Elastostatic Interaction Analysis of Frames Resting on Homogeneous Elastic Half-space

By

Reza Izadnegahdar

Submitted in fulfillment of the requirements for the Degree of Master of Engineering Science

University of Tasmania

February 2001
ORIGINALITY

This thesis contains no material which has been accepted for a degree or diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the candidate's knowledge and belief no material previously published or written by another person except where due knowledge is made in the text of the thesis.

Signed:

(Reza Izadnegahdar)

AUTHORITY OF ACCESS

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.
ABSTRACT

The structural response of a building to applied loads depends on the behaviour of the soil supporting the structure. Structures may undergo various support deflections dependant on their support conditions. Such deflections are associated with soil deformation: the short-term deflections are known as the elastic component and, the long-term deflections are known as the permanent plastic component. Differential support displacements cause structural interaction between supports.

To analyse such interaction, there are different approaches; it can be analytical or numerical, static or dynamic and deterministic or probabilistic, with the rigour in the analysis being commensurate to the degree of displacement likely to be experienced. Mathematical rigour, however, may or may not be justified if inadequate knowledge of parameters exists. In the context of the natural variability of constituent parameters, a closer examination of the soil parameters associated with this interaction, particularly for plane frame structures, is warranted.

The behaviour of soil media at a structure's supports during structural analysis has been the focus of much investigation and research over the last century. Efforts have been made to describe such interaction and many computer packages have been developed to incorporate different soil models with the structural studies. Unfortunately the models are usually too complex or require too much input data for easy use by professional engineers.

This study focuses on the interaction context through a linear elastostatic and deterministic analysis of plane frame structures with different soil idealisations. The study concentrates on the behaviour of a space frame structure that is constructed by a number of typical plane frames in a parallel series subjected to individual loads. A homogeneous elastic half space is utilised for the soil support.
A displacement-type analytical-numerical technique of elastic solution is used to evaluate support interaction. In this approach, the behaviour of soil is modelled by means of homogenous, elastic half-space, whilst in the analysis of the structure, a Direct Stiffness Method is applied.

The Boussinesq and Cerruti force-displacement solutions are used for isotropic behaviour, whilst the Gerrard-Wardle and Gerrard-Harrison models are used for cross-anisotropic behaviour. The flexibility matrix of the elastic half-space, related to the interaction forces is developed. The author has prepared an integrated software program to perform the analysis on a desktop PC.

The interaction results of the support were analysed for sensitivity to the soil parameters. A number of typical soil parameters were considered for Winkler, isotropic and cross-anisotropic soil models in the structural analysis. Analysis outputs were shown in graphs and tables and were used to investigate for sensitivity of interaction to different soil parameters. Finally, the conclusion of the research work is drawn and the recommendation for further research study is suggested.
NOTATIONS

\(f_{ij}^{ab} \) Flexibility coefficient with superscripts \(a \) and \(b \) denoting the points of the displacement considered and of the load applied, and where the subscripts \(i \) and \(j \) designate the directions associated with the displacement and the load, respectively.

\(A_1, ..., A_9 \) Coefficients' positions in an off-diagonal block in a soil flexibility matrix associated with two distinct points

\(B_1, ..., B_9 \) Coefficients' positions in a diagonal block in a soil flexibility matrix associated with two coincident points

\(x, y, z \) Local Cartesian coordinates

\(u, v, w \) Displacements in \(x, y \) and \(z \) directions in subscripts presenting the location of the point considered

\(X, Y, Z \) Global Cartesian coordinates

\(r, \theta, z \) Cylindrical coordinates (radial, tangential and vertical directions)

\(a, b, c, d, f \) Components of elasticity tensor for a cross-anisotropic material

\(g_1, ..., g_4, h_1, ..., h_{11}, i_1, ..., i_{11} \)
\(j_1, ..., j_{11}, s_1, ..., s_{9}, t_1, ..., t_{10} \)
\(I_{200}, c I_{200}, I_{202}, I_{222}, I_{220}, I_{220} \)
\(c I_{200}, I_{202}, I_{222}, c I_{420}, I_{420}, I_{422} \)
\(L_{000}, L_{000}, L_{002}, L_{020}, L_{020} \)
\(c L_{020}, L_{022}, L_{022}, L_{120} \)
\(A_{220}, c M_{220}, M_{222}, M_{430}, c M_{430}, c M_{420} \)
\(c M_{420}, P_{020}, S_{020}, S_{022}, S_{120}, S_{122} \)

\(E_v, E_h, E, G, v \) Young’s moduli, shear modulus, and Poisson’s ratios in a cross-anisotropic soil material with symmetry about a vertical axis in its elastic properties

\(v_h, v_{hv}, v_{vh} \)

\(P, Q_x, M_y \) Concentrated vertical and horizontal forces and a horizontal moment

\(p \) Vertical distributed load

\(p_{max} \) Maximum value for a linearly distributed vertical load

\(q_x \) Horizontal distributed load
Tension field in a fictitious elastic membrane in two-parameter soil model

D_p, D_r Flexural rigidity of a foundation plate of general shape, and a circle

E_p, G_p, ν_p Young's and shear moduli and Poisson's ratio for a plate

r_0 Radius of circular loading area

k_i Modulus of sub-grade reaction in Winkler model

k, K Transform parameters ($K = k r_0$ Chapter 1)

$f_a(r), f_b(r), f_c(r)$ Functions of r corresponding to load stress distributions

$\alpha, \beta, \omega, \gamma,$ ϕ, ρ, ψ, Ψ Derived elastic quantities reflecting nature of anisotropy

$H_0(k), H_1(k)$ Hankel transforms of order zero and one

$A_{\xi \alpha}(\Psi),$ $I_{\xi \alpha}(\Psi),$ $I_{\xi \alpha}, I_{\xi \alpha}^\prime,$ $L_{\xi \alpha}(\psi),$ $L_{\xi \alpha}(\psi),$ $L_{\xi \alpha},$ $M_{\xi \alpha}(\Psi),$ $M_{\xi \alpha}(\Psi),$ $M_{\xi \alpha},$ $P_{\xi \alpha}(\psi),$ $P_{\xi \alpha}(\psi),$ $P_{\xi \alpha},$ $S_{\xi \alpha}(\psi),$ $S_{\xi \alpha}(\psi),$ $S_{\xi \alpha}$ Integrals involved in the general solutions for displacements, strains and stresses

l, A, I Length, cross-sectional area, the moment of inertia about the z-axis for structure element

$[K_s]$ Structure stiffness matrix

$[K_s]$ Soil stiffness matrix

$[K_{\text{sys}}]$ System stiffness matrix

k_{ab} Element stiffness coefficient

$[k_{ab}](e)$ Stiffness matrix (3×3) for element (e) associated with forces at node a due to displacements of node b

$[k]^t$ Local Element stiffness matrix

$[k]$ Global element stiffness matrix

$[F]^e$ Element nodal force vector

$\{\Delta\}^e$ Local element nodal displacements vector

$\{\Delta\}$ Global element nodal displacements vector
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{\Delta}</td>
<td>Nodal displacements vector</td>
</tr>
<tr>
<td>{T}</td>
<td>Element transformation matrix</td>
</tr>
<tr>
<td>{T}^T</td>
<td>Transpose of element transformation matrix</td>
</tr>
<tr>
<td>{P}</td>
<td>Nodal external forces vector</td>
</tr>
<tr>
<td>{P}_0^1</td>
<td>Total fixed end forces vector</td>
</tr>
<tr>
<td>{R}_e</td>
<td>Reaction forces vector</td>
</tr>
<tr>
<td>{R}_e</td>
<td>Nodal elastic restraint forces vector</td>
</tr>
<tr>
<td>{F}_e</td>
<td>Total local element end forces vector</td>
</tr>
<tr>
<td>{F}_e^0</td>
<td>Vector of local fixed end forces due to the loads applied to an element</td>
</tr>
<tr>
<td>{F}_e^0</td>
<td>Vector of global fixed end forces due to the loads applied to an element</td>
</tr>
<tr>
<td>{P}_\text{eff}</td>
<td>Vector of global effective forces in a system {P} - {P^0}</td>
</tr>
</tbody>
</table>
CONTENTS

ORIGINALLITY ... i

AUTHORITY OF ACCESS ... i

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iv

NOTATIONS ... v

CONTENTS ... viii

CHAPTER 1
INTRODUCTION ... 1
 1.1 THESIS OUTLINE .. 1
 1.2 STATE OF THE ART: SOIL-STRUCTURE INTERACTION 3
 1.3 SIGNIFICANCE OF SOIL CONSIDERATION ... 4
 1.4 LITERATURE REVIEW .. 6
 1.4.1 Rigid Model... 9
 1.4.2 Winkler Model and Its Applications ... 10
 1.4.3 Homogeneous Isotropic Elastic Half-space Model 13
 1.4.4 Homogeneous Cross-anisotropic Elastic Half-space Model 16
 1.4.5 Non-homogeneous Isotropic Elastic Half-space Model 17
 1.5 REQUIREMENTS FOR SOIL-STRUCTURE ANALYSIS 19
 1.6 SCOPE OF THIS THESIS .. 19
 1.7 POSSIBLE BENEFITS OF THE RESEARCH .. 20

CHAPTER 2
SOIL IDEALISATION ... 22
 2.1 INTRODUCTION .. 22
 2.2 SINGLE-PARAMETER SOIL MODEL ... 22
 2.3 TWO-PARAMETER SOIL MODELS .. 25
 2.3.1 Refinements to Winkler Model .. 25
 2.3.2 Homogeneous Isotropic Elastic Half-space 26
 2.3.2.1 Further Solution Associated with Isotropic Elastic Half-space ... 29
 2.4 CROSS-ANISOTROPIC ELASTIC HALF-SPACE MODELS 32
 2.4.1 Points of Load Application and Displacement Distinct 35
 2.4.1.1 Displacements due to a Vertical Point Load 36
 2.4.1.2 Displacements due to a Horizontal Point Load 37
 2.4.1.3 Displacements due to a Moment Load about Horizontal Axis ... 37
 2.4.2 Points of Load Application and Displacement Coincident 38
 2.4.2.1 Displacements due to a Vertical Uniform Load 39
 2.4.2.2 Displacements due to a Horizontal Uniform Load 40
 2.4.2.3 Displacements due to a Vertical Linear Load 40
 2.5 NON-HOMOGENEOUS ISOTROPIC ELASTIC HALF-SPACE MODEL 41
CHAPTER 3
METHOD OF SOLUTION ... 50

3.1 INTRODUCTION ... 50
3.2 STRUCTURE-SOIL SYSTEM 50
3.3 DIRECT STIFFNESS MATRIX METHOD 53
3.4 SUPERSTRUCTURE CONTRIBUTION IN ANALYSIS 54
 3.4.1 Assumptions in Superstructure analysis 55
3.5 SOIL CONTRIBUTION IN ANALYSIS 55
 3.5.1 Assumptions in Soil Consideration 56
 3.5.2 Development of Soil Stiffness Matrix 56
3.5.3 Flexibility Coefficients Associated with Two Distinct Points on a Homogeneous Isotropic Elastic Half-space 58
 3.5.3.1 Flexibility Coefficients Associated with Horizontal Force \(Q_b \) 59
 3.5.3.2 Flexibility Coefficients Associated with Vertical Force \(P_b \) 61
 3.5.3.3 Flexibility Coefficients Associated with Moment \(M_b \) about Horizontal Axis \(z \) 63
3.5.4 Flexibility Coefficients Associated with Two Coincident Points on a Homogeneous Isotropic Elastic Half-space 64
 3.5.4.1 Flexibility Coefficients Associated with Horizontal Force \(Q_b \) 65
 3.5.4.2 Flexibility Coefficients Associated with Vertical Force \(P_b \) 66
 3.5.4.3 Flexibility Coefficients Associated with Moment \(M_b \) about Horizontal Axis \(z \) 67
3.5.5 Flexibility Coefficients Associated with Two Distinct Points on a Homogeneous Cross-anisotropic Elastic Half-space 70
 3.5.5.1 Flexibility Coefficients Associated with the Displacements due to Horizontal Load \(Q_b \) 71
 3.5.5.2 Flexibility Coefficients Associated with the Displacements due to Vertical Load \(P_b \) 72
 3.5.5.3 Flexibility Coefficients Associated with the Displacements due to Moment \(M_b \) about Horizontal Axis \(z \) 73
3.5.6 Flexibility Coefficients Associated with Two Coincident Points on a Homogeneous Cross-anisotropic Elastic Half-space 74
 3.5.6.1 Flexibility Coefficients Associated with the Displacements due to Horizontal Force \(Q_b \) 75
 3.5.6.2 Flexibility Coefficients Associated with the Displacements due to Vertical Force \(P_b \) 76
 3.5.6.3 Flexibility Coefficients Associated the Displacements due to Moment \(M_b \) about Horizontal Axis \(z \) 78

3.6 CONCLUDING REMARKS TO CHAPTER 80

CHAPTER 4
SOFTWARE DEVELOPMENT ... 81

4.1 INTRODUCTION ... 81
4.2 MODULE "DATAENTR" ... 82
4.3 MODULE "ANALYSIS" .. 84
4.4 OUTPUT OF ANALYSIS ... 87
APPENDIX A2
A2.1 HOMOGENEOUS ELASTIC HALF-SPACE
 A2.1.1 Isotropic Elastic Half-Space
 A2.1.2 Cross-anisotropic Elastic Half-Space
 A2.1.2.1 Dirac Delta Function
 A2.1.2.2 Constants and Coefficients Associated with Numerical Integration Method
A2.2 METHODS OF OBTAINING SOIL PARAMETERS
 A2.2.1 Determination of Elastic Parameters of an Isotropic Soil
 A2.2.2 In situ Determination of CBR and Elastic Parameters
 A2.2.3 Laboratory Determination of CBR and Soil Elastic Parameters
 A2.2.4 Adoption of Presumptive CBR Values

APPENDIX A3
A3 DEVELOPMENT OF STRUCTURE STIFFNESS MATRICES & DIRECT STIFFNESS METHOD

APPENDIX A4
USER MANUAL FOR SASIAP ANALYSIS PACKAGE
 A4.1 Introduction
 A4.2 Data Menu
 A4.3 Edit menu
 A4.4 Load Menu
 A4.5 Computer Program Listings
 Program GENFORMS
 Unit GLOBALS
 Program DATAENTR
 Program ANALYSIS
 Unit BUILD
 Unit SOILMODE

APPENDIX A5
A5.1 Tables associated with Graphs 5.1 - 5.18
A5.2 Tables associated with Graphs 5.19 - 5.36
A5.3 Tables associated with Graphs 5.37 - 5.45
LISTING OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Flow chart illustrating the thesis layout</td>
<td>1</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Classification of soil models and methods of stress consideration and calculation</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Illustration of sign convention for a beam and a plate foundation resting on Winkler model</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Illustration of soil deformations: (a) under external load for to Winkler model, and (b) the observed deflections on site in the real situation</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Illustration of Boussinesq's approach over a semi-infinite soil mass bearing a normal load</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Illustration of Cerruti's case over a semi-infinite soil mass bearing a normal load</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Cylindrical coordinates and an infinitesimal circular loaded area (radius r_0)</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Illustration of load cases considered by Gerrard and Wardle (1973)</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Stress resolution for the load cases considered in this study (Gerrard and Harrison 1970a)</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Variation of shear modulus in an inhomogeneous soil idealised by Gibson (1967)</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Coordinate systems, superstructure, soil medium and the interaction</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Illustration of soil and superstructure nodal reactions at the interface</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Illustration of different sub-matrix groups in soil flexibility between two points</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Orientation of direction vector for point $P(i, j, k)$</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Flexibility coefficients associated with the horizontal and vertical degrees of freedom at point b due to horizontal force Q_a at point a</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Illustration of flexibility coefficients in soil flexibility matrix $[F]_{ab}$</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Profile of the surface displacement components due to horizontal surface force Q_b</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Equivalent situations in flexibility coefficients due to symmetry in the soil flexibility matrix</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Resolution of moment M_a into a vertical couple acting on the surface of the medium</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Profile of the surface horizontal and vertical displacements due to vertical force (P_b)</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Rotations ϕ_a and ϕ_b due to the vertical point load P_b</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Replacement of moment M_b with a couple, and the vertical displacement</td>
<td>63</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Total zero vertical displacement due to horizontal load Q_b</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Load distribution over a circle on the soil replacing moment M_b</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Load distribution over a circle on the soil replacing moment M_b</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Overview of SASIAP analysis package</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Flow chart for module “DATAENTR”</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Flow chart for module “ANALYSIS”</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Flow chart for soil section in the soil-structure analysis</td>
<td>85</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Flow chart for structure consideration in analysis procedure</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Flow chart for the system analysis</td>
<td>86</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Illustration of a single plane frame considered for two cases: (a) No interactive support, and (b) With interactive support</td>
<td>89</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Illustration of a typical (main) plane frame and neighbouring parallel frames</td>
<td>89</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Profile of the structure and the external applied loads</td>
<td>90, 106 & 113</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Flow chart for soil data in the examples</td>
<td>90</td>
</tr>
</tbody>
</table>
Figure 5.5 Nomination of symbols to element end-node moments associated with plane frame resulting from structural analysis..93
Figure 5.6 Nomination of symbols to nodal displacements associated with analysis............94
Figure 6.1 Illustration of parameters hierarchy in system analysis..................................148

