad \text{(4.33)}
\]

Suppose the frame length follows exponential distribution, time slot \(T \) is actually \(2\tau \), \(S \) is equal to \(e^\tau \) (refer to Equation 4.17) and \(p_0 \) is equal to \(e^{-2\lambda \tau} \) (refer to equation 4.22, poisson distribution). By substituting all of those values to Equation 4.30, it can yield to Equation 4.34.

\[
t_v = m + 2\tau + \frac{(1-e^{-2\lambda \tau})\left(\frac{\lambda}{2} + 2\pi e^{-1.6\tau}\right)}{\lambda(1/(1+\lambda)e^{-1.1+e^{-2\lambda \tau}})} + \frac{\lambda[m^2+2m(2\tau e^\tau)+4e^{2\tau}(2(1-e^{-1}))]}{2[1-\lambda(m+2\tau \tau)]}. \quad \text{(4.34)}
\]

Equation 4.34 is the mean transmission delay which is suffered by every message in CSMA/CD protocol. This delay includes the time for
waiting, the time of collision (if any) and the time for service. This approach
is based on Poisson distribution of arrival rate of messages, or is Exponential
distributed interarrival time. The service time (packet length and end-to-end
delay) is also assumed to be an Exponential distribution. Suppose a packet
with 1kbyte length to be sent using LAN of CSMA/CD protocol with 10
Mbps speed. The maximum length of end-to-end station is 2 km away and
the propagation delay in the twisted pair cable is 5 μs/km. Hence, end-to-end
delay, packet length, a (end-to-end delay/packet length) are respectively as
follows.

\[\tau = 2 \text{ km} \times 5 \mu \text{s/km} = 10 \mu \text{s} = 0.01 \text{ ms} \]

\[m = \frac{1024 \text{ bytes} \times 8 \text{ bits/byte}}{10 \text{ Mb/second}} = 0.8192 \text{ ms} \]

\[a = \frac{\tau}{m} = \frac{0.01}{0.8192} = 0.012207 \]

Using Equation 4.19, the maximum utilization in such LAN is as
follow

\[\rho_{\text{max}} = \frac{1}{1 + 6.44a} = 0.92712 \text{ or } 92.7\% \]

Using Equation 4.34, the transmission delay is worked out by
adjusting \(\lambda \) and that delay is plotted against \(\rho \) (utilization) in Figure 4.11.

In CSMA protocol, factor \(a (\tau/m) \) is the most important thing to
adjust maximum utilization. In this case, the maximum utilization will
decrease if the distance of any pair stations increases or the packet length
decreases. In Figure 4.11, the maximum utilization is about 92.7 %. If we
want to enlarge the distance of that LAN, let's say that the maximum
distance of any pair stations in that LAN is 20 km away so that the end-to-end
delay will be 0.1 ms. Using the same parameters, the transmission delay vs
utilization is plotted in Figure 4.12.
It can be seen in Figure 4.12 that by increasing the distance between stations then the maximum utilization drops to about 60%.
4.2.2 Simulation of IEEE 802.3 LAN

The results of this simulation can be seen in Appendices (Appendix 5). Figure 4.13 shows the graph of delay and the number of collision vs utilization for factor \(a \) is equal to 0.01.

It can be seen in Figure 4.13 that the number of collision increases if the utilization increases. These results agree with the mathematical analysis as shown in Figure 4.11 where the maximum utilization is in between 80 - 90 %. Below 70 \% of utilization, the delay is almost flat.

Keeping in mind that the meaning of \(a=0.01 \), refer to the calculation on page 52, is actually the maximum length of the bus which is approximately 2 km, the message length is 1 kilobyte and a speed of 10 Mbps. These three factors must be considered when we configure a CSMA/CD LAN. If we run the simulation programs for the value of \(a = 0.1 \), the results are plotted in Figure 4.14.
It can be seen in Figure 4.14 that for the value of $a=0.1$, it is ten times bigger than the previous one, and the maximum utilization decreases to about 60%. This value of factor a is supposed to be a system with 20 km bus length, refer to page 52. The exponential delay in Figure 4.14 is actually caused by the number of frames collision which increases exponentially if the utilization increases. Longer bus length will increase the propagation delay from one end station to another end station thus the probability of collision is higher. The collision occurs when a station senses that the bus is idle and transmit the packet, and at the same instant another end station also senses that the bus is idle and transmits a packet as well. These two packets will then collide. The sensing time is actually the same as the propagation delay between end stations. If the sensing time increases then the probability of collision will increase.

4.2.3 Simulation for Transparent Bridging

The results of Transparent Bridging simulation can be seen in
Appendix 7 and the simulation programs are in Appendix 8. The speed of the bridge chosen is taken to be the same as the speed of the bridge in Source Routing simulation, i.e. 56 Kbps, so that the service time in the bridge is quite high i.e. 146.286 ms for the average packet length of 1 Kilobyte.

Service time = \(\frac{1024 \times 8}{56000} = 146.286 \text{ ms} \).

The arrival rates of packets in each bus are assumed to be the same. The bridged LAN topology is three serially connected buses or segments as shown in Figure 4.15.

![Figure 4.15: Bridged LANs' Configuration](image)

The graph in Figure 4.16 illustrates the average mean delay of various packets vs utilization. A message13 or packet from LAN 1 to LAN 3 suffers very long delay because it has to pass two bridges, and message12 and message23 are in the second place. In this simulation, it is assumed that 60% of packets will travel within the LAN and another 40% will travel outside the LAN. This assumption is same as what we have done in Source Routing simulation, refer to Figure 4.6. It can be seen in the graph of Figure 4.16 that the asymptote of each delay occurs at different
value of utilization. It is important to note here that the maximum utilization for the whole system is at the first asymptote i.e. around 0.75.