Figure A1.1 Parameters used for a distributed load over a circle...1-1
Figure A1.2 Surface vertical displacement due to a uniformly loaded rectangular area on elastic half space (Cheung and Zienkiewicz 1965)..1-2
Figure A2.1 Illustration of the Mindlin's case in x-z plane within the medium........................2-1
Figure A2.2 Stress definitions in triaxial test...2-15
Figure A3.1 Element free-body diagram in local coordinates..3-1
Figure A3.2 Stiffness matrix for a structure with two members and three nodes3-3
Figure A3.3 Orientation of displacements and forces in both coordinate systems................3-3
Figure A3.4 Orientation of fixed-end forces in the local coordinates....................................3-5
Figure A4.1 Illustrates the introduction of DataEntr program..4-2
Figure A4.2 A blank text associated with a default title...4-3
Figure A4.3 The Data menu bar and its pull-down items...4-3
Figure A4.4 Accessing and opening an existing structure data file..4-3
Figure A4.5 Illustration of window Save As to save a file under a name other than the original..4-3
Figure A4.6 Illustrates the root and current directories for any new location of a directory......4-4
Figure A4.7 DOS shell access within the program...4-4
Figure A4.8 Illustrates the items on the Edit data pull-down menu...4-5
Figure A4.9 Window associated with the title of a structure..4-5
Figure A4.10 Selection of a data file associated with Geometry of Structure nodes.................4-6
Figure A4.11 Geometry details of a structure node entered or edited.....................................4-6
Figure A4.12 Window to access a file of material properties..4-6
Figure A4.13 Illustration of material properties data window...4-6
Figure A4.14 Allocating a cross section data file...4-7
Figure A4.15 Cross-section properties associated with structure members..........................4-7
Figure A4.16 Allocating a member data file..4-7
Figure A4.17 Data associated with members of a structure..4-7
Figure A4.18 Allocating a file for Restraint data...4-8
Figure A4.19 Information associated with node restraints..4-8
Figure A4.20 Load pull-down menu...4-8
Figure A4.21 Allocating Prescribed Load file..4-9
Figure A4.22 Details of prescribed displacement loads applicable to structure nodes.............4-9
Figure A4.23 Allocating Node load file..4-9
Figure A4.24 Details of Node loads applicable to structure...4-9
Figure A4.25 Allocating file associated with member concentrated load..............................4-10
Figure A4.26 Details of member concentrated load...4-10
Figure A4.27 Allocating file associated with member uniformly distributed loads..................4-10
Figure A4.28 Details of member uniformly distributed loads..4-10
Figure A4.29 Allocation of file associated with trapezoidal loads...4-11
Figure A4.30 Details of trapezoidal loads applicable to structure..4-11
LISTING OF TABLES

Table 2.1 Equations defining stress-strain modulus E_s by several test methods45
Table 2.2 The most commonly used multiplier \sqrt{OCR} (overconsolidation ratio) used
to increase the normally consolidated value of stress-strain modulus $E_{s,nc}$46
Table 2.3 Values and some value ranges for Poisson's ratio μ for selected materials46
Table 2.4 The most commonly used values for soils ...47
Table 2.5 A range of E_s values (possibly obtained) for the static stress-strain modulus
E_s for selected soils ..47
Table 5.1 Table of soil elastic properties considered in this research ..95
Table 5.1a Isotropic elastic soil constants (Gerrard 1967) ...96
Table 5.1b Table of properties for cross-anisotropic soil Gerrard (1967)97
Table 5.1c Listing of elastic properties for Isotropic and Cross-anisotropic soil sub-cases
32-36 (Wardle 1977) ..98
Table 5.1d Listing of elastic properties for Isotropic soil sub-cases 37, 39, 40 and its
equivalent of Winkler spring ...98
Table 5.2 Output data for element bending moment M_{21} from structure analysis when
soil modulus of elasticity (Young's modulus) varies between 5 and 150
MPa for three different interaction cases ..99
Table 5.3 Element end moments ...117
Table 5.4. Nodal displacements in x and y directions are in meters, and rotation in z
direction is in radian ..117
Table 5.5 Support reactions in x and y directions are in kN, and for z direction is in
kN.m ...117
Table 5.6 Bending moment M_{21} for different Winkler springs and corresponding
Isotropic values ...118
Table 5.7 Bending moment M_{32} for different Winkler springs and corresponding
Isotropic values ...118
Table 5.8 Bending moment M_{34} for different Winkler springs and corresponding
Isotropic values ...118
Table 5.9 Nodal displacement Δ_{x1} for different Winkler springs and corresponding
Isotropic values ...119
Table 5.10 Nodal displacement Δ_{y1} for different Winkler springs and corresponding
Isotropic values ...119
Table 5.11 Nodal rotation ϕ_{z1} for different Winkler springs and corresponding Isotropic
values ...119
Table 5.12 Nodal displacement Δ_{x3} for different Winkler springs and corresponding
Isotropic values ...119
Table 5.13 Nodal displacement Δ_{y3} for different Winkler springs and corresponding
Isotropic values ...119
Table 5.14 Nodal rotation ϕ_{z3} for different Winkler springs and corresponding Isotropic
values ...120
Table 5.15 Nodal reactions from interaction analysis (Isotropic $E_s = 50$ MPa,
$\nu = 0.25$) ..122
Table 5.16 Members end moments (kN.m) from interaction analysis (Isotropic
$E_s = 50$ MPa, $\nu = 0.25$) ..122
Table 5.17 Nodal displacements \((m)\) Angle of rotation (rad) from interaction analysis (Isotropic \(E_s = 50\) MPa, \(\nu = 0.25\))

<table>
<thead>
<tr>
<th>Angle of rotation (rad) from interaction analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_s = 50) MPa, (\nu = 0.25)</td>
</tr>
</tbody>
</table>

Table 5.18 Verification of displacements for sample: 7-Iso D
Table 5.19 Verification of displacements for sample: 7-Iso P
Table 5.20 Verification of displacements for sample: 7-Iso S

Table 5.21 Bending moment \((M_{21})\) vs Isotropic soil modulus of elasticity \(E_h\) for \(\nu = 0.25\)

Table 5.22 Bending moment \((M_{32})\) vs Isotropic soil modulus of elasticity \(E_h\) for \(\nu = 0.25\)

Table 5.23 Bending moment \((M_{34})\) vs Isotropic soil modulus of elasticity \(E_h\) for \(\nu = 0.25\)

Table 6.1 Variation of bending moments \(M_{21}, M_{32}, M_{34}\) for \(E_s = 20\) MPa, and corresponding items (\(v_{0.25} - v_{0.43}\)) in percentage

Table 6.2 Variation of bending moments \(M_{21}, M_{32}, M_{34}\) for \(E_s = 50\) MPa, and corresponding items (Tables 6.1 - Table 6.1) in percentage

Table 6.3 Variation of bending moments \(M_{21}, M_{32}, M_{34}\) for \(E_s = 70\) MPa, and corresponding items (Tables 6.2 - Table 6.1) in percentage

Table 6.4 Variation of nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 20\) MPa, and corresponding items (\(v_{0.25} - v_{0.43}\)) in percentage

Table 6.5 Variation of nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 50\) MPa, and corresponding items (Tables 6.4 - Table 6.2) in percentage

Table 6.6 Variation of nodal displacements/rotation \(\Delta_{a2}, \Delta_{a2}, \Phi_{a2}\) for \(E_s = 70\) MPa, and corresponding items (Tables 6.5 - Table 6.3) in percentage

Table 6.7 Variation of nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 20\) MPa, and corresponding items (\(v_{0.25} - v_{0.43}\)) in percentage

Table 6.8 Variation of nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 50\) MPa, and corresponding items (Tables 6.7 - Table 6.4) in percentage

Table 6.9 Variation of nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 70\) MPa, and corresponding items (Tables 6.8 - Table 6.4) in percentage

Table 6.10 Variation of bending moments \(M_{21}, M_{32}, M_{34}\) for \(E_s = 70\) MPa, and \(E_s = 20\) MPa, in a soft to medium soil, corresponding (Tables 6.10 - Table 6.1) in percentage

Table 6.11 Variation of bending moments \(M_{21}, M_{32}, M_{34}\) for \(E_s = 70\) MPa, and \(E_s = 20\) MPa, in a soft to medium soil, corresponding (Tables 6.11 - Table 6.1) in percentage

Table 6.12 Nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 35\) MPa, in a soft to medium soil, corresponding (Tables 6.12 - Table 6.1) in percentage

Table 6.13 Nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 35\) MPa, in a medium to hard soil, corresponding (Tables 6.13 - Table 6.12) in percentage

Table 6.14 Nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 35\) MPa, in a medium to hard soil, corresponding (Tables 6.14 - Table 6.13) in percentage

Table 6.15 Nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 35\) MPa, in a medium to hard soil, corresponding (Tables 6.15 - Table 6.14) in percentage

Table 6.16 Nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 35\) MPa, in a medium to hard soil, corresponding (Tables 6.16 - Table 6.15) in percentage

Table 6.17 Nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 35\) MPa, in a medium to hard soil, corresponding (Tables 6.17 - Table 6.16) in percentage

Table 6.18 Nodal displacements/rotation \(\Delta_{a1}, \Delta_{a1}, \Phi_{a1}\) for \(E_s = 35\) MPa, in a medium to hard soil, corresponding (Tables 6.18 - Table 6.17) in percentage

Table A1.1 Coefficient for deflection at the centre of rectangle \(a \times b\)
Table A2.1	Presumptive values of CBR for different types of soil (Austroads, Pavement and Design 1992)	2-16
Table A5.1	Bending moment M_{21} vs Isotropic soil modulus of elasticity E_H for $v=0.25$	5-1
Table A5.2	Bending moment M_{32} vs Isotropic soil modulus of elasticity E_H for $v=0.25$	5-1
Table A5.3	Bending moment M_{34} vs Isotropic soil modulus of elasticity E_H for $v=0.25$	5-1
Table A5.4	Nodal displacement (Δ_{e1}) vs soil modulus of elasticity (E_H) Isotropic $v=0.25$	5-2
Table A5.5	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity (E_H) Isotropic $v=0.25$	5-2
Table A5.6	Nodal rotation (Φ_{e1}) vs soil modulus of elasticity (E_H) Isotropic $v=0.25$	5-2
Table A5.7	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity (E_H) Isotropic $v=0.25$	5-3
Table A5.8	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity (E_H) Isotropic $v=0.25$	5-3
Table A5.9	Nodal rotation (Φ_{e1}) vs soil modulus of elasticity (E_H) Isotropic $v=0.25$	5-3
Table A5.10	Bending moment (M_{32}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-4
Table A5.11	Bending moment (M_{32}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-4
Table A5.12	Bending moment (M_{32}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-4
Table A5.13	Nodal displacement (Δ_{e1}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-5
Table A5.14	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-5
Table A5.15	Nodal rotation (Φ_{e1}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-5
Table A5.16	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-6
Table A5.17	Nodal rotation (Φ_{e1}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-6
Table A5.18	Nodal rotation (Φ_{e3}) vs soil modulus of elasticity (E_H) Isotropic $v=0.43$	5-6
Table A5.19	Bending moment (M_{21}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-7
Table A5.20	Bending moment (M_{32}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-7
Table A5.21	Bending moment (M_{34}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-7
Table A5.22	Nodal displacement (Δ_{e1}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-8
Table A5.23	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-8
Table A5.24	Nodal rotation (Φ_{e1}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-8
Table A5.25	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-9
Table A5.26	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-9
Table A5.27	Nodal rotation (Φ_{e3}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-9
Table A5.28	Bending moment (M_{21}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-10
Table A5.29	Bending moment (M_{32}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-10
Table A5.30	Bending moment (M_{34}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-10
Table A5.31	Nodal displacement (Δ_{e1}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-11
Table A5.32	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-11
Table A5.33	Nodal rotation (Φ_{e1}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-11
Table A5.34	Nodal rotation (Φ_{e3}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-12
Table A5.35	Nodal displacement (Δ_{e3}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-12
Table A5.36	Nodal rotation (Φ_{e3}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-12
Table A5.37	Bending moment (M_{32}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-13
Table A5.38	Bending moment (M_{32}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-13
Table A5.39	Bending moment (M_{34}) vs soil modulus of elasticity of cross-anisotropic soil E_v	5-13
Table A5.40	Nodal displacement (Δ_1) vs soil modulus of elasticity of cross-anisotropic soil F_v	5-14
Table A5.41	Nodal displacement (Δ_2) vs soil modulus of elasticity of cross-anisotropic soil F_v	5-14
Table A5.42	Nodal rotation (Φ_3) vs soil modulus of elasticity of cross-anisotropic soil F_v	5-14
Table A5.43	Nodal displacement (Δ_3) vs soil modulus of elasticity of cross-anisotropic soil F_v	5-15
Table A5.44	Nodal displacement (Δ_3) vs soil modulus of elasticity of cross-anisotropic soil F_v	5-15
Table A5.45	Nodal rotation (Φ_3) vs soil modulus of elasticity of cross-anisotropic soil F_v	5-15
Graph 5.1	Bending moment (M_{21}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$100	
Graph 5.2	Bending moment (M_{32}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$100	
Graph 5.3	Bending moment (M_{34}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$101	
Graph 5.4	Nodal displacement (Δ_{21}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$101	
Graph 5.5	Nodal displacement (Δ_{31}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$102	
Graph 5.6	Nodal rotation (Φ_{21}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$102	
Graph 5.7	Nodal displacement (Δ_{33}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$103	
Graph 5.8	Nodal displacement (Δ_{33}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$103	
Graph 5.9	Nodal rotation (Φ_{23}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.25$104	
Graph 5.10	Bending moment (M_{21}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$103	
Graph 5.11	Bending moment (M_{32}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$103	
Graph 5.12	Bending moment (M_{34}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$104	
Graph 5.13	Nodal displacement (Δ_{21}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$104	
Graph 5.14	Nodal displacement (Δ_{31}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$105	
Graph 5.15	Nodal rotation (Φ_{21}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$105	
Graph 5.16	Nodal displacement (Δ_{33}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$105	
Graph 5.17	Nodal displacement (Δ_{33}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$105	
Graph 5.18	Nodal rotation (Φ_{23}) vs soil modulus of elasticity (E_v) Isotropic $v = 0.43$106	
Graph 5.19	Bending moment (M_{21}) vs soil modulus of elasticity of cross-anisotropic soil E_v107	
Graph 5.20	Bending moment (M_{32}) vs soil modulus of elasticity of cross-anisotropic soil E_v107	
Graph 5.21	Bending moment (M_{34}) vs soil modulus of elasticity of cross-anisotropic soil E_v107	
Graph 5.22	Nodal displacement (Δ_{21}) vs soil modulus of elasticity of cross-anisotropic soil E_v108	
Graph 5.23	Nodal displacement (Δ_{31}) vs soil modulus of elasticity of cross-anisotropic soil E_v108	
Graph 5.24	Nodal rotation (Φ_{21}) vs soil modulus of elasticity of cross-anisotropic soil E_v108	
Graph 5.25	Nodal displacement (Δ_{33}) vs soil modulus of elasticity of cross-anisotropic soil E_v108	
Graph 5.26	Nodal displacement (Δ_{33}) vs soil modulus of elasticity of cross-anisotropic soil E_v109	
Graph 5.27	Nodal rotation (Φ_{23}) vs soil modulus of elasticity of cross-anisotropic soil E_v109	
Graph 5.28	Bending moment (M_{21}) vs soil modulus of elasticity of cross-anisotropic soil E_v110	
Graph 5.29	Bending moment (M_{32}) vs soil modulus of elasticity of cross-anisotropic soil E_v110	
Graph 5.30	Bending moment (M_{34}) vs soil modulus of elasticity of cross-anisotropic soil E_v110	
Graph 5.31	Nodal displacement (Δ_{21}) vs soil modulus of elasticity of cross-anisotropic soil E_v111	
Graph 5.32	Nodal displacement (Δ_{31}) vs soil modulus of elasticity of cross-anisotropic soil E_v111	
Graph 5.33	Nodal rotation (Φ_{21}) vs soil modulus of elasticity of cross-anisotropic soil E_v111	
Graph 5.34	Nodal displacement (Δ_{33}) vs soil modulus of elasticity of cross-anisotropic soil E_v112	
Graph 5.35	Nodal displacement (Δ_{33}) vs soil modulus of elasticity of cross-anisotropic soil E_v112	
Graph 5.36	Nodal rotation (Φ_{23}) vs soil modulus of elasticity of cross-anisotropic soil E_v112	
Graph 5.37	Bending moment (M_{21}) vs soil modulus of elasticity of cross-anisotropic soil F_v114	
Graph 5.38 Bending moment (M_{32}) vs soil modulus of elasticity of cross-anisotropic soil
Fv ... 114

Graph 5.39 Bending moment (M_{34}) vs soil modulus of elasticity of cross-anisotropic soil
Fv ... 114

Graph 5.40 Nodal displacement (Δ_n) vs soil modulus of elasticity of cross-anisotropic soil
Fv .. 115

Graph 5.41 Nodal displacement (Δ_n) vs soil modulus of elasticity of cross-anisotropic soil
Fv .. 115

Graph 5.42 Nodal rotation (Φ_{11}) vs soil modulus of elasticity of cross-anisotropic soil Fv 115

Graph 5.43 Nodal displacement (Δ_3) vs soil modulus of elasticity of cross-anisotropic soil
Fv .. 115

Graph 5.44 Nodal displacement (Δ_3) vs soil modulus of elasticity of cross-anisotropic soil
Fv .. 115

Graph 5.45 Nodal rotation (Φ_{23}) vs soil modulus of elasticity of cross-anisotropic soil Fv 115

Graph 5.46 Verification of results for bending moment (M_{21}) vs soil modulus of elasticity
(E_H) Isotropic $\nu = 0.25$.. 126

Graph 5.47 Verification of results for bending moment (M_{32}) vs soil modulus of elasticity
(E_H) Isotropic $\nu = 0.25$.. 126

Graph 5.48 Verification of results for bending moment (M_{34}) vs soil modulus of elasticity
(E_H) Isotropic $\nu = 0.25$.. 126

Graph 5.42 Correlation of static cone penetrometer and CBR (Pavement Design 1992)........... 2-12
Graph 5.43 Correlation of dynamic cone penetrometer and CBR (Pavement Design 1992) 2-13
Graph 5.44 Variation in stiffness parameters used in equation (2.79) with load repetitions
(Barret and Smith (1976)) 2-15
CHAPTER ONE

INTRODUCTION

Elastostatic Interaction Analysis of Frames Resting on Homogeneous Elastic Half-space
CHAPTER 1

INTRODUCTION

1.1. THESIS OUTLINE

The study described in this thesis focuses on the analysis of the interaction of elastostatic linear plane frame structures and their supporting media modeled as homogeneous elastic half-space with isotropic and cross-anisotropic properties. In the isotropic soil idealisation, Boussinesq's solutions (1885) are utilised for the application of vertical point load to the surface of elastic half-space, and Cerruti's solutions (1882) are used for the horizontal loads. The analysis is enhanced by a well-known force-displacement analytical method, termed the Direct Stiffness Method (DSM). For the case of cross-anisotropic media, the solutions of Gerrard and Harrison (1970a) and Gerrard and Wardle (1973) have been implemented to express the force-displacement relationship. These models are described in detail in the next chapter. Figure 1.1 shows a flow chart of the thesis chapters and their organisation.