FIGURE 4.16: VARIOUS PACKET DELAYS VS UTILIZATION

4.3 DISCUSSION

Figure 4.17 shows the comparison of token ring and CSMA/CD protocol using the same parameters except that the speed of token ring is 4 MBps (refer to Figure 4.3 in Section 4.1) while that of the CSMA/CD is 10 Mbps, and that the ring size is 600 m in token ring and the distance is 2 km in CSMA/CD. The graph is plotted showing utilization and transmission time (normalized to packet length, and a logarithm is taken of the ration). From this figure, the normalized transmission delay of Token Ring is lower than the normalized transmission delay of CSMA/CD. It can be concluded that the token ring is more stable than CSMA/CD even in the situation of high utilization or busy traffic whereas CSMA/CD shows an infinite delay at utilization more than 60 % for $\tau=0.1$. In CSMA/CD, the utilization can be kept high if the end-to-end delay is kept low as can be seen in the graph below, where the distance is 2 km, and the utilization
can reach about 90%.

FIGURE 4.17: PERFORMANCE COMPARISON
Both IEEE 802.5 and IEEE 802.3 are approved standards for Local Area Networks. The interconnection of 802.5 LANs uses a technique called Source Routing whereas the interconnection of 802.3 LANs uses a technique called Transparent Bridging. Both standards have its advantages and disadvantages, but IEEE 802.3 is the widely accepted standard. The bridging techniques of these two LANs are incompatible to one another. The interconnection of these different LANs has been done using a converter or translating software in the bridge, such bridge is commonly called an SR/TB. This incompatibility decreases the speed and performance as described in Section 2.5.

The SRT bridge is a new bridging scheme that is presently being developed and it works at MAC level. This bridge will act as a Source Routing bridge for frames coming from Source Routing stations and will act as a Transparent bridge for frames coming from Transparent bridging stations. This bridge is introduced to overcome the incompatibility problems of Transparent and Source Routing bridges. In developing this bridge, many parameters were considered in order to keep high performance. The parameters to be considered are service availability, frame loss, frame misordering, frame duplication, transit delay, frame lifetime, undetected frame error rate, maximum frame length, user priority and throughput. In terms of speed, the SRT bridge will be definitely faster than SR/TB bridge because it does not need any software for converting data units from one bridging philosophy to another. Of course this scheme can avoid the errors of conversion that occurred in SR/TB.
In this project, computer simulation models are developed to analyze the performance of Token Ring, Source Routing, IEEE 802.3 LAN and Transparent Bridging. For Source Routing and Transparent Bridging, there are three LANs serially connected. The SIMSCRIPT simulation is used to analyze the performance under the assumption that 60% of frames will travel within a LAN and 40% outside of the LAN.

The Token Ring has a deterministic performance and its utilization can go up to nearly 100% utilization at the expense of transmission delay. IEEE 802.3 LAN has a limited maximum utilization which depends on end-to-end delay. The problem on IEEE 802.3 LAN is essentially one of frame collisions. If end-to-end delay is longer then the probability of collision is higher thus causing a higher transmission delay. Because of the factor of end-to-end delay, IEEE 802.3 LAN standard give a limitation for maximum distance of end-to-end stations i.e. 2 km away. If the bus length does not exceed 2 km then the maximum throughput can reach around 80-90% (see Figure 4.13 and 4.14).

If we compare the Token ring LAN and IEEE 802.3 LAN, the delay in Token Ring is much higher than IEEE 802.3 LAN, (refer to the service time calculation in Chapter 4), because in Token Ring we have to consider the synchronization time in each station on the ring. If the number of stations in the ring increases then the delay will increase linearly. Suppose the number of stations is 25 and the average frame length is 1 Kilobyte. According to the calculation in Chapter 4, the service time for Token Ring will be 51.203 ms (see page 41) whereas for IEEE 802.3 LAN it will be 0.8192 ms (see page 52).

The delay of Source Routing and Transparent Bridging is very high. It is caused by the low speed of the bridge i.e. 56 kbps, thus the delay in the bridge is much higher than the delay in the LAN. If the speed of bridge is same as the speed of the LAN, there would be no problem of frames discarding caused by overflow of buffer capacity. In simulation of Source
Routing or Transparent Bridging, the delay of frame from any station in LAN 1 to any station in LAN 3 is almost the same as the summation of average delay in LAN 1, average delay in LAN 2, average delay in LAN 3, and delay in the bridges. The delay in LAN 2 is much higher than the delay in LAN 1 or LAN 3 because LAN 2 is also responsible for passing the frames from LAN 1 to LAN 3, keeping in mind the system comprises three serially connected LANs. The important information here is that the balance of delay or performance in each LAN must be about the same.

For Source Routing, if there is one ring in cascade building up a queue then that ring becomes a critical path for any frame that has to follow such ring. The performance of such Source Routing depends on the performance of the worst ring. This problem can also occur in Transparent Bridging and in such a case it becomes worse due to collisions.
REFERENCES

[18]. The IEEE Inc. "802.5 Local Area Networks; Token Ring Access Method". September 1986.
APPENDICES