![Flow chart](image-url)

Figure 1.1 Flow chart illustrating the thesis layout.
Chapter 1, is an introductory section, which establishes the context of soil-structure interaction. The importance of the soil characteristics in the analysis is described and a summary of past work is outlined in a literature review. Different soil models are reviewed, and their important parameters are identified. The chapter concludes with a description of possible benefits that may result from the project.

Chapter 2 outlines the general idealisation of the superstructure and soil models in use (sections 2.3.2 and 2.4). The soil is represented by a half-space medium with isotropic and cross-anisotropic properties.

Chapter 3 establishes the descriptive matrices for the soil and the superstructure using the proposed analytical/numerical models.

Chapter 4 describes the different processes and procedures that were developed and used in each step via their corresponding flow charts. These were constituted into an integrated computer package (SASIAP) that facilitates the analysis of soil-structure interaction for different applications. The package enables the user to extend the application of the models that were utilised for a plane frame analysis, to the third dimension for analysing the interaction caused by the neighbouring frames. The total assemble then constitutes a space frame.

Chapter 5 presents a number of soil-structure examples using different soil models. In these examples, superstructures with different support conditions are considered, and typical results obtained are tabulated for discussion in chapter 6.

In chapter 6 a discussion of the model output is carried out, and some conclusions are presented on the effects of the various parameters on model output.

In chapter 7 the final summary conclusions are presented considering both the present work and past studies. These are followed by suggestions for extension of this study and future work.
1.2. STATE OF THE ART: SOIL-STRUCTURE INTERACTION

In the early years of investigating soil-structure interaction, the analyses of the structure and that of the soil were undertaken independently. In such an approach, the structural responses within a building were calculated on the assumption that the footings of the structure were rigid. The resulting reaction forces at the supports were then used by soil mechanics specialists to calculate foundation settlements based on a completely flexible structure. However, with more research in this field, new methods of analyses were developed that form the basis of a more rational approach to foundation design that integrates soil and structure (Lee & Harrison 1970; Goschy 1978; Desai et al. 1982; Masih 1985, 1993).

At present, it is widely recognised that the response of a structure is strongly dependent upon the behaviour of the soil underneath. Due to different soil support conditions, the structure can undergo various deflections in response to its external loads. These deflections are associated with soil deformation, which has two components: the short term elastic component, and the long term (or permanent) plastic (consolidation) component. This research focuses on the elastic solutions for the soil deformation.

To consider the nature of loads applied to the soil, there are two major types: static and dynamic. The response of the soil structure and the interaction of the soil and the structure vary greatly with load type. A study of all load types is beyond the scope of this thesis and only static loads are considered.

Analytical methods are accepted as one major method used to tackle soil-structure interaction problems, as these are capable of taking several factors into account. These factors include the type of foundation and the supporting soil medium, the boundary conditions and finally, the external loads. In the majority of practical cases, the analysis of soil-superstructure interaction is concerned only with the assessment of structural behaviour at working loads. Under these circumstances the magnitudes of the applied loads are relatively low and both the soil and the structural components can practically be considered as linear elastic materials. The present discussion of the interaction analysis is thus restricted to the domain of linear...
elasticity. Numerous refinements are possible depending upon the soil type, which can be classified as an environment with elastic, elasto-plastic, visco-elastic or even critical state material with time-dependent properties.

The degree of cohesion and density of soil determines the responses of the supporting medium with respect to the interaction (Masih 1985). Existence of water and its quantity are other important issues that designers are required to be aware of as all engineers recognise that the presence of water can greatly alter the performance or response characteristics of the soil.

1.3. SIGNIFICANCE OF SOIL CONSIDERATION

The analysis of the interaction between a structure's foundation and the supporting soil medium is of great importance to structural and geotechnical engineering. Theoretical results can provide information that can be used in both foundation and structural design. The quality of soil is important in structural design as it affects the size of the members as well as the foundation of the structure, and hence influences the economy of the structure.

The amount of research work carried out in the past, and the broad present interest in this field testify to the significance of soil characteristics in soil-structure interaction analysis. This interest has also motivated the extension of investigations into different aspects of the soil-structure interaction.

One aspect of soil characteristics is its behaviour due to external dynamic loads. Seed et al. (1975) studied dynamic soil-structure interaction with respect to the seismic design of nuclear power plants and pump stations. These researchers emphasised the significance of soil in prediction performance and the requirement for some design procedures to increase the validity of analysis techniques. Furthermore, they concluded that uncertainties in determining soil properties give rise to difficulties in accurately evaluating the characteristics of ground movements.

Meek and Wolf (1992, 1994) studied the dynamic response of the foundations of a frame, and compared the analysis of 2D- versus 3D- frame modeling of surface
foundations. They pointed out that the static response between the footings is different from that of the dynamic case. The result of the interaction in the static case may fall in an expected range. However, in the dynamic case the material properties of soil, when included in the analysis, require some alteration to accurately predict field performance.

Dieterman and Metrikine (1996) studied the dynamic properties of isotropic elastic half-space medium. Later, Metrikine and Dieterman (1997) proposed equivalent vertical stiffness for such a medium interacting with a beam taking into account the shear stress acting in the beam.

More recently, Gazetas and Mylonakis (1998) considered a variety of soil models to evaluate the soil-structure interaction. Furthermore, in the study by Stewart et al. (1999a), the analytical procedures and system identification techniques for evaluating the inertial soil-structure interaction effects on a seismic structural response were discussed. A collective examination of the empirical and predicted results from a number of sites revealed a pronounced influence of structure-to-soil stiffness ratio on inertial interaction, as well as secondary influences from the structure aspect ratio and the foundation embedment, type, shape and flexibility (Stewart et al. 1999b).

To express the significance of the "static" interaction of soil and structure, Meyerhof (1947), Francis (1954) and Chamecki (1956) developed interaction analyses for multi-storey multi-bay structures on isolated frames. These analyses were superseded by Lee's method (Lee 1969), which required only minor amendments to those previous analysis procedures. This method was named "the fictitious member technique", where the supporting soil was replaced by a small structural member at each column base where its axial stiffness was considered equal to the relevant stiffness of the footing-supporting soil at each column. Lee (1975) emphasised the analysis of structure based on the above technique, and considered the interaction for the major types of foundations, namely, isolated footings, piles and rafts.

In his work, Brown (1975) emphasised the significance of structure-foundation interaction. An examination of the importance of such interaction with regard to the
effect of differential displacements of column bases and the internal forces was presented, and he investigated the important factors that control the magnitude of the interaction. In his findings, several factors such as the combination of relative stiffness at which reduction in differential displacement occurs, increase in column stiffness, the number of storeys and the thickness of the beam foundation, can possible decide when full interaction effects are of little significance and a complete analysis can be avoided.

For an economical design of a structure, it is important to consider the soil as part of the medium that is exposed to the external loads. In such a design, it is essential to study the loads transmitted to the soil and the resulting stress distributions within the soil itself. The study of the physical state of foundation materials, and overall foundation plan and design, are important in avoiding any excess settlement or soil failure. A complete interaction analysis should involve the following:

a) The distribution and intensity of pressure between the footing and the foundation medium (contact pressure)

b) The intensity of normal and shearing stresses at various points within the mass of the medium

c) Any possible mechanism of soil failure underneath the foundation after considering the soil's physical characteristics as found by initial soil tests.

Over the years, various computer packages have been developed that idealise soil using finite elements and employ various assumptions. Some methods need more input data for their parameters than other approaches. In the later sections of this chapter, a review of the process of development of soil models and methods is presented.

1.4. LITERATURE REVIEW

Due to its nature, the behaviour of a soil is complex under external loads. In the past decades extensive studies have been undertaken to model soil stress distribution. As indicated previously, there are two major load types that can be considered for interaction: static and dynamic and this study involves static loads only.
With static interaction analyses, there are three major categories for soil models:

- Infinitely rigid,
- Elastic, which includes single-parameter, modified single-parameter, homogeneous isotropic half-space, homogeneous cross-anisotropic half-space and non-homogeneous half-space,
- Visco-elastic/plastic media which is not the focus of this research.

Solutions to express soil behaviour based on the assumption of a continuum can be grouped according to the classification of the half-space in question. Stress calculations can be classified from a mathematical point of view, that is, whether they lead to a closed form (for example elastic half-space) or an open form (numerical methods, for example Finite Element Method (FEM)) solution. In Figure 1.2, the shaded models are the soil idealisations that are considered in this project.

Initially, a single-parameter model (sub-grade modulus) is used to describe soil. This model is quite simple to use, although it cannot sufficiently express the real behaviour of soil under the different types of external loads. Due to the importance of soil characteristics and behaviour, continuous efforts have been made over the years.
to introduce new and improved soil models. However, these models often appeared to have some shortcomings. To rectify these deficiencies, successive investigators defined extra parameters in their idealisations as refinements to earlier models. Examples are flexural rigidity (D) and tension field (T).

As a result of later efforts in adopting a soil model, a homogeneous isotropic elastic continuum (the soil parameters are Young's modulus and Poisson's ratio) was identified. In addition, for a more complex case (for example a layered soil), a homogeneous cross-anisotropic half-space was defined in which five independent parameters are used to describe the medium.

The majority of the existing solutions using analytical or numerical techniques for isotropic or cross-anisotropic homogeneous half-space are in general tedious to utilise. With these approaches, solutions often involve differential equations of high order, which produce many answers. In these cases it is required to implement the boundary conditions to confirm acceptable results, and to simultaneously eliminate the general answers to those differential equations.

Poulos (1975a) analysed settlement of structure-foundation systems considering relative structural stiffness. Davis and Poulos (1968) and Poulos (1975b) summarised some of the more commonly used methods [such as the Conventional One-dimensional method, Skempton and Bjerrum's (1957) method, the Effective Stress Path method, the Elastic method, Cambridge approach and Finite Element Method (FEM)], to calculate the settlement of isolated foundations.

Many studies have been carried out (Burland and Burbidge 1985, Bowles 1987, Papadopouls 1992, Wahls 1994, Montrasio and Nova 1997, and Maugeri et. al 1998) on the elastic settlement of sand deposits. Burland and Burbidge (1985) examined an extensive number of cases to obtain a consistent picture to evaluate stiffness, namely operational stiffness for non-cohesive soils for a continuum mechanics approach. Operational stiffness is defined as an equivalent stiffness for the non-cohesive soil medium and is obtained by using elastic equations. Burland and Burbidge concluded that due to the variability of soil, elastic settlement could vary from the expected values by a factor of 1.5. Berardi and Lancellotta (1991)
confirmed the application of operational stiffness for evaluation of settlements in non-cohesive soils.

Cheung and Zienkiewicz (1965) found that the Winkler type spring approximation introduced to avoid mathematical difficulties need no longer be used where continuous foundations are present, and no special treatment of holes, corners or other irregularities in the foundation plate was necessary (refer to Appendix A1). Therefore, practical cases such as variable thickness foundation rafts or other shapes of foundations were capable of rapid solution. More recently Montrasio and Nova (1997) studied the effect of shape of foundation on the settlement of shallow foundations where they employed a number of mathematical methods. They found that experimental evidence is generally well matched by theory of elasticity. It was shown that only two out of nine parameters that characterised their model varied significantly with the shape of the foundation. They concluded that embedment has a small influence on the value of additional two parameters and the other five remain constant.

There are several soil models used in soil-structure interaction analysis and some of these are briefly reviewed in this chapter. This study however, focuses on soil medium with linear homogenous isotropic and cross-anisotropic properties. For the former, the solutions of Boussinesq (1885), Cerruti (1882) and Mindlin (1936) have been used and for the latter, those presented by Gerrard and Harrison (1970a) and Gerrard and Wardle (1973) have been implemented. Of these approaches, Mindlin’s solution applies to the interior of the half-space while the remaining approaches are applicable to the surface of the medium.

1.4.1. Rigid Model

In the early days of structural analysis, soil was considered as a rigid medium that experienced no deflection due to applied loads. Therefore, any flexibility of the foundation of the superstructure was ignored, and it was assumed that members of the superstructure, on the basis of their stiffness, would withstand external loads. Eliminating soil behaviour leads to an inadequate understanding of any interaction between soil and superstructure and inefficient structural design. As both theory and
practice imply, any foundation displacement affects the internal forces of the superstructure. Therefore, this early idealisation of soil was unrealistic and encouraged research into utilising the elastic behaviour of soil in the structural analyses of the building.

1.4.2. Winkler Model and Its Applications

The Winkler springs or Winkler model (1867) was the first elastic idealisation of soil. According to this theory, soil is assumed to be a series of independent springs, all with a constant stiffness, that react against vertical forces transferred from the structure. These vertical reaction forces are considered directly proportional to the local vertical displacement of the foundation. This model is a single-parameter soil idealisation used to describe the stresses produced in the soil beneath the foundation. The relationship is defined by a parameter \(k_s \) known as the modulus of sub-grade reaction, and for a beam resting on a medium idealised by such a model (two-dimensional application) the stress is given by

\[
p(x) = k_s w(x)
\]

where \(k_s \) is the modulus of foundation or sub-grade reaction, with its dimension being in pressure per length of vertical displacement in the range of 5 - 50 MN/m\(^3\). The function \(w(x) \) is the vertical deflection (i.e. \(z \) direction, perpendicular to the beam) beneath the foundation (Figure 1.3).

The general form of the Winkler model in a three-dimensional application (a plate in \(x-y \) plane) is described as

\[
p(x, y) = k_s w(x, y)
\]

where \(p(x, y) \) is the intensity of reaction of the soil, and \(w(x, y) \) is vertical deflection (in the \(z \) direction, perpendicular to the plate) beneath the foundation.

In Figure 1.3, the sign convention and the applied load are presented for both a beam and a plate. Whilst Figure 1.4 illustrates the behaviour of a Winkler foundation.
A plate
(Three-dimension problem)

A beam
(Two-dimension problem)

Figure 1.3 Illustration of sign convention for a beam and a plate foundation resting on Winkler model.

Figure 1.4 Illustration of soil deformations: (a) under external load for Winkler model, and (b) the observed deflections on site in the real situation.

From Figure 1.4a, it can be observed that in a Winkler medium, the displacement under the loaded area is constant when it is subjected to a uniform external load, whilst the displacement outside the loaded zone is zero. The observed field behaviour of soil under a uniform load is as shown in Figure 1.4b. This difference between the behaviour of the real soil and that of a Winkler soil is one of the major shortcomings of the Winkler model. For this reason, several researchers have suggested refinements to the Winkler model to improve its application as a soil idealisation.

The applications of the Winkler model and its refinements using different methods of analysis and calculation have been the topic of much research and investigation. Some of this research related to beam and plate structures is presented below. Hetenyi (1946), and Timoshenko and Woinowsky-Krieger (1959) investigated the problem of beams and plates on the Winkler model. Although this model is simple to
use there are some inherent disadvantages. As indicated earlier, it is the lack of continuity in the supporting medium in the model that is physically unrealistic.

Many researchers, (Lee and Brown 1972 and Selvadurai 1979) addressed the model’s limitations and inherent difficulties in solving soil-structure interaction problems using various continuum models. Vlasov and Leontiev (1966) attempted to overcome the shortcomings of the model by incorporating foundation flexural rigidity as a second parameter in soil idealisation for the analysis of a rigid circular foundation under both uniform and non-uniform vertical load.

Schleicher (1926) and Conway (1955) studied the axi-symmetrical loading of a circular foundation using the Winkler model, and Hetenyi (1946 and 1950) suggested an interaction between independent spring elements and a beam (2D problem) or plate (3D problem), assuming bending in the beam or plate.

The Winkler model was further investigated and developed using different methods of analysis and different numerical techniques for the analysis. A number of researchers in the past, Lee and Brown (1972), Selvadurai (1979), and more recently, Melterski (1992, 1995a, 1995b) used finite element and finite difference techniques in analysing soil-structure interaction via Winkler springs.

As indicated earlier, the Winkler model is a single-parameter soil idealisation. Over the years, extra parameters such as tension field or shear interactions between the spring elements, and flexural rigidity for foundation plate were incorporated into the analysis to rectify the shortcomings of this soil model (Filonenko-Borodich 1940, Hetenyi 1946 and Pasternak 1954). Further discussion on Winkler refinements can be found in Kerr (1964).

Hemsley (1988) considered the flexure of an infinite plate on Winkler springs and a half-space model. In this study, a plain strain energy theory based on Fourier transforms was applied to link the elastostatic flexure of a thin infinite plate founded both in Winkler springs and a homogeneous half-space. Simple closed-form solutions were derived for a plate on springs under symmetric and anti-symmetric loadings, where numerical results were compared with those obtained for an infinite
plate in frictionless and continuous contact with a homogenous half-space. The significance of the homogeneous half-space model is discussed in the next section.

1.4.3. Homogeneous Isotropic Elastic Half-space Model

One of the frequently used models for soil idealisation is a homogeneous isotropic elastic half-space. There are two parameters that are utilised in this model, modulus of elasticity (E), and Poisson’s ratio (ν). The first parameter associates the deformation in the soil and the stresses applied to it when these are in the same direction. Vertical deformation in the medium is related to the stress applied to the medium in the horizontal direction and vice versa. This relationship is expressed by Poisson’s ratio.

Boussinesq (1885) proposed soil to be an elastic homogeneous half-space medium of isotropic material. He solved the problem of a vertical point load acting on the surface of the medium and gave solutions for the stresses and displacements at any point in the medium. For similar media Cerruti (1882), analysed the problem of a horizontal point load acting on the surface and developed solutions for the stresses and displacements at any point within the medium. The above two researchers were at the frontier in solving the problems of elastic isotropic half-space at that time.

Based on the fundamental results from the theory of elasticity known as the Kelvin solution (1848), further studies were undertaken by Love (1927) and Timoshenko (1934). Solutions to the problem of stress distribution for a number of cases have been obtained using the Kelvin solution.

For application of loads within a homogenous elastic half-space, Melan (1932) developed solutions to evaluate stresses and strains for a two-dimensional application. Mindlin (1936) provided similar expressions for a three-dimensional application. These expressions were similar in nature to Boussinesq’s and Cerruti’s findings for surface loads.

Vogt (1925) followed by the U.S. Bureau of Reclamation (USBR) (1956) utilised Boussinesq’s and Cerruti’s solutions for the study of uniformly distributed load and
moment on an elastic half-space. Lee and Brown (1972) performed a comparative analysis of the structure-foundation interaction between Winkler's model and linear elastic models in the form of the Boussinesq model.

In further studies, Hain and Lee (1980) examined the influence of interaction between a 3D structure and its footing founded on isotropic elastic half-space. They concluded that the interaction behaviour of a three-dimensional frame and a raft foundation can be predicted if the relative stiffness of structures \((K_s) \) to the rafts \((K_R) \) is in the range: \(0.1 < K_s / K_R < 10.0 \) then redistribution of column loads largely occurs. They also found that an increase in differential settlements, maximum negative bending moment, and reduction in maximum positive bending moment occur. This is due to increased interaction caused by an increase in the number of bays in the structure.

In the past few years, there have been a number of studies undertaken by several researchers in relation with soil-structure interaction. Huang and Tatsuoka (1988), Khing et al. (1992) and Takemura et al. (1992) considered improvements for analysing and predicting behaviour for footings placed in sandy ground. Delgado and Faria (1994) investigated soil-structure interaction for dam-foundation-reservoir interaction to obtain assurance of dam safety and performance due to earthquakes. In this work numerical modeling aspects of foundations were described.

Huang and Menq (1997) analysed deep footing and width effects in the elastic half-space medium by considering the results of 105 models tested in their investigation. More recently, in deep-foundations studies, Shen et al. (1997 and 1999) applied a variational approach to analyse vertically loaded pile groups. They determined that displacement at the base of the piles by their method conformed to that obtained using Mindlin's (1936) solution.

Holl (1940), Fadum (1948), Scott (1963) and Harr (1966) extended the study on homogeneous isotropic elastic half-space over different shapes of vertically loaded foundations and developed solutions for the stresses beneath the foundations. Ahlvin and Ulery (1962), and Poulos and Davis (1974) carried out extensive studies on the elastic solutions for isotropic elastic half-space. Recently, Bull (1994) presented a study on the various numerical analyses and modeling methods including Finite Element Method (FEM) employed in soil-structure interaction and concluded that small differences in loaded area and shape applied pressure did not significantly effect the stress, except at the surface under the load.

Newmark (1935, 1942 and 1947) proposed solutions to the problem of stresses and displacements using a graphical approach. Foster and Ahlvin (1954) and Ahlvin and Ulery (1962) used tables to present their solutions for a wide range of Poisson’s ratio. Poulos (1967) utilised the sector method and curves to solve the same problem.

Meyerhof (1947), Francis (1954) and Chamecki (1956) developed several methods. Meanwhile, Lee (1975), Lee and Hain (1974) and Lee and Valliappan (1974) conducted a series of studies, which were concentrated on isolated foundations and proposed a "fictitious element" method.

Several studies have been conducted to determine the stresses and displacements in soil. Borowicka (1936), Gorbunov Passadov (1949), Ishkova (1957), and Gorbunov Passadov et al. (1984) considered the stiffness of superstructure and applied power series methods in their solutions. Brown (1969) introduced plate stiffness in his solutions for analysing the stress and displacement generated in soils under foundations.

Recently, a range of approaches and analyses in soil structure interaction were taking the interest of the researchers and scholars. Brown (1969), Gorbunov Passadov et al. (1984), Milovic and Djogo (1991), and more recently, Melterski (1995a, 1995b) considered foundations with various rigidities. In these studies, analytical and numerical methods were utilised. In the next chapter, selected soil models are presented and those applicable to this research are elaborated.
1.4.4. Homogeneous Cross-anisotropic Elastic Half-space Model

A more complex situation exists in a homogeneous medium when Young's modulus and Poisson's ratio vary in different directions, that is cross-anisotropic behaviour is encountered. In a soil the homogeneous cross-anisotropic model is typically associated with a layered (sedimentary) soil medium.

In 1900, Michell derived solutions for stress-strain relations due to the application of a vertical load to a medium with cross-anisotropic properties, and was followed by Koning (1957), Anon (1960), Lekhnitskii (1963) and Barden (1963). The Suklje (1963) solution confirmed soil properties for an anisotropic case, and investigated the elasticity of the medium by conducting triaxial tests. Dooley (1964) commented on Barden's solutions, indicating that Barden made the implicit assumption that the soil shear modulus for a pair of axes inclined at 45 degrees to the x-z axes was the same as that in the direction of x and z axes. Dooley (1964) concluded that the validity of that solution was limited. Urena et al. (1966) considered the case of a vertical point load in an infinite media with horizontal planes of discontinuity (cross-anisotropic media), and obtained the distribution of stresses and displacements in the modelled soil. They extended this approach to a load acting along a straight line, and also investigated the case of a uniform tangential as well as vertical loads acting on the surface of a half-space.

Hooper (1975) considered the effect of transverse isotropy on the surface settlement of a homogeneous elastic half-space underlain by a rigid frictionless layer resulting from both frictionless and adhesive axi-symmetric surface loading applied over a circular area. He concluded that particular emphasis must be applied to the sensitivity of the calculated settlements as a function of the assumed values of the elastic constants.

Gerrard (1967) investigated vertical uniform loading on a strip foundation and obtained a number of solutions for stresses and strains generated in the soil. Lempriere (1968) studied an anisotropic medium through the strain energy method using a valid range for Poisson's ratio, and Pickering (1970) investigated the
parameters for this type of medium that Love (1892) had earlier defined with five independent parameters. In later studies, Gerrard and Harrison (1970a and 1970b) developed solutions to determine stresses and displacements for circular loads on this type of medium. These solutions were based on the application of integral transform techniques and dual integral equation techniques to elasticity problems (Sneddon 1951, Tranter 1966). Moreover, Gerrard and Wardle (1973) presented solutions for the application of point loads based on the general form of the solutions that were presented by Sneddon (1951) and Tranter (1966). The solutions presented by Gerrard and Harrison (1970a) and Gerrard and Wardle (1973) are relevant to this project and are utilised in this work (Chapters 3 and 4).

The Finite Element Method (FEM) has also been utilised to obtain the soil displacements caused by the application of surface loads. Many researchers, Cheung and Zienkiewicz (1965), Wardle and Fraser (1974), and Chandrashekhara and Antony (1993, 1996) used this technique in their analyses. Chandrashekhara and Antony (1993, 1996) found that the rigidities of frame structure with respect to soil affects the contact pressure and bending stresses in the frame. The Winkler model appeared to be inadequate for the layered system considered, while the equivalent model appeared to be adequate for contact pressure distribution as well as for determining bending stresses in the frame but unsatisfactory for the determination of surface vertical displacement.

More recently, Antony and Chandrashekhara (1997) evaluated the contact stresses for cross-anisotropic elastic foundation, and Pires and Higgins (1998) proposed a spring model for linear soil-structure interaction, and used this model to investigate the behaviour of the foundations.

1.4.5. Non-homogeneous Isotropic Elastic Half-space Model

More complex models for soil are needed when the soil is assumed to be non-homogeneous. Holl (1940) developed a general form of Boussinesq's classical equations on the basis of Griffith's (1929) and Frohlich's (1934) solutions for the problem of vertical point load on the surface of a non-homogeneous half-space.
Gibson (1967) and Brown and Gibson (1973) in their studies of non-homogeneous soils proposed the soil to be isotropic with a shear elasticity modulus linearly increasing with depth \(G(z) = G(0) + m z \). This model, known as Gibson’s model, formed the basis of ongoing work (Gibson and Kalsi 1974, Gibson and Sills 1975). Carrier and Christian (1973) later employed a Finite Element Method (FEM) for the study of flexible circular foundations. More recently, Antony (1994), Chandrashekhara and Antony (1996) performed the interaction analysis of footings resting on a non-homogenous elastic medium and combined analytical and finite element methods in their studies.

Hain and Lee (1980) also investigated the behaviour of a structure resting on a perfectly elastic medium with the modulus increasing linearly with depth. Dempsey and Li (1995) considered rectangular and strip footings (both rigid and flexible) in full contact with soil. They used Gibson’s model in conjunction with numerical integration. In this study, the fundamental solution of the non-homogeneous half-space was separated into the primary solution associated with the homogeneous half-space and a function corresponding to the non-homogeneity of the half-space. The latter function was then approximated by an analytical expression that eliminated most of the numerical integrals.

In a very recent, available study on non-homogeneous soil models, (Hu et al. 1999) considered circular foundations and applied numerical approaches and experimental results to successfully estimate settlement of offshore structures.

Non-homogeneous isotropic elastic half-space soil model is quite complex and the existing solutions do not fully describe a non-homogeneous medium. This deficiency raised the need for including the variation of soil parameters in certain directions within the soil mass. Further explanation is provided in the next chapter on this aspect.

Despite all the work that has been done to date it has been concluded that, more research needs to be carried out to obtain a simple and acceptably accurate framework to assess soil-structure interaction during the design phase of engineering projects.
1.5. REQUIREMENTS FOR SOIL-STRUCTURE ANALYSIS

An obvious and important part in a soil-structure interaction analysis is to use a soil model that is able to describe the force-displacement relationship throughout the media due to an external load from the superstructure. The model, depending upon the soil, could be of a single-parameter, two-parameter, homogeneous or non-homogeneous, isotropic or cross-anisotropic type.

An equally important aspect is to utilise an appropriate numerical or analytical technique to "link" the superstructure with its supporting medium. By integrating these two steps, the interaction can be assessed, and the superstructure reaction as well as individual member internal forces can be obtained.

1.6. SCOPE OF THIS THESIS

Framed structures are a fundamental methodology widely used in the construction industry for residential, commercial and industrial purposes. These structures are simple in design and relatively easy to install. Prefabricated structures in particular are constructed in a short period of time within a quality-controlled environment, and provide cost-effective options. In a construction site with limited space, prefabricated structures can be stored close to the site and easily transferred for quick installation. This makes such structures very popular and frequently used. The construction materials are usually steel, timber, concrete or composite. The structural members can be designed using a working stress or ultimate stress approach. The method used to analyse such structure is based on linear static analysis, in which the internal stresses remain within the linear elastic zone. Since structures are supported by the soil beneath them, the study, idealisation and characteristics of these media are important in this research.

By making use of simple yet practical analytical soil models coupled with a powerful numerical approach (such as a direct stiffness method), structures may be more easily and quickly designed. Using such models, the deformations of the superstructure and soil can be evaluated simultaneously.
The author (Izadnegahdar 1997) has prepared a computer package (Soil And Structure Interaction Analysis Package, SASIAP ver.1.0) in Turbo Pascal (7.0) language based on the needs that have been mentioned earlier for soil-structure interaction analysis. The package requires structural information for members and for the supporting medium: Poisson's ratio, Young’s modulus and the width of footing. The package requires minimal input data to produce the solution to the problem. This package analyses frames, evaluates the internal forces, nodal displacements and the reactions of superstructures due to the soil-structure interaction with respect to plane frame structures that are founded on homogeneous elastic half-space with either isotropic or cross-anisotropic behaviour. The combination of such (typical) frames in parallel, (3D) and the interactions of neighbouring footings (2D) are also considered.

1.7. POSSIBLE BENEFITS OF THE RESEARCH

The research has importance to both researchers and design engineers in that it provides them with a new, improved and innovative approach to the analysis and design of framed structures.

As mentioned in the literature review, solutions to the early soil models such as Winkler’s model were simple to apply but did not consider a more realistic representation of soil behaviour. Some attempts, such as introducing extra parameters, were made to reduce these deficiencies but often resulted in the formulation of overly complex formulae that required the use of numerical form or power series.

Utilisation of the later soil models such as by Boussinesq (1885), Cerruti (1882), Mindlin (1936), Gerrard and Harrison (1970a) and Gerrard and Wardle (1973) gave more rational results. The author has proposed a method of utilising an analytical/numerical approach, namely the Direct Stiffness Method for analysis, based on considering the soil models with either homogeneous isotropic or cross-anisotropic properties. This approach is used to evaluate the nodal displacements of the system. The application of these soil models using analytical approaches leads to better solutions with respect to the issue of interaction between a building’s footings. This is due to the simplicity and minimum input data requirement, and the
modularity of approach that could be extended to 3D space frames. These factors provide an advantage over the existing software packages that are either overly complex or require a large amount of input data.
CHAPTER

TWO

SOIL IDEALISATION

Elastostatic Interaction Analysis of Frames Resting on Homogeneous Elastic Half-space
CHAPTER 2
SOIL IDEALISATION

2.1 INTRODUCTION

As identified in Chapter 1, the study of soil-structure interaction can be described as being composed of two components. These are superstructure modeling and soil idealisation. In this chapter some of the soil idealisation approaches are discussed.

Following the introduction to some important soil models, the chapter focuses on the force-displacement relationships suggested by various approaches for soil idealisations. These models are single-parameter soil model (Winkler springs), two-parameter soil models (Refinement of Winkler foundation, and homogeneous isotropic elastic half-space), cross-anisotropic and non-homogenous elastic half-space.

2.2 SINGLE-PARAMETER SOIL MODEL

The single-parameter soil model known as Winkler springs is initially discussed (see Chapter 1). As mentioned in the previous chapter, this model inherits some deficits such as non-continuity in the stiffness and deflection of soil medium. In the work carried out and described here, the structural parameters of flexural rigidity or shear modulus of the foundation, have been incorporated to minimise the shortcomings associated with obtaining force-displacement relations.

Hetenyi (1946, see Kerr 1964) considered Winkler springs to determine the vertical displacements of beam and plate foundations due to surface loads. In his approach, flexural rigidity (Equation 2.1b) of these structure elements was determined. It was assumed that the deformation associated with an elastic beam (in the one-dimensional case) or a plate (in the two-dimensional case) on the medium was restricted to bending only. By applying the Winkler model, the interaction between the independent spring elements is recognised, and the relation between load
\(p(x, y) \), contact stress \(q(x,y)= k, w(x,y) \) and deflection \(w(x,y) \) for the two-dimensional case for rectangular plates can be expressed as

\[
p(x, y) = k, w(x,y)+D_p \nabla^4 w(x,y)
\]

(2.1a)

where \(D_p \) is flexural rigidity of the plate foundation, and is given

\[
D_p = \frac{E_p h_p^3}{12 (1-\nu_p)^2}
\]

(2.1b)

where \(E_p, \nu_p \) and \(h_p \) are the plate’s modulus of elasticity, Poisson’s ratio and the height respectively. \(\nabla^2 \) is Laplace operator in \(x \) and \(y \) directions and \(\nabla^4 \) in rectangular coordinates, can be written as follows

\[
\nabla^4 = \nabla^2 \nabla^2 = \frac{\partial^4}{\partial x^4} + 2 \frac{\partial^4}{\partial x^2 \partial y^2} + \frac{\partial^4}{\partial y^4}
\]

(2.1c)

Several authors, Borowicka (1936), Gorbunov-Possadov (1949), Gorbunov-Possadov et al. (1984) and Ishkova (1957) used power series in their procedures to solve differential Equation 2.1a.