1. Results for Single Ring

<table>
<thead>
<tr>
<th>Utilization</th>
<th>Throughput</th>
<th>Delay</th>
<th>No. frame waiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.092</td>
<td>0.368</td>
<td>53.783</td>
<td>0.010</td>
</tr>
<tr>
<td>0.206</td>
<td>0.824</td>
<td>65.048</td>
<td>0.056</td>
</tr>
<tr>
<td>0.360</td>
<td>1.440</td>
<td>78.952</td>
<td>0.185</td>
</tr>
<tr>
<td>0.510</td>
<td>2.040</td>
<td>100.863</td>
<td>0.489</td>
</tr>
<tr>
<td>0.661</td>
<td>2.644</td>
<td>152.304</td>
<td>1.307</td>
</tr>
<tr>
<td>0.813</td>
<td>3.252</td>
<td>283.503</td>
<td>3.961</td>
</tr>
<tr>
<td>0.914</td>
<td>3.656</td>
<td>457.886</td>
<td>7.241</td>
</tr>
<tr>
<td>0.970</td>
<td>3.880</td>
<td>1377.103</td>
<td>24.980</td>
</tr>
</tbody>
</table>

2. SIMSCRIPT Programs for Token Ring

```
Preamble
"This section is used for declaration of Process, Resources, Global Variable
"LAN represents a Resource or Server
"message represents a packet or customer

Processes include ring_generator, message
resources include LAN

define departtime as real variable
define totaldelay as real variable

accumulate ring_utilization as the average of n.x.LAN
accumulate num_waiting as the average of n.q.LAN
tally meandelay as the average of totaldelay

define station, maxstation, value as integer variable
define lamda, duration as real variable
define servicetime as real variable

"Time systems are seconds, milliseconds or microseconds
```
define .seconds to mean days
define .milliseconds to mean hours
define .microseconds to mean minutes
end

main
" This is a main program to read data, activate simulation and
" print out the output

define length as real variable

let hours.v = 1000
let minutes.v = 1000

print 1 line thus
lamda , service-time , length
read lamda , servicetime , length
print 1 line with lamda , servicetime , length thus
** ** ** **

let duration = ((length)*1000)/hours.v

create every LAN(1)
let u.LAN(1) = 1

activate a ring_generator now
start simulation

print 4 lines with meandelay*1000 , ring_utilization , num_waiting
as follows

meandelay 	 utilization 	 number of waiting
** ** ** ** ** **
end
process ring_generator

"This section is to generate the packet within duration time

until time.v > duration do
 activate a message now
 wait exponential.f(1/\lambda, 1) \text{.miliseconds}
loop
end

process message

"This section is actually a packet that requests the resources, if the
"resource is busy then this packet will be scheduled automatically by
"SIMSCRIPT system

define arrival as real variable
arrival = time.v
request 1 LAN(1)
work exponential.f(servicetime, 1) \text{.miliseconds}
relinquish 1 LAN(1)
let totaldelay = time.v - arrival
end
3. Results for Source Routing

Note:
Delay11 = A delay within LAN1.
Delay13 = A delay from any station in LAN1 to any station in LAN3.

<table>
<thead>
<tr>
<th></th>
<th>(1) Delay 11</th>
<th>(2) Delay 12</th>
<th>(3) Delay 13</th>
<th>(4) Delay 21</th>
<th>(5) Delay 22</th>
<th>(6) Delay 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.975</td>
<td>312.742</td>
<td>540.779</td>
<td>339.977</td>
<td>61.918</td>
<td>313.693</td>
</tr>
<tr>
<td>2</td>
<td>66.287</td>
<td>364.665</td>
<td>683.837</td>
<td>365.732</td>
<td>77.315</td>
<td>378.804</td>
</tr>
<tr>
<td>3</td>
<td>70.217</td>
<td>400.556</td>
<td>762.161</td>
<td>398.185</td>
<td>81.080</td>
<td>420.121</td>
</tr>
<tr>
<td>4</td>
<td>79.086</td>
<td>491.867</td>
<td>861.182</td>
<td>516.782</td>
<td>99.800</td>
<td>483.385</td>
</tr>
<tr>
<td>5</td>
<td>90.290</td>
<td>668.133</td>
<td>1280.260</td>
<td>660.225</td>
<td>113.727</td>
<td>752.995</td>
</tr>
<tr>
<td>6</td>
<td>107.555</td>
<td>1206.275</td>
<td>1997.096</td>
<td>1107.948</td>
<td>145.984</td>
<td>1051.813</td>
</tr>
<tr>
<td>7</td>
<td>113.209</td>
<td>2221.796</td>
<td>4878.365</td>
<td>2190.138</td>
<td>182.470</td>
<td>2863.393</td>
</tr>
</tbody>
</table>

(continue)

<table>
<thead>
<tr>
<th></th>
<th>(7) Delay 31</th>
<th>(8) Delay 32</th>
<th>(9) Delay 33</th>
<th>(10) ρ-ring1</th>
<th>(11) ρ-ring2</th>
<th>(12) ρ-ring3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>559.585</td>
<td>330.060</td>
<td>58.089</td>
<td>0.146</td>
<td>0.179</td>
<td>0.138</td>
</tr>
<tr>
<td>2</td>
<td>669.808</td>
<td>362.709</td>
<td>68.396</td>
<td>0.213</td>
<td>0.286</td>
<td>0.220</td>
</tr>
<tr>
<td>3</td>
<td>738.280</td>
<td>434.751</td>
<td>71.725</td>
<td>0.286</td>
<td>0.364</td>
<td>0.292</td>
</tr>
<tr>
<td>4</td>
<td>915.431</td>
<td>495.292</td>
<td>79.373</td>
<td>0.367</td>
<td>0.464</td>
<td>0.357</td>
</tr>
<tr>
<td>5</td>
<td>1328.006</td>
<td>757.922</td>
<td>92.973</td>
<td>0.418</td>
<td>0.538</td>
<td>0.440</td>
</tr>
<tr>
<td>6</td>
<td>2029.293</td>
<td>1054.008</td>
<td>114.345</td>
<td>0.517</td>
<td>0.649</td>
<td>0.521</td>
</tr>
<tr>
<td>7</td>
<td>5007.664</td>
<td>2907.617</td>
<td>125.287</td>
<td>0.572</td>
<td>0.720</td>
<td>0.579</td>
</tr>
</tbody>
</table>