A case of an axi-symmetric circular plate resting on a single-parameter elastic medium has been the topic of a number of studies, and considering the plate’s flexural rigidity the analysis of the plate problem involves the solution of the following differential equation

\[
p(r) = q(r)+D_r \nabla^4 w(r)
\]

(2.2a)

where \(p(r) \), \(q(r) \) and \(D_r \) are the load, contact stress and the flexural rigidity of the circular plate respectively. \(\nabla^4 \) for a circular plate is defined in equation 2.2b.

\[
\nabla^4 = \nabla^2 \nabla^2 = \frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr}
\]

(2.2b)
Several solutions for Equation 2.2a were provided by Schleicher (1926), Hetenyi (1946) and Conway (1955) (see Milovic 1992). They suggested that by summing the particular integration which depends on the form of $p(r)$ a solution for the homogeneous equation in the following form can be obtained

$$w(r) = A_1 J_0(\pm \frac{r}{l} \sqrt{i}) + A_2 Y_0(\pm \frac{r}{l} \sqrt{i}) + A_3 J_0(\pm \frac{r}{l} \sqrt{-i}) + A_4 Y_0(\pm \frac{r}{l} \sqrt{-i}) \quad (2.2c)$$

In this equation, J_0 and Y_0 are zero order Bessel functions, and A_1, \ldots , A_4 are arbitrary constants and $i = \sqrt{-1}$.

Vlasov and Leontiev (1960, see Milovic 1992) considered plate rigidity and transverse shear. This results the following differential equation.

$$D_p \nabla^4 w(x, y) - G_p \nabla^2 w(x, y) + k_s w(x, y) = p(x, y) \quad (2.3a)$$

The solutions to the above differential equation give the surface deflection $w(x, y)$ that includes the sum of a particular integral, which depends on the form of soil reaction $q(x, y)$ and the solution for the homogeneous equation. ∇^4 is defined in equation 2.1c.

Vlasov and Leontiev (1960) also investigated the displacement of a circular plate resting on an elastic medium. In this study, the medium was a continuum and the solution to the differential equations was given in the form of Bessel and Hankel functions as follows

$$w(r) = B_1 J_0\left(\frac{r}{l} \sqrt{a}\right) + B_2 H_0^{(1)}\left(\frac{r}{l} \sqrt{a}\right) + B_3 J_0\left(\frac{1}{l} \sqrt{a}\right) + B_4 H_0^{(2)}\left(\frac{1}{l} \sqrt{a}\right) \quad (2.3b)$$

where B_1, \ldots , B_4 are arbitrary constants and $H_0^{(n)}$ is the zero order Hankel function of the n^{th} kind.
2.3 TWO-PARAMETER SOIL MODELS

Two-parameter soil models are discussed below. In these idealisations the following assumptions are made:

a) the soil is a weightless medium
b) the medium is elastic, homogeneous, semi-infinite and isotropic, and Hooke's law applies
c) the soil volume change is negligible
d) there is no initial stress in the soil before load application
e) stress continuity applies to the soil
f) the foundation remains in contact with the soil

2.3.1 Refinements to Winkler Model

Several attempts have been made to consider additional parameters when using the Winkler springs for soil idealisation. Amongst these studies, Filonenko-Borodich (1940, see Kerr 1964) assumed some degree of interaction between the spring elements, where the top ends of these springs were connected to a stretched elastic membrane which was subjected to a constant tension field T_s. In such a case the force-displacement relationship for a loaded plate was described by

$$p(x, y) = q(x, y) - T_s \nabla^2 w(x, y)$$ \hspace{1cm} (2.4a)

where ∇^2 is the Laplace operator in x and y directions, $p(x, y)$ is the load that is applied perpendicular to the plate, and $q(x, y)$ is the contact stress. In the Winkler model this stress is defined as $q(x, y) = k_s w(x, y)$ (refer to Figure 1.3 for the sign convention). From Equation 2.4a, the interaction of the spring elements is characterised by the intensity of the tension field T_s in the membrane.

Another modification of the Winkler model was by Pasternak (1954, see Kerr 1964). In this approach, shear interaction between the spring elements was assumed. This was achieved by connecting the ends of the springs to a fictitious beam or a plate consisting of incompressible vertical elements that deformed only by transverse shear. It is also assumed that the medium is homogeneous and isotropic in the x-y
plane \((G_x = G_y = G_z)\). The relationship between the pressure and the deflection of the foundation is determined from

\[
p(x, y) = k w(x, y) - G_s \nabla^2 w(x, y)
\]

(2.4b)

where \(G_s\) is the shear modulus for the soil medium.

The generalised foundation approach is another soil idealisation where it is assumed in addition to the Winkler condition, that at each point the load pressure \((p)\) is proportional to the soil deflection \((w)\), and that the moment in the foundation beam is proportional to the angle of rotation. This model is described by:

- \(p = k w\)
 \[(2.5a)\]

and

\[
m_n = k_1 \frac{dw}{dn}
\]

(2.5b)

where \(n\) is any direction at a point in the plane of the foundation surface, \(k\) and \(k_1\) are the corresponding proportionality factors.

2.3.2 Homogeneous Isotropic Elastic Half-space

This section focuses on representing the soil as medium with homogeneous isotropic properties due to its broad applications in design and analysis. A half-space is typically described as a continuum elastic body having infinite horizontal dimensions and infinite depth below the horizontal plane surface.

A planar frame exposed to external loads in \(x-z\) plane and supported by an elastic half-space medium is initially considered. The structure is then replaced by a number of reactions at the supporting points which include vertical forces \((P_z)\), horizontal forces \((Q_x)\) and horizontal moments \((M_y)\) about the \(y\) axis. The following sections focus on the force-displacement generated in this medium due to the above reactions.
In the case of a vertical load, the axis of elastic symmetry is vertical. In this soil idealisation, the two required soil parameters are Young's modulus or modulus of elasticity \(E_s \), and Poisson's ratio \(v_s \). Boussinesq (1885), see Poulos and Davis (1974), investigated the application of a point load \(P \) normal to the surface of a homogeneous isotropic elastic half-space. The solutions to determine the stresses and displacements were obtained in cylindrical and Cartesian coordinates. Boussinesq's approach is shown in Figure 2.1.

![Figure 2.1 Illustration of Boussinesq's approach over a semi-infinite soil mass bearing a normal load.](image)

Equations 2.6 and 2.7 express Boussinesq's solutions, for the spatial displacements of any point in the soil medium due to the application of a vertical force \(P \) at a point \(O \) normal to the medium.

The components of the displacement solution in the radial-horizontal \(u_r \) \(x \) and the vertical \(w_z \) \(z \) directions of the cylindrical coordinates are respectively described as:

\[
\begin{align*}
 u_r &= \frac{P \left(1 + v_s\right)}{2\pi E_s R} \left[\frac{rz}{R^2} - \frac{(1 - 2v_s) r}{R + z} \right] \\
 w_z &= \frac{P \left(1 + v_s\right)}{2\pi E_s R} \left[2(1 - v_s) + \frac{z^2}{R^2} \right]
\end{align*}
\]

\[\text{(2.6)}\]

\[\text{(2.7)}\]

where \(v_s \) and \(E_s \) are the soil's Poisson's ratio and Young's Modulus, respectively; \(R \) is the distance between the point in the medium where the displacement is required \((M) \) and that of the load point \((O) \), and \(r \) is the projection of \(R \) on the half-space plane (horizontal plane \(x - y \)).
Figure 2.2 illustrates Cerruti's (1882), see Poulos and Davis (1974), approach. This represents a horizontal point load applied tangentially to the surface of a homogeneous isotropic elastic half-space medium.

Cerruti's solutions for the vertical and horizontal components of the displacement vector of any point \(M \) within the medium due to a single horizontal load \(Q \) applied at point \(O \) tangential to the surface \(z = 0 \) of such a medium in Cartesian coordinates system can be expressed as follows:

\[
\begin{align*}
 u_r &= \frac{Q (1 + \nu_s)}{2 \pi E_s R} \left[1 + \frac{x^2}{R^2} + (1 - 2 \nu_s) \left(\frac{R}{R + z} - \frac{x^2}{(R + z)^2} \right) \right] \\
 w_z &= \frac{Q (1 + \nu_s)}{2 \pi E_s R} \left[\frac{x z}{R^2} + \frac{(1 - 2 \nu_s) x}{R + z} \right]
\end{align*}
\]

(2.8)
(2.9)

Boussinesq and Cerruti considered applications of point loads on the surface of a homogeneous, isotropic and elastic half-space medium. In practice, the structures actual foundation is located beneath the surface of such a medium and the external forces are applied in the medium; this is known as Mindlin's solutions (1936), which is illustrated in Figure A2.1 in Appendix A2.

Mindlin's solutions are provided in detail in Appendix A2.1.1 (Equations A2.1 to A2.5). These can be used to evaluate the horizontal and vertical displacements at any point \(F \), in the interior of the medium due to both vertical and horizontal forces \(P \) and \(Q \) respectively. Application of a horizontal moment \(M_y \) to the medium
can be treated as a combination of a couple of forces in the vertical direction. Details of this treatment are explained in the next chapter.

2.3.2.1. Further Solutions Associated with Isotropic Elastic Half-space

Where the dimensions of the footings are relatively large, as opposed to a point load, a different approach can be taken.

In applications where the contact area is a rectangle, many authors have analysed the problem as a rectangular plate resting on an isotropic elastic medium and have integrated Boussinesq's Equation 2.7 over the foundation plate area (see Poulos and Davis 1974). If a rectangular rigid foundation of length \(L = 2a \), width \(B = 2b \) and area \(A \) is considered. The normal point load \(P_z \) is uniformly distributed over the foundation area. Thus

\[
P_z = pBL = pA \tag{2.10}
\]

The load is applied to an infinitesimal area of \(d\xi \times d\eta \) located in the \(x - y \) plane at distances \(\xi \) and \(\eta \) from the origin of the coordinating system and \(x \) and \(y \) directions respectively such that:

\[
dP_z = pd\xi d\eta \tag{2.11}
\]

The principle of superposition is applied, and the vertical deflection (\(w \)) of a general point (\(x, y \)) under a rectangular footing is obtained as:

\[
w(x, y) = \frac{(1 - \nu^2)}{\pi E_s} \int_{-b}^{b} \int_{-a}^{a} \frac{p(\xi, \eta)d\xi d\eta}{\sqrt{(x - \xi)^2 + (y - \eta)^2}} \tag{2.12}
\]

The deflection at the centre point of the above foundation (\(w_c \)) is given by:

\[
w_c = \frac{qB(1-\nu^2)}{\pi E_s} (\sinh^{-1} \frac{L}{B} + \sinh^{-1} \frac{B}{L}) \tag{2.13}
\]
Milovic (1992) described the vertical deflection of any surface point at coordinate \((x, y, 0)\) as follows

\[
w_{(x,y,0)} =
\frac{(1-v_i^2)p}{E_i\pi} \left[\ln \frac{(a-x)^2 + (b-y)^2 + (a-x)}{(a-x)^2 + (b+y)^2 - (a-x)} + \ln \frac{(a+x)^2 + (b-y)^2 + (a-x)}{(a+x)^2 + (b+y)^2 - (a-x)} \right. \\
\left. + (a-x) \ln \frac{(a-x)^2 + (b-y)^2 + (b-y)}{(a-x)^2 + (b+y)^2 - (b-y)} + (a+x) \ln \frac{(a+x)^2 + (b-y)^2 + (b-y)}{(a+x)^2 + (b+y)^2 - (b+y)} \right]
\]

(2.14)

Equation 2.14 for the vertical surface deflection beneath the centre of a rectangular plate \((x = y = z = 0)\) simplifies to:

\[
w_c = \frac{2p (1-v_i^2)}{\pi E_i} \left[a \ln \frac{a^2 + b^2 + b}{a^2 + b^2 - b} + b \ln \frac{a^2 + b^2 + a}{a^2 + b^2 - a} \right]
\]

(2.15)

Gorbunov-Possadov (1949, see Milovic 1992) assumed the contact stress at the interface in the form of Equation 2.16 and proposed that the deflection of the plate can be expressed as a double power series. Contact stress \((q_p)\) due to a concentrated load \(P\) could be described as:

\[
q_p(x, y) = \sum_{i=0}^{a} \sum_{j=0}^{b} a_{ij} x^i y^j
\]

(2.16)

where \(a_{ij}\) is a coefficient used to define the contact stress at any point with coordinates \((x, y)\) of the foundation area. The vertical plate deflection is given as:

\[
w(x, y) = \sum_{u=0}^{\infty} \sum_{v=0}^{\infty} A_{uv} x^u y^v
\]

(2.17)

In the above equation, coefficient \(A_{uv}\) is linearly dependent on the coefficient \(a_{ij}\) used to describe the contact stresses.
Alternatively, for the deflection of any point of foundation of any rigidity, Fraser and Wardle (1976) obtained:

\[w = \frac{pB(1-v^2)}{E_i} I_w \]

(2.18)

where \(B \) is the width of foundation, \(p \) the applied uniform load, and \(I_w \) is a dimensionless coefficient that accounts for the variation of foundation plate stiffness \((K_F) \) for rectangular and square foundations. In their solution, with a central point load \(P_0 \) acting on a rigid rectangular foundation, the displacement is given by the following equation.

\[w = \frac{P_0}{\sqrt{4ab}E_i} I_w \]

(2.19)

where \(I_w \) is provided in tables for different values of \(a \) and \(b \) (Fraser and Wardle 1976).

Applying Boussinesq's solution to consider a distributed load over a circle, the vertical deflection was obtained by:

\[w(r) = \frac{(1-v^2)}{\pi E_i} \int_0^{2\pi} \int_0^{a_0} \frac{q(\xi) \xi d\xi d\varphi}{\sqrt{r^2 + \xi^2 - 2r \xi \cos \varphi}} \]

(2.20)

where \(a_0 \) is the radius of the foundation plate, \(\xi \) is the distance of the element in the \(x \) direction from the center, \(\varphi \) and \(d\varphi \) are the angles from the origin and the infinitesimal angle circumscribed by the element respectively.

Egorov (1958) considered the flexibility of foundations implementing elliptic integrals for the calculation of displacements. In that attempt, the following vertical displacement of a flexible circular foundation was obtained.

\[w(r,0) = \frac{2pR(1-v^2)}{\pi E} [(1-t)K(k) + (1+t)E(k)] \]

(2.21)
where \(k = \frac{4t}{(t+1)^2} \), \(t = \frac{r}{R} \), \(K(k) \) and \(E(k) \) are the complete elliptic integrals of the first and the second kind respectively.

2.4 CROSS-ANISOTROPIC ELASTIC HALF-SPACE MODELS

The chronological order of some researchers studying these models is Michell (1900), then Wolf (1935), Quinlan (1949), Koning (1957), Anon (1960), Barden (1963), Lekhnitskii (1963), Urena et al. (1966), Gerrard and Harrison (1970a), and Gerrard and Wardle 1973). Some of these limited their studies solely to the effect of different types of vertical load (such as point load, uniform load, parabolic, inverted parabolic and uniform displacement) on half-space.

A homogeneous anisotropic model in general is associated with a soil medium where Young’s modulus and Poisson’s ratio vary in different directions. In case of cross-anisotropy, the elastic properties are the same in all directions normal to the axis of symmetry, where this axis is assumed to be vertical, and these properties are different from those in a direction parallel to the axis. This form of anisotropy corresponds to that observed in natural or placed soil and rock deposits formed under the action of predominantly vertical forces.

In a cross-anisotropic medium, the following parameters can be defined:

- \(E_h, E_v \): Young’s moduli in the horizontal and vertical directions
- \(\nu_h \): Poisson’s ratio for the effect of horizontal stress on complementary horizontal strain
- \(\nu_{hv} \): Poisson’s ratio for the effect of horizontal stress on vertical strain
- \(\nu_{vh} \): Poisson’s ratio for the effect of vertical stress on horizontal strain
- \(F_v \): Shear modulus for vertical shear stresses

Of these parameters only five are independent, and the following relationship applies

\[
\frac{E_h}{E_v} = \frac{\nu_{hv}}{\nu_{vh}} \tag{2.22}
\]
Alternatively, the five independent elastic quantities can be expressed by other parameters namely: a, b, c, d and f, which are defined in Appendix A2.1.2 (Equations A2.6 to A2.10).

According to Hearmon (1961, see Gerrard and Wardle 1973) and Pickering (1970, see Gerrard and Wardle 1973), the condition that the strain energy should be positive, imposes restrictions on the elastic constants. These restraints are expressed in terms a, b, c, d and f as follows:

$$a > 0; d > 0; f > 0; a^2 > b^2; (a + b) d > c^2; ad > c^2$$ \hspace{1cm} (2.23a)

where a, b, c, d and f are elastic relations and are defined in Appendix A2.1.2 (Equations A2.6 to A2.10). Such restrictions can also be expressed in terms of the elastic moduli and Poisson's ratios as follows.

$$E_h > 0; E_v > 0; F_v > 0; 1 > \nu_h > -1; 1 - \nu_h - 2\nu_{hv} \nu_{vh} > 0$$ \hspace{1cm} (2.23b)

Gerrard and Harrison (1970a) provided complete solutions for the stress, displacement and strain distributions within the medium due to the application of (pressure) loads over a circular area. The method used to obtain the solutions was based on the application of integral transform techniques to the elasticity problem solved by Sneddon (1951). Further discussion is given in section 2.4.2.1.

Gerrard and Wardle (1973) obtained solutions for the application of point loads (from the general forms) that were obtained for distributed loads over an infinitesimal small circular area (section 2.4.1). The numerical approach was based on the application of integral transform techniques to the elasticity problem solved by Sneddon (1951) and Tranter (1966) (see Gerrard and Wardle 1973). To obtain these solutions, in particular for point loads and to express the stress distribution, the Dirac delta function (Sneddon 1951, see Gerrard and Wardle 1973) was introduced. Some detail on how the Dirac delta function is defined and used to express the stress distribution is available in Appendix A2.1.2.1.

The expressions for displacements were developed in terms of integrals of products of trigonometric functions, Bessel functions (Watson 1944) and exponential
equations (Abramowitz and Stegun 1970). Further discussion is given in section 2.1.2.2.

The form of the solutions depends on the nature of anisotropy as reflected by values of \(\alpha^2 \) and \(\beta^2 \), both of which are functions of the elastic properties only. Parameters \(\alpha \) and \(\beta \) are defined as follows:

\[
\alpha^2 = \frac{\sqrt{ad} (\sqrt{ad} + c + f)}{2fd}
\]

(2.24)

where \(\alpha \) is the positive root, and

\[
\beta^2 = \frac{ad - c^2 - f(\sqrt{ad} + c)}{2fd}
\]

(2.25)

\(\beta^2 \) is not restricted by Equation 2.23a.

The conditions imposed by strain energy in Equation 2.23a are sufficient but not necessary when \(\alpha^2 > 0 \). As a result, in a cross-anisotropic material for each load condition, due to the value of \(\beta^2 \), three possible separate cases can occur. These are as follows:

a) \(\alpha^2 > 0, \quad \beta^2 > 0 \) \hspace{2cm} (2.26)

b) \(\alpha^2 > 0, \quad \beta^2 < 0 \) \hspace{2cm} (2.27)

c) \(\alpha^2 > 0, \quad \beta^2 = 0 \) \hspace{2cm} (2.28)

In a cross-anisotropic medium, when elasticity moduli are such that \(\alpha^2 = 1 \) and \(\beta^2 = 0 \), the soil is then simplified to one with isotropic properties. The required coefficients for such a case are provided in Appendix A2.1.2.2.

A cylindrical coordinates system \((r, \theta, z)\) is introduced for presenting the solutions for displacement in a cross-anisotropic soil. The external load is distributed over a circle, and this system has its origin at the centre of that circle as shown in Figure
2.3. In this system, the z axis is vertically downwards, the r axis is radially outwards, and θ is the horizontal angle measured in a clockwise direction. The axis of symmetry is assumed to be vertical.

![Diagram](image)

Figure 2.3 Cylindrical coordinates and an infinitesimal circular loaded area (radius r_0)

In this study, the surface displacements at two points are considered: the point beneath the loaded area ($z = 0$ and $r \leq r_0$), and that outside the loaded area ($z = 0$ and $r > r_0$). Parameter r is the (radial) distance of the point from where the displacement is required to the load center.

2.4.1. Points of Load Application and Displacement Distinct

Solutions given for the displacements are a combination of two parts: one part is a constant that corresponds to the integrals due to the geometry of the problem, and the other part is a coefficient that consists of the load. The former appears in constants g, h, i, j, s, t, and the latter in load coefficients L, P or S, which these constants and coefficients are respectively defined in Appendix A2.1.2.2.

The author has employed the solution presented by Gerrard and Wardle (1973) in this thesis (Figure 2.4).

![Diagram](image)

Figure 2.4 Illustration of load cases considered by Gerrard and Wardle (1973)
Three different concentrated load types are considered: two forces and one moment. These loads are as follows:

a) Vertical point load \(P_z \)

b) Horizontal point load \(Q_x \)

c) Concentrated moment \(M_y \) about the horizontal axis.

The main equations for displacements are presented below (sections 2.4.1.1 to 2.4.1.3). All the required coefficients are provided in Appendix A2.1.2.2.

2.4.1.1. Displacements due to a Vertical Point Load

Solutions for the horizontal \((u) \) and the vertical \((w) \) displacements due to a vertical point load are as follows:

i. If \(\beta^2 > 0 \), then:

\[
\begin{align*}
\sigma &= g_3 L_{020}(\phi z) - g_4 L_{020}(\rho z) \\
\omega &= g_3 L_{000}(\phi z) - g_2 L_{000}(\rho z)
\end{align*}
\]

\[u = \sigma \] \quad \text{(2.29)}

\[w = \omega \] \quad \text{(2.30)}

ii. When \(\beta^2 < 0 \), then:

\[
\begin{align*}
\sigma &= -i_3 c L_{020} - i_4 s L_{020} \\
\omega &= i_4 c L_{000} + i_2 s L_{000}
\end{align*}
\]

\[u = \sigma \] \quad \text{(2.31)}

\[w = \omega \] \quad \text{(2.32)}

iii. Case of \(\beta^2 = 0 \):

\[
\begin{align*}
\sigma &= -s_3 L_{020}(\alpha z) + s_4 z L_{022}(\alpha z) \\
\omega &= s_1 L_{000}(\alpha z) + s_2 z L_{002}(\alpha z)
\end{align*}
\]

\[u = \sigma \] \quad \text{(2.33)}

\[w = \omega \] \quad \text{(2.34)}

Constants \(g_1, g_4, i_1, \ldots, i_4, s_1, s_3 \) and load coefficients \(L_{000}(\phi z), L_{020}(\phi z), L_{000}, L_{000}, L_{020} \) are given in Appendix A2.1.2.2.
2.4.1.2. Displacements due to a Horizontal Point Load

Solutions for the horizontal \((u)\) and the vertical \((w)\) displacements due to a horizontal point load are given:

i. If \(\beta^2 > 0\), then:

\[
\begin{align*}
 u &= \cos \theta \left\{ h_3 S_{020} (\phi z) - h_4 S_{020} (\rho z) + h_{10} P_{020} (\gamma z) \right\} \\
 w &= \cos \theta \left\{ h_1 L_{020} (\phi z) - h_2 L_{020} (\rho z) \right\}
\end{align*}
\]

(2.35)
(2.36)

ii. When \(\beta^2 < 0\), then:

\[
\begin{align*}
 u &= \cos \theta \left\{ j_3 c S_{020} + j_4 s S_{020} + j_{11} P_{020} (\gamma z) \right\} \\
 w &= \cos \theta \left\{ j_1 c L_{020} + j_2 s L_{020} \right\}
\end{align*}
\]

(2.37)
(2.38)

iii. For \(\beta^2 = 0\):

\[
\begin{align*}
 u &= \cos \theta \left\{ -t_3 S_{020} (\alpha z) + t_4 z S_{022} (\alpha z) + t_{10} P_{020} (\gamma z) \right\} \\
 w &= \cos \theta \left\{ t_1 L_{020} (\alpha z) + t_2 z L_{022} (\alpha z) \right\}
\end{align*}
\]

(2.39)
(2.40)

Constants \(j_1, ..., j_4, j_{11}, h_1, ..., h_4, h_{10}, t_1, t_3, t_{10}\) and load coefficients \(S_{020} (\alpha z), P_{020} (\gamma z), L_{022} (\gamma z), S_{020}, S_{020}, S_{020}\) are provided in Appendix A2.1.2.2.

2.4.1.3. Displacements due to a Moment Load about Horizontal Axis \(z\)

Solutions for the horizontal \((u)\) and the vertical \((w)\) displacements due to a concentrated moment about the horizontal axis \((y)\) are as follows:

i. If \(\beta^2 > 0\), then:

\[
\begin{align*}
 u &= \cos \theta \left\{ g_3 S_{120} (\phi z) - g_4 S_{120} (\rho z) \right\} \\
 w &= \cos \theta \left\{ g_1 L_{120} (\phi z) - g_2 L_{120} (\rho z) \right\}
\end{align*}
\]

(2.41)
(2.42)
ii. When $\beta^2 < 0$, then:

\[
\begin{align*}
 u &= \cos \theta (i_3 c_{120} - i_4 s_{120}) \\
 w &= \cos \theta (i_1 c_{120} + i_2 s_{120})
\end{align*}
\]
(2.43)

\[
\begin{align*}
 u &= \cos \theta (i_3 c_{120} - i_4 s_{120}) \\
 w &= \cos \theta (i_1 c_{120} + i_2 s_{120})
\end{align*}
\]
(2.44)

iii. For $\beta^2 = 0$:

\[
\begin{align*}
 u &= \cos \theta (-s_3 s_{120}(\alpha z) + s_4 z s_{122}(\alpha z)) \\
 w &= \cos \theta (s_1 L_{120}(\alpha z) + s_2 z L_{122}(\alpha z))
\end{align*}
\]
(2.45)

\[
\begin{align*}
 u &= \cos \theta (-s_3 s_{120}(\alpha z) + s_4 z s_{122}(\alpha z)) \\
 w &= \cos \theta (s_1 L_{120}(\alpha z) + s_2 z L_{122}(\alpha z))
\end{align*}
\]
(2.46)

Constants $l_{120}(\alpha z)$, s_{120} and load coefficients $c_{120}(\alpha z)$, c_{120}, s_{120}, are provided in Appendix A2.1.2.2.

2.4.2. Points of Load Application and Displacement Coincident

In this case the points of load application and displacement evaluation are coincident, and the applied load is idealised as a distributed load acting in the vicinity of that application point. For this case, Gerrard and Harrison (1970a) solutions can be applied. In these solutions, sign convention is as presented earlier in Figure 2.3, and necessary conversion expressions are introduced to evaluate the concentrated equivalent of the applied distributed loads. These terms are presented in the next chapter. The three following load cases are considered (Figure 2.5):

(a) Vertical uniform load (p_z), (b) Horizontal uniform load (q_x), (c) Vertical linear load with its maximum (p_{max}) occurring at r_0.

Figure 2.5 Stress resolution for the load cases considered in this study (Gerrard and Harrison 1970a).
a) Vertical uniform load \((p_1) \);
b) Horizontal uniform unidirectional shear load \((p_2) \);
c) Vertical linear load \((p_3) \) with its maximum, \(p_{\text{max}} \), occurring at \(r_0 \).

The main equations for displacements are presented below (sections 2.4.2.1 to 2.4.2.3). All the required coefficients and parameters are provided in Appendix A2.1.2.2.

2.4.2.1. Displacements Due to a Vertical Uniform Load

Expressions for the horizontal and vertical displacements due to a vertical uniform load are as follows:

i. \(\beta^2 > 0 \):

\[
\begin{align*}
 u &= p_1 r_0 \left[g_3 I_{200}(\phi \zeta) - g_4 I_{200}(\phi \zeta) \right] \\
 w &= p_1 r_0 \left[g_1 I_{200}(\phi \zeta) - g_2 I_{200}(\phi \zeta) \right]
\end{align*}
\]

(2.47) \hspace{1cm} (2.48)

ii. \(\beta^2 < 0 \):

\[
\begin{align*}
 u &= p_1 r_0 \left[-i_3 c I_{200} - i_4 s I_{220} \right] \\
 w &= p_1 r_0 \left[i_1 c I_{200} + i_2 s I_{200} \right]
\end{align*}
\]

(2.49) \hspace{1cm} (2.50)

iii. \(\beta^2 = 0 \):

\[
\begin{align*}
 w &= p_1 r_0 \left[-s_3 I_{220}(\alpha \zeta) + s_4 z I_{222}(\alpha \zeta) \right] \\
 w &= p_1 r_0 \left[s_1 I_{200}(\alpha \zeta) + s_2 z I_{202}(\alpha \zeta) \right]
\end{align*}
\]

(2.51) \hspace{1cm} (2.52)

Coefficients \(g_1, \ldots, g_4, \quad i_1, \ldots, i_4, \quad s_1, s_3, \quad I_{200}(\phi \zeta), \quad I_{222}(\phi \zeta), \quad c I_{200}, \quad s I_{200}, \quad c I_{220}, \quad s I_{220} \), and \(I_{222}(\alpha \zeta) \) are provided in Appendix A2.1.2.
2.4.2.2. Displacements Due to a Horizontal Uniform Load

Solutions for the horizontal and the vertical displacements due to a uniform horizontal shear load are as follows:

i. $\beta^2 > 0$:

\[
\begin{align*}
 u &= p_2 \cos \theta \, r_0 \left[h_3 M_{220} (\phi \xi) - h_4 M_{220} (\rho \xi) + h_{10} A_{220} (\gamma \xi) \right] \\
 w &= p_2 \cos \theta \, r_0 \left[h_1 l_{220} (\phi \xi) - h_2 l_{220} (\rho \xi) \right]
\end{align*}
\] (2.53)

\[
\begin{align*}
 w &= p_2 \cos \theta \, r_0 \left[h_1 l_{220} (\phi \xi) - h_2 l_{220} (\rho \xi) \right]
\end{align*}
\] (2.54)

ii. $\beta^2 < 0$:

\[
\begin{align*}
 u &= p_2 \cos \theta \, r_0 \left[j_3 c M_{220} + j_4 z M_{220} + j_{11} A_{220} (\gamma \xi) \right] \\
 w &= p_2 \cos \theta \, r_0 \left[j_1 c l_{220} + j_2 z l_{220} \right]
\end{align*}
\] (2.55)

\[
\begin{align*}
 w &= p_2 \cos \theta \, r_0 \left[j_1 c l_{220} + j_2 z l_{220} \right]
\end{align*}
\] (2.56)

iii. $\beta^2 = 0$:

\[
\begin{align*}
 u &= p_2 \cos \theta \, r_0 \left[-t_3 M_{220} (\alpha \xi) + t_4 z M_{222} (\alpha \xi) + t_{10} A_{220} (\gamma \xi) \right] \\
 w &= p_2 \cos \theta \, r_0 \left[t_1 l_{220} (\alpha \xi) + t_2 z l_{222} (\alpha \xi) \right]
\end{align*}
\] (2.57)

\[
\begin{align*}
 w &= p_2 \cos \theta \, r_0 \left[t_1 l_{220} (\alpha \xi) + t_2 z l_{222} (\alpha \xi) \right]
\end{align*}
\] (2.58)

Coefficients $h_1, \ldots, h_4, j_1, \ldots, j_4, t_1, t_3, t_{10}, A_{220} (\gamma \xi), l_{220} (\alpha \xi), c l_{220}, \gamma l_{220}, M_{220} (\alpha \xi), c M_{220}, A_{220} (\gamma \xi), M_{222} (\gamma \xi)$ are given in Appendix A2.1.2.2.

2.4.2.3. Displacements Due to a Vertical Linear Load

Expressions of solutions for the horizontal and the vertical displacements due to a linear vertical load (resolution of application of moment M_y) are as follows:

i. $\beta^2 > 0$:

\[
\begin{align*}
 u &= p_3 \cos \theta \, r_0 \left[g_3 M_{420} (\phi \xi) - g_4 M_{420} (\rho \xi) \right] \\
 w &= p_3 \cos \theta \, r_0 \left[g_1 l_{420} (\phi \xi) - g_2 l_{420} (\rho \xi) \right]
\end{align*}
\] (2.59)

\[
\begin{align*}
 w &= p_3 \cos \theta \, r_0 \left[g_1 l_{420} (\phi \xi) - g_2 l_{420} (\rho \xi) \right]
\end{align*}
\] (2.60)
ii. $\beta^2 < 0$:

$$u = p_j \cos \theta r_0 \left[-i_3 M_{420} - i_4, M_{420} \right]$$ \hspace{1cm} (2.61)

$$w = p_j \cos \theta r_0 \left[i_1, l_{420} + i_2, l_{420} \right]$$ \hspace{1cm} (2.62)

iii. $\beta^2 = 0$:

$$u = p_j \cos \theta r_0 \left[-s_3 M_{420} (\alpha z) + s_4 z M_{422} (\alpha z) \right]$$ \hspace{1cm} (2.63)

$$w = p_j \cos \theta r_0 \left[s_1 l_{420} (\alpha z) + s_2 z l_{422} (\alpha z) \right]$$ \hspace{1cm} (2.64)

Coefficients $g_1, \ldots, g_4, i_1, \ldots, i_4, s_1, s_3, l_{420} (\alpha z), c l_{420}, s l_{420}, l_{422} (\alpha z), c M_{430}, s M_{420}, M_{422} (\alpha z), M_{420} (\alpha z) \) are defined in Appendix A2.1.2.2.

2.5. NON-HOMOGENEOUS ISOTROPIC ELASTIC HALF-SPACE MODEL

Holl (1940) developed a general form of Boussinesq's (1885) classical solutions for the problem of a vertical point load (P_z) and a horizontal point load (Q_x) acting on the surface of a non-homogeneous half-space.

In this soil idealisation, modulus of elasticity varies with depth such that:

$$E = E_0 z^\lambda$$ \hspace{1cm} (2.65)

where E_0 is the modulus of elasticity at unit depth and

$$\lambda = n - 3 = \frac{1}{\nu} - 2$$ \hspace{1cm} (2.66)

In Equations 2.65 and 2.66, for $n = 3, \lambda = 0, \nu = 0.5$, the case reduces to Boussinesq's solution and when $n = 4, \lambda = 1, \nu = 1/3$, it corresponds to Gibson's solution (1967).
In his research, Holl developed parametric solutions for radial, tangential and shear stresses in cylindrical coordinate systems in which for some specific parameters, those solutions were simplified to Gibson’s model.

For a non-homogeneous elastic half-space medium with a linearly varying shear model illustrated in Figure 2.6, Gibson (1967) suggested that the shear modulus (G_z) take the form:

$$G(z) = G_0 + mz$$

(2.67)

where G_0 and m are the soil shear modulus at the surface of elastic half-space and a constant that describes the linear increase of the soil property with depth respectively.