(continue)

<table>
<thead>
<tr>
<th></th>
<th>(13) ρ-bridge1</th>
<th>(14) ρ-bridge2</th>
<th>(15) λ</th>
<th>(16) Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.231</td>
<td>0.221</td>
<td>0.002</td>
<td>0.716</td>
</tr>
<tr>
<td>2</td>
<td>0.342</td>
<td>0.359</td>
<td>0.003</td>
<td>1.144</td>
</tr>
<tr>
<td>3</td>
<td>0.440</td>
<td>0.467</td>
<td>0.004</td>
<td>1.456</td>
</tr>
<tr>
<td>4</td>
<td>0.568</td>
<td>0.570</td>
<td>0.005</td>
<td>1.856</td>
</tr>
<tr>
<td>5</td>
<td>0.695</td>
<td>0.733</td>
<td>0.006</td>
<td>2.152</td>
</tr>
<tr>
<td>6</td>
<td>0.836</td>
<td>0.846</td>
<td>0.007</td>
<td>2.596</td>
</tr>
<tr>
<td>7</td>
<td>0.931</td>
<td>0.938</td>
<td>0.008</td>
<td>2.880</td>
</tr>
</tbody>
</table>
4. SIMSCRIPT Program for Source Routing

```
preamble

"Source routing is modelled by using five resources which are
"LAN1, LAN2, LAN3, Bridge1 and Bridge2
"There are nine types of packet that can be generated in this system

processes include ring_1_generator, ring_2_generator,
    ring_3_generator, message11, message12, message13,
    message21, message22, message23, message31, message32,
    message33

resources include LAN1, LAN2, LAN3, bridge1, bridge2

define totaldelay11, totaldelay12, totaldelay13 as real variable
define totaldelay22, totaldelay21, totaldelay23 as real variable
define totaldelay33, totaldelay31, totaldelay32 as real variable

accumulate ring_1_utilization as the average of n.x.LAN1
accumulate ring_2_utilization as the average of n.x.LAN2
accumulate ring_3_utilization as the average of n.x.LAN3
accumulate bridge_1_utilization as the average of n.x.bridge1
accumulate bridge_2_utilization as the average of n.x.bridge2

accumulate meandelay11 as the average of totaldelay11
accumulate meandelay12 as the average of totaldelay12
accumulate meandelay13 as the average of totaldelay13
accumulate meandelay22 as the average of totaldelay22
accumulate meandelay21 as the average of totaldelay21
accumulate meandelay23 as the average of totaldelay23
accumulate meandelay33 as the average of totaldelay33
accumulate meandelay31 as the average of totaldelay31
accumulate meandelay32 as the average of totaldelay32

define number, station, maxstation, value as integer variable
define lamda, duration as real variable
define servicetime as real variable
define hop_delay as real variable

define .seconds to mean days
define .miliseconds to mean hours
define .microseconds to mean minutes
end
```
"This is the main program to activate the simulation

define length as real variable

let hours.v = 1000
let minutes.v = 1000

print 1 line thus
lambda service-time maxstation hop-delay length
read lambda,servicetime,maxstation,hop_delay,length
print 1 line with lambda,servicetime,maxstation,hop_delay,length thus
*** *** *** *** *** ***

let duration = ((length)*1000)/hours.v

create every LAN1(1)
let u.LAN1(1) = 1

create every LAN2(1)
let u.LAN2(1) = 1

create every LAN3(1)
let u.LAN3(1) = 1

create every bridge1(1)
let u.bridge1(1) = 1

create every bridge2(1)
let u.bridge2(1) = 1

activate a ring_1_generator now
activate a ring_2_generator now
activate a ring_3_generator now
start simulation

print 2 lines with mean delay 11*1000, mean delay 12*1000,
mean delay 13*1000 as follows
mean delay 11 mean delay 12 mean delay 13 (in milliseconds)
*** *** *** *** ***

print 2 lines with mean delay 21*1000, mean delay 22*1000,
mean delay 23*1000 as follows
mean delay 21 mean delay 22 mean delay 23
*** *** *** *** ***
print 3 lines with meandelay31*1000, meandelay32*1000, meandelay33*1000 as follows
meandelay31 meandelay32 meandelay33
** *** ** ** **

print 1 line with ring_1_utilization,ring_2_utilization, ring_3_utilization,bridge_1_utilization, bridge_2_utilization as follows
Lan1 : ** ** Lan2 : ** ** Lan3 : ** ** Bridge1/2 : ** ** **
end

process ring_1_generator

"This process is to generate packets in any station in ring 1. The packet "may travel inside or outside the ring according to a random number.

until time.v > duration do
for station = 1 to maxstation do
let value = randi.f(1,100,1)
if value < 61,
activate a message11 now
else
if value < 81,
activate a message12 now
else
activate a message13 now
always
always
wait exponential.f(1/lambda,1) .miliseconds
loop
loop
end

process ring_2_generator

"This section generates packets in any station in ring 2

until time.v > duration do
for station = 1 to maxstation do
let value = randi.f(1,100,1)
if value < 61,
activate a message22 now
else

Page -70-
if value < 81,
 activate a message21 now
else
 activate a message23 now
always
always
wait exponential.f(1/lambda,1) .milliseconds
loop
loop
end

process ring_3_generator

"This section generates packets in ring 3

until time.v > duration do
 for station = 1 to maxstation do
 let value = randi.f(1,100,1)
 if value < 61,
 activate a message33 now
 else
 if value < 81,
 activate a message31 now
 else
 activate a message32 now
 always
 always
 wait exponential.f(1/lambda,1) .milliseconds
 loop
 loop
end

process message11

"This message will travel within ring 1

define departtime11 as real variable
departtime11 = time.v
request 1 LAN1(1)
work exponential.f(servicetime,1) .milliseconds
relinquish 1 LAN1(1)
let totaldelay11 = time.v - departtime11
end
process message12

"This packet will travel from station in LAN 1 to LAN 2

define departtime12 as real variable
departtime12 = time.v

request 1 LAN1(1)
 work exponential(servicetime,1) .miliseconds
relinquish 1 LAN1(1)

request 1 bridge1(1)
 work exponential(hop_delay,1) .miliseconds
relinquish 1 bridge1(1)

request 1 LAN2(1)
 work exponential(servicetime,1) .miliseconds
let totaldelay12 = time.v - departtime12
relinquish 1 LAN2(1)

end

process message13

"This packet will travel from ring 1 to station in ring 3

define departtime13 as real variable
departtime13 = time.v

request 1 lan1(1)
 work exponential(servicetime,1) .miliseconds
relinquish 1 lan1(1)

request 1 bridge1(1)
 work exponential(hop_delay,1) .miliseconds
relinquish 1 bridge1(1)

request 1 lan2(1)
 work exponential(servicetime,1) .miliseconds
relinquish 1 lan2(1)

request 1 bridge2(1)
 work exponential(hop_delay,1) .miliseconds
relinquish 1 bridge2(1)
request 1 lan3(1)
work exponential.f(servicetime,1) .miliseconds
let totaldelay13 = (time.v - departtime13)
relinquish 1 lan3(1)
end

process message21
process message22

"From ring 2 to station in ring 1

define departtime21 as real variable
departtime21 = time.v

request 1 LAN2(1)
work exponential.f(servicetime,1) .miliseconds
relinquish 1 LAN2(1)

request 1 bridge1(1)
work exponential.f(hop_delay,1) .miliseconds
relinquish 1 bridge1(1)

request 1 LAN1(1)
work exponential.f(servicetime,1) .miliseconds
let totaldelay21 = (time.v - departtime21)
relinquish 1 LAN1(1)
end

"This packet will travel from a station to another station in LAN 2

define departtime22 as real variable
departtime22 = time.v

request 1 LAN2(1)
work exponential.f(servicetime,1) .miliseconds
relinquish 1 LAN2(1)

let totaldelay22 = time.v - departtime22
end
process message23

"From station in LAN 2 to LAN 3

define departtime23 as real variable
departtime23 = time.v

request 1 LAN2(1)
 work exponential.f(servicetime,1) .miliseconds
 relinquish 1 LAN2(1)

request 1 bridge2(1)
 work exponential.f(hop_delay,1) .miliseconds
 relinquish 1 bridge2(1)

request 1 LAN3(1)
 work exponential.f(servicetime,1) .miliseconds
let totaldelay23 = (time.v - departtime23)
 relinquish 1 LAN3(1)
end

process message31

"This packet will travel from a station in ring 3 to any station in ring 1

define departtime31 as real variable
departtime31 = time.v

request 1 LAN3(1)
 work exponential.f(servicetime,1) .miliseconds
 relinquish 1 LAN3(1)

request 1 bridge2(1)
 work exponential.f(hop_delay,1) .miliseconds
 relinquish 1 bridge2(1)

request 1 LAN2(1)
 work exponential.f(servicetime,1) .miliseconds
 relinquish 1 LAN2(1)

request 1 bridge1(1)
 work exponential.f(hop_delay,1) .miliseconds
 relinquish 1 bridge1(1)
process message31

"request 1 LAN1(1)
work exponential.f(servicetime,1) .miliseconds
let totaldelay31 = (time.v - departtime31)
relinquish 1 LAN1(1)
end

process message32

"From ring 3 to ring 2
define departtime32 as real variable
departtime32 = time.v

request 1 LAN3(1)
work exponential.f(servicetime,1) .miliseconds
relinquish 1 LAN3(1)

request 1 bridge2(1)
work exponential.f(hop_delay,1) .miliseconds
relinquish 1 bridge2(1)

request 1 LAN2(1)
work exponential.f(servicetime,1) .miliseconds
let totaldelay32 = (time.v - departtime32)
relinquish 1 LAN2(1)
end

process message33

"Within LAN 3

define departtime33 as real variable
departtime33 = time.v

request 1 LAN3(1)
work exponential.f(servicetime,1) .miliseconds
relinquish 1 LAN3(1)
let totaldelay33 = (time.v - departtime33)
relinquish 1 LAN3(1)
end
5. Simulation Results for IEEE 802.3 LAN