![Figure 2.6 Variation of shear modulus in an inhomogeneous soil idealised by Gibson (1967).](image)

The displacements due to a vertical uniform surface load (p), over a circular area ($r \leq b$), for a constant Poisson’s ratio ($\nu = 1/3$), are expressed by Awojobi and Gibson (1973). In their method new dependant variables were applied:

$$\Omega(x, z) = \frac{1}{h} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)$$

(2.68)

and

$$\varepsilon(x, z) = \frac{1}{h} \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} \right)$$

(2.69)

where Ω and ε are odd and even functions and are expressed in terms of the following Fourier transforms:
This approach leads to the general solutions for horizontal and vertical displacements as follows:

\[u(x, z) = \frac{2}{\pi} \int_0^\infty u^*(\xi, z) \sin \xi \, d\xi \]
\[w(x, z) = \frac{2}{\pi} \int_0^\infty w^*(\xi, z) \cos \xi \, d\xi \]

Specifically, when there is an axial symmetry applicable to the problem, Fourier kernel \(\frac{2 \sin b \xi \cos x \xi}{\pi} \) is replaced by the Hankel kernel \(b J_0(r \xi) J_1(b \xi) \). The displacement on the half-space is obtained

\[w(r, 0) = \frac{p b}{2G_0} \int_0^\infty J_0(r \xi) J_1(b \xi) f(\beta \xi) \, d\xi \]
\[f(\beta \xi) = f(t_0) = \frac{t_0 [K^2_0(t_0) - K^2_0(t_0)] + K_0(t_0) K_1(t_0)}{t_0^2 [K^2_1(t_0) - K^2_0(t_0)] + 2K^2_1(t_0) - \tau K_0(t_0) K_1(t_0)} \]

where \(K_0 \) and \(K_1 \) are modified Bessel functions; \(t_0 = \xi \beta \), \(\beta = G_0 / m \). \(J_0 \) and \(J_1 \) are the Bessel functions of the first kind of order zero and unity. The parameter \(r \) and \(b \) are the distance from the origin of the coordinate system, and the radius of the loaded area respectively.

Dempsey and Li (1995) applied the above solution for a vertical point load \((P) \) at the origin of the coordinate system, where \(b \) tends to zero, \(p \pi b^2 \) tends to \(P \), and Equation 2.74 simplifies to: \[\Omega(x, z) = \frac{2}{\pi} \int_0^\infty \Omega^*(\xi, z) \sin \xi \, d\xi \]
\[\varepsilon(x, z) = \frac{2}{\pi} \int_0^\infty \varepsilon^*(\xi, z) \cos \xi \, d\xi \]
\[w_0(r) = \frac{P}{4\pi G_0} \int_0^r J_0(r\xi) f(\beta\xi) d\xi \] (2.76)

In the analytical evaluation of the above integral, the following solution is obtained

\[w_0(r) = \frac{P}{4\pi G_0} \left[\frac{4}{3r} - \frac{5}{3\beta} \ln \frac{\beta + \sqrt{\beta^2 + r^2}}{r} + \sum_{m=1}^{M} \frac{\alpha_m}{\sqrt{(m\gamma\beta)^2 + r^2}} \right] \] (2.77)

where \(\alpha_m \) and \(\gamma \) are coefficients that are determined by the least-squares error criterion to minimise the error and \(M \) is the number of terms to be considered.

Further details of the solutions are beyond the scope of this study.

2.6. METHODS OF OBTAINING SOIL PARAMETERS

Soil moduli of elasticity vary over a wide range while Poisson’s ratio variation is much more limited. In an isotropic linear elastic soil it is possible to determine the elastic constants \(E \) (Young’s modulus) and \(\nu \) (Poisson’s ratio) from a single uniaxial test. These constants are then used to calculate the relationship between stress and strain for other types of tests. In uniaxial tests, the concept of theory of elasticity is considered. If an axial load \(\sigma_z \) is applied to an elastic cylinder, there will be a vertical compression and a lateral expansion where the modulus of elasticity is obtained from the stress-strain curve.

Application of shear stress \(\tau_{xy} \) to an elastic cube causes a shear distortion that can be used to obtain the shear modulus. Details of these tests are given in Appendix A2.2.1. In situ tests of Standard Penetration Test (SPT) and Cone Penetration Test (CPT) tend to use empirical correlations to obtain \(E_z \). Other in situ tests such as the pressuremeter, the flat dilatometer, the Iowa stepped blade tend to obtain more direct measurements of \(E_z \). The value of stress-strain modulus \(E_z \) obtained from these tests is generally the horizontal value, however the vertical value is usually needed for settlements. Most soils are anisotropic, so the horizontal \(E_{zh} \) value may be
considerably different from the vertical value E_{shv}. Overconsolidation may also alter the vertical and horizontal values of strain modulus.

Because the laboratory values of E_s are expensive to obtain and are generally not very good anyway owing to sampling disturbance, the SPT and CPT have been widely used to obtain the stress-strain modulus E_s resulting from empirical equations and/or correlations. Tables 2.1 and 2.2 (Bowles 1997) give a number of equations for possible use in several test methods.

<table>
<thead>
<tr>
<th>Soil</th>
<th>SPT (Standard Penetration Test)</th>
<th>CPT (Cone Penetration Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand (normally consolidated)</td>
<td>$E_s = 500 (N + 15)$</td>
<td>$E_s = (2 to 4) q_u$</td>
</tr>
<tr>
<td></td>
<td>$= 7000 \sqrt{N}$</td>
<td>$= 8000 \sqrt{q_c}$</td>
</tr>
<tr>
<td></td>
<td>$= 6000 N$</td>
<td>$E_s = 1.2 (3D_r^2 + 2) q_c$</td>
</tr>
<tr>
<td></td>
<td>$E_s = (15 \ 000 \ to \ 22 \ 000) \cdot \ln (N)$</td>
<td>$E_s = (1 + D_r^2) q_c$</td>
</tr>
<tr>
<td>Sand (saturated)</td>
<td>$E_s = 250 (N + 15)$</td>
<td>$E_s = F q_c$</td>
</tr>
<tr>
<td>Sands, all (normal consolidated)</td>
<td>$E_s = (2600 \ to \ 2900)N$</td>
<td>$e = 1.0 \quad F = 3.5$</td>
</tr>
<tr>
<td>Sand (overconsolidated)</td>
<td>$E_s = 40 \ 000 + 1050 N$</td>
<td>$e = 0.6 \quad F = 7.0$</td>
</tr>
<tr>
<td>Gravelly sand</td>
<td>$E_s = 1200 (N + 6)$</td>
<td>$E_s = (6 \ to \ 30) q_c$</td>
</tr>
<tr>
<td></td>
<td>$= 600 (N + 6) \quad N \leq 15$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 600 (N + 6) + 2000 \quad N > 15$</td>
<td></td>
</tr>
<tr>
<td>Clayey sand</td>
<td>$E_s = 320 (N + 15)$</td>
<td>$E_s = (3 + 6) q_c$</td>
</tr>
<tr>
<td>Silts, sandy silt, or clayey silt</td>
<td>$E_s = 300(N + 6)$</td>
<td>$E_s = (1 to 2) q_c$</td>
</tr>
<tr>
<td>Soft clay or clayey silt</td>
<td>$E_s = (3 to 8) q_c$</td>
<td></td>
</tr>
</tbody>
</table>

E_s in kPa for SPT and units of q_c (cone bearing pressure) for CPT; divide kPa by 50 to obtain ksf. The N (SPT blow count) values should be estimated as N_{55} and not N_{70} (SPT blow count at 55 & 70 percent efficiency). See Bowles, 1997 for definitions of variables.

Table 2.1 Equations defining stress-strain modulus E_s by several test methods
Soil

<table>
<thead>
<tr>
<th>Clay and silt</th>
<th>$I_p > 30$ or organic</th>
<th>$E_s = (100$ to $500)s_u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silty and sandy clay</td>
<td>$I_p > 30$ or stiff</td>
<td>$E_s = (100$ to $1500)s_u$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Again, $E_{s,OCR} = E_{s,nc} \sqrt{OCR}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use smaller s_u - coefficient for highly plastic clay.</td>
</tr>
</tbody>
</table>

Of general application in clay is

\[E_s = Ks_u \quad \text{(units of } s_u) \]

(a)

where K is defined as

\[K = 4200 - 142.54I_p + 1.73I_p^2 - 0.0071P^2 \]

(b)

and I_p = plasticity index in percent. Use $20\% \leq I_p \leq 100\%$ and round K to the nearest multiple of 10. Another equation of general application is

\[E_s = 9400 - 8900I_p + 11600I_e - 8800S \quad \text{(kPa)} \]

(c)

where I_p = plasticity index, I_e = relative consistency which is defined as $I_e = \frac{w_L - w_N}{I_p}$ (w_L is liquid limit and w_N is water content), and S = degree of saturation which is defined as the ratio of the volume of water to the total volume of soil voids, expressed as a percentage $S = \frac{V_w}{V_v} \times 100$ ($\%$)

Use the undrained shear strength s_u in units of s_u.

Table 2.2 The commonly used multiplier \sqrt{OCR} (overconsolidation ratio) used to increase the normally consolidated value of stress-strain modulus $E_{s,nc}$.

Some values and value ranges for Poisson’s ratio and modulus of elasticity in isotropic soil medium are presented in Tables 2.3, 2.4 and 2.5 (Bowles 1997).

<table>
<thead>
<tr>
<th>Type of soil</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay, saturated</td>
<td>0.4 - 0.5</td>
</tr>
<tr>
<td>Clay, unsaturated</td>
<td>0.1 - 0.3</td>
</tr>
<tr>
<td>Sandy clay</td>
<td>0.2 - 0.3</td>
</tr>
<tr>
<td>Silt</td>
<td>0.3 - 0.35</td>
</tr>
<tr>
<td>Sand, gravelly sand commonly used</td>
<td>0.1 - 1.00</td>
</tr>
<tr>
<td>Rock</td>
<td>0.1 - 0.4 (depend somewhat on type of rock)</td>
</tr>
<tr>
<td>Loess</td>
<td>0.1 - 0.3</td>
</tr>
<tr>
<td>Ice</td>
<td>0.36</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.15</td>
</tr>
<tr>
<td>Steel</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 2.3 Values and some value ranges for Poisson’s ratio μ for selected materials
<table>
<thead>
<tr>
<th>Soil type</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most clay soils</td>
<td>0.4 - 0.5</td>
</tr>
<tr>
<td>Saturated clay soils</td>
<td>0.45 - 0.50</td>
</tr>
<tr>
<td>Cohesionless — medium and dense</td>
<td>0.3 - 0.4</td>
</tr>
<tr>
<td>Cohesionless — loose to medium</td>
<td>0.2 - 0.35</td>
</tr>
</tbody>
</table>

Table 2.4 The most commonly used values for soils

<table>
<thead>
<tr>
<th>Soil</th>
<th>E_s^*, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td>Very soft</td>
<td>2 - 15</td>
</tr>
<tr>
<td>Soft</td>
<td>5 - 25</td>
</tr>
<tr>
<td>Medium</td>
<td>15 - 50</td>
</tr>
<tr>
<td>Hard</td>
<td>50 - 100</td>
</tr>
<tr>
<td>Sandy</td>
<td>25 - 250</td>
</tr>
<tr>
<td>Glacial till</td>
<td></td>
</tr>
<tr>
<td>Loose</td>
<td>10 - 150</td>
</tr>
<tr>
<td>Dense</td>
<td>150 - 720</td>
</tr>
<tr>
<td>Very dense</td>
<td>500 - 1440</td>
</tr>
<tr>
<td>Loess</td>
<td>15 - 60</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>Silty</td>
<td>5 - 20</td>
</tr>
<tr>
<td>Loose</td>
<td>10 - 25</td>
</tr>
<tr>
<td>Dense</td>
<td>50 - 81</td>
</tr>
<tr>
<td>Sand and Gravel</td>
<td></td>
</tr>
<tr>
<td>Loose</td>
<td>50 - 150</td>
</tr>
<tr>
<td>Dense</td>
<td>100 - 200</td>
</tr>
<tr>
<td>Shale</td>
<td>150 - 5000</td>
</tr>
<tr>
<td>Silt</td>
<td>2 - 20</td>
</tr>
</tbody>
</table>

* Value range is too large to use an "average" value for design
* Field values depend on stress history, water content, density and age of deposit

Table 2.5 A range of E_s values (possibly obtained) for the static stress-strain modulus E_s for selected soils

Other tests (Isotropic compression, Confined compression or Oedometer and Triaxial compression) can be used to obtain soil elastic parameters as described in standard soil mechanics text references (e.g. Lambe and Whitman 1979, Taylor 1948).

Many of the existing studies for assessing the elastic parameters in cross-anisotropic soil are conducted to obtain parameters for road pavement designs. Anisotropy, stress history, natural cementation, and overconsolidation are likely to be very significant.
factors in determining E_s, especially for cohesionless soils. In cohesionless soils cementation is particularly significant; for individual soil grains the effect can be very small, but the statistical accumulation for the mass can have a large effect. Cementation (also called "aging") can be easily lost in recovered cohesionless samples. Drilling disturbances in cohesionless soils for the purpose of performing pressuremeter, dilatometer, or other tests may sufficiently destroy the cementation/aging in the vicinity of the hole to reduce E_s to little more than an estimate.

Since a specific design strength is required the tests are proposed accordingly. A limited amount of research is available in relation to structures founded on this type of half-space. However, there are a number of field and laboratory tests that can be used indirectly to obtain the soil parameters. Among these laboratory tests, CBR or California Bearing Ratio (ASTM 1987 and AS1289) method are utilised to determine the bearing ratio of soil when it is compacted and tested in the laboratory by comparing the penetration load of the soil to a standard material. This method covers the evaluation of the relative strength of the soil (Pavement Design 1992). The CBR test can be used to determine the modulus of subgrade reaction. As a resilient technique, the vertical modulus of subgrade can be obtained either from the laboratory testing of conditioned specimens (Thompson and Quentin 1976) or from the following empirical relationship (AUSTROAD, Pavement Design 1992)

\[\text{Vertical Modulus of Elasticity (MPa) } = 10 \text{ CBR} \] \hspace{1cm} (2.78)

This equation is at best an approximation. The modulus is found to vary in a range 5 to 20 CBR (Sparks and Potter 1982).

The triaxial test is an alternative laboratory test that can be used. Barret and Smith (1976) found that the modulus of elasticity for a crushed doleraite with clay binder, from repeated load triaxial tests could be adequately predicted by:

\[E = k (\sigma_1 + 2\sigma_3)^n \text{ MPa} \] \hspace{1cm} (2.79)
where k and m are parameters that depend on the number of load repetitions and they vary in the ranges 75-110 and 0.32-0.50 respectively (Graph A2.3 in Appendix A2), σ_1 is the applied compressive stress, σ_3 is the orthogonal restraining stress. Further details regarding the above methods can be obtained from Appendix A2.2.

2.7 CONCLUDING REMARKS TO CHAPTER

Several soil models and the corresponding expressions for the force-displacement relation were presented. These expressions were shown in different forms, such as exact solutions (e.g. closed forms) or mathematical series. Relevant soil methods from the above mentioned are implemented in the next chapter to obtain the coefficients of the flexibility matrix for individual cases that are utilised in this thesis.
CHAPTER

THREE

METHOD OF SOLUTION

Elastostatic Interaction Analysis of Frames
Resting on Homogeneous Elastic Half-space
CHAPTER 3
METHOD OF SOLUTION

3.1. INTRODUCTION

This chapter elaborates on the methods used to analyse the system of a superstructure and its supporting medium.

Most of the currently designed structures are statically indeterminate. Indeterminate structures are preferable to determinate structures because of the numerous advantages they have during their service life. This indeterminacy may arise as a result of added supports, members, or from the geometry of the structure. For instance, most reinforced concrete buildings are statically indeterminate. The reason for this is that the columns and beams are poured as continuous members through the joints and over supports (monolithic structures). The analysis of statically indeterminate structures generally requires the solution of linear simultaneous equations, the number of which depends on the method of analysis.

Difficult cases of variable soil deposits, loading conditions and complex structures usually necessitate performing a deformation analysis by means of numerical techniques such as the finite element method or the boundary element method. However, some numerical techniques require extensive calculations which can be very time-consuming and therefore they may not be suitable for conducting preliminary design studies.

3.2. STRUCTURE-SOIL SYSTEM

The combination of a structure and its supporting soil medium constitutes a system. The present study is concerned with the interaction that occurs between these components and how they respond to the application of external loads.
The approach taken in the study is as follows.

1. A single plane frame in a vertical plane $x-y$, regarded as the main structure, is analysed, and the reaction of soil to the structure in response to the external loads is taken into account (Figure 3.1).

2. A number of such plane frames parallel to the single frame and located on both sides of it are then considered. These frames, which are exposed to external loads similar to loads on the single frame, are related to the single frame only through their interaction via the supporting soil. Support interaction between adjacent frames and the effect of that interaction is analysed using a numerical approach.

The direct stiffness method (DSM) is a displacement-based technique which due to its simplicity, is used in this study. This method can be applied to all types of structures subjected to external loads or to prescribed displacements. DSM is a relatively modern computer oriented method of analysis that is employed for linear elastic analysis of frame structures.