<table>
<thead>
<tr>
<th>Utilization</th>
<th>Delay</th>
<th>Collision</th>
<th>Utilization</th>
<th>Delay</th>
<th>Collision</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.083</td>
<td>0.837</td>
<td>3</td>
<td>0.100</td>
<td>1.035</td>
<td>33</td>
</tr>
<tr>
<td>0.168</td>
<td>0.866</td>
<td>17</td>
<td>0.200</td>
<td>1.090</td>
<td>160</td>
</tr>
<tr>
<td>0.253</td>
<td>0.915</td>
<td>41</td>
<td>0.298</td>
<td>1.179</td>
<td>371</td>
</tr>
<tr>
<td>0.337</td>
<td>0.990</td>
<td>74</td>
<td>0.390</td>
<td>1.308</td>
<td>631</td>
</tr>
<tr>
<td>0.421</td>
<td>1.101</td>
<td>114</td>
<td>0.477</td>
<td>1.519</td>
<td>977</td>
</tr>
<tr>
<td>0.503</td>
<td>1.268</td>
<td>154</td>
<td>0.549</td>
<td>1.877</td>
<td>1404</td>
</tr>
<tr>
<td>0.584</td>
<td>1.546</td>
<td>208</td>
<td>0.594</td>
<td>2.591</td>
<td>1914</td>
</tr>
<tr>
<td>0.673</td>
<td>1.999</td>
<td>260</td>
<td>0.592</td>
<td>3.207</td>
<td>2216</td>
</tr>
<tr>
<td>0.737</td>
<td>2.777</td>
<td>335</td>
<td>0.564</td>
<td>4.093</td>
<td>2502</td>
</tr>
<tr>
<td>0.799</td>
<td>4.461</td>
<td>412</td>
<td>0.211</td>
<td>9.172</td>
<td>3101</td>
</tr>
<tr>
<td>0.808</td>
<td>9.370</td>
<td>507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.704</td>
<td>19.284</td>
<td>551</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.874</td>
<td>324.887</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. SIMSCRIPT Program for IEEE 802.3 LAN

```
preamble

"This system is modelled by using Set concept."
"There are two sets i.e. queue and bus. Bus is actually the server, if the"
"bus is busy then the packet will be filed in the queue."
"If new packet comes within a slot of time then collision will occur."
"More explanation, refer to section 4.2."

processes include bus_generator

every message has an arrivaltime and a process_time
    and may belong to the queue
    and may belong to the bus
    define arrivaltime as real variable
    define process_time as real variable

the system owns the queue and the bus
```
define totaldelay as real variable
accumulate utilization as the average of n.bus
accumulate meandelay as the average of totaldelay

define lamda, duration as real variable
define servicetime as real variable

define .seconds to mean days
define .miliseconds to mean hours
define .microseconds to mean minutes
define frame.number and collision.number as real variable
define delay as real variable

define .arriving to mean 1
define .leaving to mean 2

define .idle to mean 0
define .busy to mean 1
define .collision to mean 2

end

main

"This is the main body of the program.
"This section is used to read data, start simulation and write results.

define length as real variable

let hours.v = 1000
let minutes.v = 1000

print 1 line thus
lamda service-time end-to-end delay length
read lamda,servicetime,delay,length

print 1 line with lamda,servicetime,delay,length thus
*** *** *** *** ***
let duration = ((length)*1000)/hours.v

activate a bus_generator now
start simulation

print 3 lines with meandelay*1000,utilization,utilization-
routine bus.status given new.message and action yielding status
"This routine is used for checking the status of bus/server.
"This status can be idle, busy or collision.

define action, status, new.message, other.message
 and message as integer variable
define retransmit.delay as real variable

if action = .arriving
 if bus is not empty
 let other.message = f.bus
 interrupt message called other.message
 let collision.time = time.v - time.a(other.message)
 resume message called other.message
 if collision.time < delay/1000
 let status = .collision
 let retransmit.delay = (randi.f(1,10,1)*2*delay)
 wait retransmit.delay .miliseconds
 else
 let status = .busy
 always
 else
 file this new.message in the bus
 let status = .idle
 always
else
 if queue is not empty
 remove the first message from the queue
 file this message in the bus
 reactivate this message now
 always
 let status = .idle
 always
 return
end

(collision.number*meandelay/length),
frame.number,collision.number as follows

meandelay utilization real.util frames Collision
* *** * *** * *** * *** *
end
process bus_generator

"This section generates packets.

define arrive as real variable
define slot as real variable
define processing, depart as real variable

let arrive = time.v
let frame.number = 0
let collision.number = 0

until time.v > duration do
 let depart = arrive
 let processing = (delay) +
 (exponential.f(servicetime*1000,1))/1000
 activate a message giving depart, processing now
 let frame.number = frame.number + 1
 let slot = time.v
 wait exponential.f(1/lamda*1000,1)/1000 .miliseconds
 if (time.v - slot) < delay/1000
 let collision.number = collision.number + 1
 else
 let arrive = time.v
always
loop
end

process message given arrival, processtime

"This message will be served if the status of bus is idle otherwise it will
"be filed in the queue until the bus status is idle.
"If collision occurs, the time to process the collided packed will be
"neglected.

define arrival as real variable
define processtime as real variable
define status as integer variable

let status = .idle
call bus.status giving message and .arriving yielding status

if status = .busy or status = .collision
file message in queue
suspend
always

work (processtime+delay) .miliseconds
let totaldelay = time.v - arrival
remove this message from the bus
call bus.status giving message and .leaving yielding status
end

7. Simulation Results for Transparent Bridging

<table>
<thead>
<tr>
<th>Utilization</th>
<th>Delay in the Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bus 1</td>
</tr>
<tr>
<td>Bus 1</td>
<td>0.115</td>
</tr>
<tr>
<td>Bus 2</td>
<td>0.236</td>
</tr>
<tr>
<td>Bus 3</td>
<td>0.352</td>
</tr>
<tr>
<td></td>
<td>0.469</td>
</tr>
<tr>
<td></td>
<td>0.587</td>
</tr>
<tr>
<td></td>
<td>0.701</td>
</tr>
<tr>
<td></td>
<td>0.756</td>
</tr>
<tr>
<td></td>
<td>0.765</td>
</tr>
<tr>
<td></td>
<td>0.771</td>
</tr>
<tr>
<td>Number of Collision</td>
<td>Delay across the Bus</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>Bus 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>31</td>
<td>39</td>
</tr>
<tr>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>106</td>
<td>101</td>
</tr>
<tr>
<td>157</td>
<td>143</td>
</tr>
<tr>
<td>172</td>
<td>164</td>
</tr>
<tr>
<td>177</td>
<td>169</td>
</tr>
<tr>
<td>187</td>
<td>180</td>
</tr>
</tbody>
</table>

8. SIMSCRIPT Programs for Transparent Bridging

"This program simulates the Transparent Bridging for three buses serially connected. This simulation also uses a set concept where the packet will be filed in the queue if the bus is busy.

Processes include bus_generator1, bus_generator2, bus_generator3

Every message1 has an arrivaltime1 and may belong to the queue1 and may belong to the bus1

Every message2 has an arrivaltime2 and may belong to the queue2 and may belong to the bus2

Every message3 has an arrivaltime3 and may belong to the queue3
and may belong to the bus3

define arrivaltime11, arrivaltime22, arrivaltime33 as real variable

the system owns the queue1, the queue2, the queue3, the bus1, the bus2 and the bus3

define totaldelay11, totaldelay22, totaldelay33 as real variable
define bridgedelay1 and bridgedelay2 as real variable

accumulate utilization1 as the average of n.bus1
accumulate utilization2 as the average of n.bus2
accumulate utilization3 as the average of n.bus3

accumulate meandelay11 as the average of totaldelay11
accumulate meandelay22 as the average of totaldelay22
accumulate meandelay33 as the average of totaldelay33

accumulate bridge.delay1 as the average of bridgedelay1
accumulate bridge.delay2 as the average of bridgedelay2

define lamda, duration as real variable
define servicetime as real variable

define .seconds to mean days
define .miliseconds to mean hours
define .microseconds to mean minutes

define frame.number1, frame.number2 and frame.number3 as integer variable
define collision.number1, collision.number2, collision.number3 as integer variable
define delay1, delay2, delay3 as real variable

define .arriving to mean 1
define .leaving to mean 2

define .idle to mean 0
define .busy to mean 1
define .collision to mean 2

end

main

"This is the main body of the program
define length as real variable

let hours.v = 1000
let minutes.v = 1000

print 1 line thus
lambda service-time end-to-end delay(1,2,3) length
read lamda,servicetime,delay1,delay2,delay3,length

print 1 line with lamda,servicetime,delay1,delay2,delay3,length thus
* *** * *** * *** * *** * ***

let duration = ((length)*1000)/hours.v

activate a bus_generator1 now
activate a bus_generator2 now
activate a bus_generator3 now
start simulation

print 3 lines with meandelay1*1000,utilization1,utilization1-
(collision.number1*meandelay11/length),
frame.number1,collision.number1 as follows
===
meandelay11 utilization1 real.util1 frames1 Collision1
* *** * *** * ***

print 2 lines with meandelay22*1000,utilization2,utilization2-
(collision.number2*meandelay22/length),
frame.number2,collision.number2 as follows
meandelay22 utilization2 real.util2 frames2 Collision2
* *** * *** * ***

print 3 lines with meandelay33*1000,utilization3,utilization3-
(collision.number3*meandelay33/length),
frame.number3,collision.number3 as follows
meandelay33 utilization3 real.util3 frames3 Collision3
* *** * *** * ***
===

print 2 lines with (meandelay11+meandelay22)*1000+bridge.delay1,
(meandelay11+meandelay22+meandelay33)*1000+ bridge.delay1+
bridge.delay2, (meandelay22+meandelay33)*1000+bridge.delay2
as follows
delay12 or21 delay13 or 31 delay23 or 32
* *** * ***

end
routine bus.status1 given new.message and action yielding status

"This routine is used for checking the status of bus 1

define action, status,new.message and other.message
 as integer variable
define retransmit.delay1 as real variable
define collision.time1 as real variable

if action = .arriving
 if bus1 is not empty
 let other.message = f.bus1
 interrupt message11 called other.message
 let collision.time1 = time.v - time.a(other.message)
 resume message11 called other.message
 if collision.time1 < delay1 / 1000
 let status = .collision
 let retransmit.delay1 = (randi.f(1,10,1)*2*delay1)
 wait retransmit.delay1 .miliseconds
 else
 let status = .busy
 always
 else
 file this new.message in the bus1
 let status = .idle
 always
else
 file this new.message in the bus1
 let status = .idle
always

end

routine bus.status2 given new.message and action yielding status

"This routine is used for checking the status of bus 2

define action, status,new.message and other.message
as integer variable
define retransmit.delay2 as real variable
define collision.time2 as real variable

if action = .arriving
 if bus2 is not empty
 let other.message = f.bus2
 interrupt message22 called other.message
 let collision.time2 = time.v - time.a(other.message)
 resume message22 called other.message
 if collision.time2 < delay2/1000
 let status = .collision
 let retransmit.delay2 = (randi.f(1,10,1)*2*delay2)
 wait retransmit.delay2 .milliseconds
 else
 let status = .busy
 always
 else
 file this new.message in the bus2
 let status = .idle
 always
 else
 if queue2 is not empty
 remove the first message22 from the queue2
 file this message22 in the bus2
 reactivate this message22 now
 always
 let status = .idle
 always
 return
end

"***
"routine bus.status3 given new.message and action yielding status
"***
"This routine is used for checking the status of bus 3

define action, status,new.message and other.message
 as integer variable
define retransmit.delay3 as real variable
define collision.time3 as real variable

if action = .arriving
 if bus3 is not empty
as integer variable
define retransmit.delay2 as real variable
define collision.time2 as real variable

if action = .arriving
 if bus2 is not empty
 let other.message = f.bus2
 interrupt message22 called other.message
 let collision.time2 = time.v - time.a(other.message)
 resume message22 called other.message
 if collision.time2 < delay2/1000
 let status = .collision
 let retransmit.delay2 = (randi.f(1,10,1)*2*delay2)
 wait retransmit.delay2 .miliseconds
 else
 let status = .busy
 always
 else
 file this new.message in the bus2
 let status = .idle
 always
 else
 if queue2 is not empty
 remove the first message22 from the queue2
 file this message22 in the bus2
 reactivate this message22 now
 always
 let status = .idle
 always
 return
end

**
routine bus.status3 given new.message and action yielding status
**
"This routine is used for checking the status of bus 3"

define action, status,new.message and other.message
 as integer variable
define retransmit.delay3 as real variable
define collision.time3 as real variable

if action = .arriving
 if bus3 is not empty
let other.message = f.bus3
interrupt message33 called other.message
let collision.time3 = time.v - time.a(other.message)
resume message33 called other.message
if collision.time3 < delay3/1000
 let status = .collision
 let retransmit.delay3 = (randi.f(1,10,1)*2*delay3)
 wait retransmit.delay3 .milliseconds
else
 let status = .busy
always
else
 file this new.message in the bus3
 let status = .idle
always
else
 if queue3 is not empty
 remove the first message33 from the queue3
 file this message33 in the bus3
 reactivate this message33 now
always
 let status = .idle
always
return
end

*********process bus_generator1***********
"This process will generate packets in bus 1

define value as integer variable
define arrive as real variable
define slot as real variable
define depart as real variable

let arrive = time.v
let frame.number1 = 0
let collision.number1 = 0

until time.v > duration do
 let frame.number1 = frame.number1 + 1
 let value = randi.f(1,100,1)
 let depart = arrive

 if value < 60
activate a message1 giving depart now
else
 if value < 80
 activate a message1 giving depart now
 let bridgedelay1 = exponential.f(146.286,1)
 activate a message2 giving depart now
 else
 activate a message1 giving depart now
 let bridgedelay1 = exponential.f(146.286,1)
 activate a message2 giving depart now
 let bridgedelay2 = exponential.f(146.286,1)
 activate a message3 giving depart now
 always
always

let slot = time.v
wait exponential.f(1/lambda*1000,1)/1000 .milisseconds

if (time.v - slot) < delay1/1000
 let collision.number1 = collision.number1 + 1
else
 let arrive = time.v
always
loop
end

process bus_generator2

"This process will generate packets in bus 2

define value as integer variable
define arrive as real variable
define slot as real variable
define depart as real variable

let arrive = time.v
let frame.number2 = 0
let collision.number2 = 0

until time.v > duration do
 let frame.number2 = frame.number2 + 1
 let value = randi.f(1,100,1)
 let depart= arrive

 if value < 60

Page -87-
activate a message22 giving depart now
else
 if value < 80
 activate a message22 giving depart now
 let bridgedelay1 = exponential.f(146.286,1)
 activate a message11 giving depart now
 else
 activate a message22 giving depart now
 let bridgedelay2 = exponential.f(146.286,1)
 activate a message33 giving depart now
always
always

let slot = time.v
wait exponential.f(1/\lambda*1000,1)/1000 .milliseconds

if (time.v - slot) < delay2/1000
 let collision.number2 = collision.number2 + 1
else
 let arrive = time.v
always
loop
end

This process will generate packets in bus 3

define value as integer variable
define arrive as real variable
define slot as real variable
define depart as real variable

let arrive = time.v
let frame.number3 = 0
let collision.number3 = 0

until time.v > duration do
 let frame.number3 = frame.number3 + 1
 let value = randi.f(1,100,1)
 let depart= arrive

 if value < 60
 activate a message33 giving depart now
 else
if value < 80
 activate a message33 giving depart now
 let bridgedelay2 = exponential.f(146.285,1)
 activate a message22 giving depart now
else
 activate a message33 giving depart now
 let bridgedelay2 = exponential.f(146.285,1)
 activate a message22 giving depart now
 let bridgedelay1 = exponential.f(146.285,1)
 activate a message11 giving depart now
always
always

let slot = time.v
wait exponential.f(1/lambda*1000,1)/1000 .milliseconds
if (time.v - slot) < delay3/1000
 let collision.number3 = collision.number3 + 1
else
 let arrive = time.v
always
loop
end

**
process message11 given arrival
**
"This message will travel within bus 1

define arrival as real variable
define processing as real variable
define status as integer variable

let processing= (delay1)+
 (exponential.f(servicetime*1000,1))/1000
let status = .idle
call bus.status1 giving message11 and .arriving yielding status

if status = .busy or status = .collision
 file message11 in queue1
 suspend
always
work (processing+delay1) .milliseconds
let totaldelay11 = time.v - arrival
remove this message11 from the bus1
call bus.status1 giving message11 and .leaving yielding status
process message22 given arrival
"This message will travel within bus 2

let processing= (delay2)+
(exponential.f(servicetime*1000,1))/1000
let status = .idle
call bus.status2 giving message22 and .arriving yielding status
if status = .busy or status = .collision
 file message22 in queue2
 suspend
always
work (processing+delay2) .miliseconds
let totaldelay22 = time.v - arrival
remove this message22 from the bus2
call bus.status2 giving message22 and .leaving yielding status
end

process message33 given arrival
"This message will travel within bus 3

let processing= (delay3)+
(exponential.f(servicetime*1000,1))/1000
let status = .idle
call bus.status3 giving message33 and .arriving yielding status
if status = .busy or status = .collision
 file message33 in queue3
 suspend
always
work (processing+delay3) .miliseconds
let totaldelay33 = time.v - arrival
remove this message33 from the bus3
call bus.status3 giving message33 and .leaving yielding status
end