The stiffness equations are derived from the equilibrium of nodes, and the nodal displacements are determined from them. These stiffness equations can be expressed as:

$$[K_\alpha] \{\Delta\} = \{P\} \quad (3.1)$$

where $[K_\alpha]$ is the structure stiffness matrix which is square, $\{\Delta\}$ is the vector of nodal displacements, and $\{P\}$ represents the vector of external nodal forces. Applying Equation 3.1 to the superstructure with node loads as well as element loads yields:

$$[K_\alpha] \{\Delta\} = \{\bar{P}\} - \{P\}^0 \quad (3.2)$$

where $\{P\}^0$ is the vector composed of fixed end forces and:

$$\{\bar{P}\} = \{P\} + \{R_j\} + \{R_n\} \quad (3.3)$$
where \(\{P\} \) is the vector of nodal loads, \(\{R_s\} \) is the vector of reaction forces and \(\{R_{rs}\} \) is the vector of nodal elastic restraint forces.

The vector \(\{R_s\} \) can be expressed as:

\[
\{R_s\} = [K_s]\{\Delta_s\}
\]

(3.4)

where \(\{R_s\} \) and \(\{\Delta_s\} \) are the vector of interaction forces between the soil and structure and the vector of nodal displacements respectively, and where \([K_s]\) is the soil stiffness matrix.

Of course, the interaction forces acting on the structure and the soil are equal in magnitude but opposite in direction.

Thus, if coordinates on soil are chosen in opposite directions to those of the structure global coordinates, then it can be stated that:

\[
\{R_s\} = [K_s]\{\Delta_s\} = -[K_s]\{\Delta\}
\]

(3.5)

By substituting Equation 3.5 in Equation 3.2, the static system stiffness relationship that takes account of the stiffness of the superstructure and that of the foundation bed is obtained as:

\[
[K_{sys}]\{\Delta\} = \{P\} - \{P\}^0
\]

(3.6)
where

\[[K_{y3}] = [K_{x}] + [K_{s}] \] \hspace{1cm} (3.7)

The soil stiffness matrix \([K_{s}]\) in this work is obtained as an inverse of the soil flexibility matrix.

The soil flexibility matrix is prepared for the following options:

1. The soil stiffness matrix is associated with the support nodes of a single plane frame structure that does not consider the effect of neighbouring frames or the adjacent support nodes in the same frame. In this case, only the effect of support reactions under individual nodes of a single frame (stand-alone) on the soil is evaluated in the structural analysis (isolated supports).

2. The soil stiffness matrix is prepared to contribute the effect of adjacent support nodes of a single plane frame structure. This incorporates the effects of the neighbouring support nodes of the same frame. The option is available for the study of the individual support interactions of a single frame, and also of the interaction of the other support nodes from the same frame on each other through the soil medium. Support interaction is allowed through the continuous soil medium supporting the structure.

3. The soil stiffness matrix is built to consider the interaction amongst all the support nodes (in the soil). The scope of this interaction is from supports of the same frame and from other frames, which are assumed to be in parallel and to be related to the frame concerned through the soil medium.

These three cases are illustrated in chapter 5.

3.3. DIRECT STIFFNESS MATRIX METHOD

When analysing a structure subjected to static loads, there are two main groups of unknowns. They are the internal force distribution within the structure and the nodal displacements that the structure undergoes.
The Direct Stiffness Method involves solving simultaneous linear equations that describe the force-displacement relations expressed by Equation 3.1. Since the method is well known (Ghali and Neville 1989, Hsieh and Mau 1995) only a brief description is given here. This method can be outlined as follows:

1. The structure is idealised by means of elements connected at nodes. The stiffness equation is developed for these elements depending on the support conditions. The conditions are either zero or non-zero degrees of freedom. To obtain the final structure stiffness matrix, the developed equations are combined and rearranged according to these support conditions.

2. Nodal forces are calculated by considering the fixed end forces due to the member loads and the nodal prescribed displacements. The external node loads are then added to the nodal force vector.

3. Spring stiffnesses are added to the stiffness matrix of the superstructure. Once it has accounted for the contribution of the linear spring supports, the superstructure stiffness matrix is prepared.

4. The soil flexibility matrix is obtained using the force-displacement relations derived for the appropriate soil model. The inverse of this matrix gives the soil stiffness matrix, which is then superimposed on the structure stiffness matrix to obtain the stiffness matrix of the whole system.

5. The stiffness equations of the whole system are solved for the nodal displacements in global coordinates.

6. The internal end forces are then calculated by substituting the nodal displacements into the element stiffness relations.

Based on the above steps, the author has developed a computer analysis package SASIAP (Soil And Structure Interaction Analysis Package) using Turbo Pascal language.

3.4. SUPERSTRUCTURE CONTRIBUTION IN ANALYSIS

The superstructure is the entire construction that stands above the soil medium. The above steps of the Direct Stiffness Matrix are applied to the superstructure in order to analyse the whole system.
3.4.1. Assumptions in Superstructure Analysis

In the analysis of the superstructure, Hooke’s law governs the conditions. Hence, only linear elastic parameters are considered for displacements, stresses and strains. The displacements are small and do not significantly affect the geometry of the superstructure. Members are prismatic and symmetric with respect to the plane of the structure. As the structure is located in a plane, three degrees of freedom are defined for individual nodes (nodal displacements). The shear deformation effects on the elements are ignored and cross-sections remain plane during bending.

3.5. SOIL CONTRIBUTION IN ANALYSIS

Figure 3.2 shows the corresponding interaction forces acting on the footing nodes and the soil medium.

![Figure 3.2 Illustration of soil and superstructure nodal reactions at the interface.](image)

The reactions at the footing supports are considered as internal forces, which are equal and in opposite directions. The sign conventions shown in Figures 3.1 and 3.2 are adopted for developing the soil flexibility coefficients.

As described in Chapter 2, the force-displacement relations are used at the soil-structure interface to develop the soil stiffness matrix. In the following sections, the effects of horizontal and vertical forces, and moments about horizontal axis applied to the soil are taken into consideration. In this project, two types of soil consisting of homogeneous elastic half-space with isotropic and cross-anisotropic behaviour are elaborated.
3.5.1. Assumptions in Soil Consideration

The supporting medium is modelled as a homogeneous elastic half-space with either isotropic or cross-anisotropic properties, and the vertical axis is the axis of symmetry for the elastic properties in a horizontal direction in a cross-anisotropic case. The soil remains in contact with the superstructure and the nodes at support positions in the structure coincide with those of the elastic half-space.

3.5.2 Development of Soil Stiffness Matrix

The soil stiffness matrix is obtained by inverting the soil flexibility matrix. The flexibility equation is defined in a similar way to the stiffness equation, with force and displacement interchanged throughout, and refers to the displacement at some point on the surface of the medium caused by a unit force at the same point or at some other point. Flexibility equations obtained from the assembling of such relations are then used to develop the soil stiffness matrix.

The flexibility relationships depend upon the soil properties and the distance between two points in the soil. These points are where the displacement takes place and where the force acts, and the relationship of these points to each other determines the calculation. Based on whether this distance tends to zero (displacement concerned under the load) or not (displacement concerned at some other point), two categories of flexibility coefficients are identified as group B and group A respectively and are shown in Figure 3.3.

![Figure 3.3 Illustration of different sub-matrix groups in soil flexibility matrix between two points.](image-url)
The coefficients obtained in these groups constitute the global soil flexibility matrix when positioned according to the degrees of freedom in the global coordinates (Figure 3.3). Group A non-diagonal sub-matrices are 3×3 square matrices with the flexibility coefficients A_1, \cdots, A_9, and similarly, group B main diagonal sub-matrices are 3×3 square matrices with the flexibility coefficients B_1, \cdots, B_9.

Elements of the flexibility matrix or the flexibility coefficients are represented by symbol f_{ab}^{mn}. In this notation, the subscripts a and b represent the point at which the displacement takes place and that where the load is applied, respectively. The superscripts $m = i, j, k$ and $n = i, j, k$ address the direction of the degrees of freedom in $x, y, \text{ and } z$ axes corresponding to the displacement and the load, respectively (Figure 3.4).

![Figure 3.4 Orientation of direction vector for point $P(i, j, k)$](image)

When the soil flexibility matrix is assembled in this way it is symmetric about its main diagonal. Thus, by switching the sequence of both the superscripts and the subscripts simultaneously, the coefficients on both sides of the pivot can be defined (inter-change case). In a general form, this rule appears as follows (see Figure 3.5)

$$f_{ab}^{mn} = f_{ba}^{nm}$$

(3.8)

![Figure 3.5 Flexibility coefficients associated with the horizontal and vertical degrees of freedom at point b due to horizontal force Q_a at point a.](image)
The following notations are employed for loads and displacements:

- Load: Point loads and distributed loads are designated by \(P, Q, M \) and \(p, q, m \) (in upper and lower cases) respectively, with a subscript for the application point.
- Displacement: Symbols \(u, v \) and \(\varphi \) (in lower case) with subscripts related to the point where displacement evaluation takes place.

Arrangement of the coefficients in the soil flexibility matrix associated with two points \(a \) and \(b \) is presented in Figure 3.6.

The flexibility coefficients associated with supports according to their corresponding degrees of freedom in the global system forms the soil flexibility matrix. In the following sections, the flexibility coefficients associated with a homogenous soil with isotropic and cross-anisotropic properties are considered.

3.5.3 Flexibility Coefficients Associated with Two Distinct Points on a Homogeneous Isotropic Elastic Half-space

Force-displacement relations associated with two distinct points are directly used to develop the flexibility coefficients in this section. The loads considered include a horizontal and a vertical force \((Q_b, P_b) \) and a moment \((M_b) \) about the horizontal axis \(z \).

For convenience in presentation, the following quantities are defined and used in this section and section 3.5.4:
\[
\alpha = \frac{(1 - v_s^2)}{\pi E_s} \\
\beta = \frac{(1 + v_s)(1 - 2v_s)}{2\pi E_s} \\
\gamma = \frac{(1 + v_s)}{\pi E_s}
\]

where \(v_s \) and \(E_s \) are Poisson's ratio and modulus of elasticity for soil.

3.5.3.1. Flexibility Coefficients Associated with Horizontal Force \(Q_b \)

Applying Cerruti force-displacement relations (Equations 2.8 and 2.9) results in the flexibility coefficients associated with the horizontal and the vertical displacements due to a horizontal force \(Q_b \) as follows:

\[
u_a = \frac{(1 + v_s)(1 - 2v_s)}{2\pi E_s R_{ab}} Q_b = \frac{\beta}{R_{ab}} Q_b
\]

Thus:

\[
f_{ab}^{ii} = \frac{1 + v_s}{\pi E_s R_{ab}} = \frac{\gamma}{R_{ab}}
\]

\[
f_{ab}^{ii} = \frac{(1 + v_s)(1 - 2v_s)}{2\pi E_s R_{ab}} = \frac{\beta}{R_{ab}}
\]

where \(R_{ab} \) is the distance between the point of the load application and that of the displacement concerned (i.e. points \(b \) and \(a \)). In Figure 3.7, points \(a' \) and \(c' \) are the new locations of the footings after the horizontal load is applied.
To determine the flexibility coefficients associated with the angle of rotation φ_a due to a horizontal load, the following approach is used.

Due to symmetry of the matrix in Figure 3.6, $f_{ab}^{ki} = f_{ba}^{ik}$ and these two coefficients are interchangeable. Hence, horizontal displacement u_b due to moment M_a is calculated instead. For this purpose, moment M_a is replaced by a vertical couple P_i^* at distance Δ (Figures 3.8 and 3.9).

By applying Equation 2.6 and letting $\Delta \to 0$, Equation 3.16 is obtained.

$$u_b = \lim_{\Delta \to 0} \frac{(1 + v_s)(1 - 2v_s)}{2\pi E_s \Delta} \left(-\frac{1}{R} + \frac{1}{R - \Delta} \right) M_a = \lim_{\Delta \to 0} \frac{\beta M_a}{R(R - \Delta)}$$

(3.16)
For $M_a = 1$, the displacement u_b becomes the flexibility coefficient f_{ab}^{ki}. Hence

$$f_{ab}^{ki} = \frac{\beta}{R_{ab}^2}$$

(3.18)

The flexibility coefficients given by Equations 3.14, 3.15 and 3.18 correspond to positions A_i, A_4 and A_5 in the flexibility matrix respectively (Figure 3.3).

3.5.3.2. Flexibility Coefficients Associated with Vertical Force P_b

As discussed earlier in Chapter 2, Boussinesq presented the horizontal and the vertical components of the displacement (u_a and v_a) due to a vertical load in Equations 2.6 and 2.7.

![Figure 3.10 Profile of the surface horizontal and vertical displacements due to vertical force (P_b).](image)

The force displacement relations based on Boussinesq solution can be expressed as:

$$u_a = \frac{(1 + v_s)(1 - 2v_s)}{2\pi E_s R_{ab}} P_b$$

(3.19)

$$v_a = \frac{(1 - v_s^2)}{\pi E_s R_{ab}} P_b$$

(3.20)

where the quantities involved are either as shown in Figure 3.10 or as described earlier. Thus, the associated flexibility coefficients are:
\[f_{ij}^{ab} = \frac{(1 + \nu_s^2)(1 - 2\nu_s^2)}{2\pi E_s R_{ab}} = \frac{\beta}{R_{ab}} \]
(3.21)

\[f_{jj}^{ab} = \frac{(1 - \nu_s^2)}{\pi E_s R_{ab}} = \frac{\alpha}{R_{ab}} \]
(3.22)

Figure 3.11 shows the angle of rotation \(\varphi_a \) at point \(a \) caused by the vertical force \(P_b \) acting at point \(b \).

This angle of rotation can be found as the derivative of the vertical displacement at point \(a \). Thus:

\[\varphi_a = \frac{dv}{dr} \bigg|_{r=R_{ab}} = \frac{d}{dr} \left(\frac{1 - \nu_s^2}{\pi E_s r} P_b \right) \bigg|_{r=R_{ab}} = -\frac{1 - \nu_s^2}{\pi E_s R_{ab}^2} P_b \]
(3.23)

or

\[\varphi_a = -\frac{\alpha}{R_{ab}^2} P_b \]
(3.24)

The corresponding flexibility coefficient (\(P_b = 1 \)), therefore, is:

\[f_{ab}^{ij} = -\frac{\alpha}{R_{ab}^2} \]
(3.25)

The flexibility coefficients obtained in Equations 3.21, 3.22 and 3.25 correspond to positions \(A_2, A_5 \) and \(A_8 \), respectively (Figure 3.3).
3.5.3.3. Flexibility Coefficients Associated with Moment M_b

about Horizontal Axis z

To obtain flexibility coefficients associated with moment M_b, the moment is replaced with a vertical couple as shown in Figure 3.12.

![Figure 3.12 Replacement of moment M_b with a couple, and the vertical displacement.](image)

Equation 3.19 is applied to determine the horizontal resultant displacement u_a due to forces P_1^* and P_2^*:

$$u_a = \lim_{\Delta \to 0} \frac{(1 + \nu_x)(1 - 2\nu_x)}{2\pi E_s \Delta} \left(-\frac{1}{R_{ab}} + \frac{1}{(R_{ab} - \Delta)} \right) M_b$$

$$u_a = \lim_{\Delta \to 0} \beta \left(\frac{1}{R_{ab}(R_{ab} - \Delta)} \right) M_b$$

or

$$u_a = \frac{\beta}{R_{ab}^2} M_b$$

Hence,

$$f_{ik} = \frac{\beta}{R_{ab}^2}$$

The vertical displacement due to a couple is shown in Figure 3.12.

Vertical displacement v_a is determined with the aid of Equation 3.20 (Figure 3.12) as follows:

$$v_a = \lim_{\Delta \to 0} \frac{(1 - \nu_y^2)}{\pi E_s \Delta} \left(-\frac{1}{R_{ab}} + \frac{1}{(R_{ab} - \Delta)} \right) M_b = \lim_{\Delta \to 0} \frac{\alpha}{R_{ab}(R_{ab} - \Delta)} M_b$$

63
\[v_a = \frac{\alpha}{R_{ab}^2} M_b \]

(3.30)

Hence,

\[f_{ab} = \frac{\alpha}{R_{ab}^2} \]

(3.31)

The angle of rotation at point \(a\) can be obtained by differentiating the vertical displacement (Equation 3.30) with respect to distance.

\[\varphi_a = -\frac{dv}{dr} \bigg|_{r=R_{ab}} = -\frac{d}{dr} \left[\frac{(1-v^2)}{\pi E_s r^2} M_b \right] \bigg|_{r=R_{ab}} \]

(3.32)

As a result:

\[\varphi_a = \frac{2 \alpha}{R_{ab}^3} M_b \]

(3.33)

Therefore, the corresponding flexibility coefficient is:

\[f_{ab}^{kk} = \frac{2\alpha}{R_{ab}^3} \]

(3.34)

The flexibility coefficients given by Equations 3.28, 3.31 and 3.34 correspond to positions \(A_j\), \(A_6\) and \(A_9\), respectively (Figure 3.3).

3.5.4. Flexibility Coefficients Associated with Two Coincident Points on a Homogeneous Isotropic Elastic Half-space

If the point at which displacement is calculated coincides with the point of load application, the appropriate force-displacement relation is the same as the one for the case of two different points, except that in this case the relationship applies to distributed load. The flexibility coefficients associated with these relations constitute group B and are \(B_1, \ldots, B_9\) (Figure 3.3).
3.5.4.1 Flexibility Coefficients Associated with Horizontal Force \(Q_b \)

In Figure 3.7, when points \(a \) and \(b \) are coincident, the Cerruti Equation 3.12 exhibits a singularity problem. As a result, the flexibility coefficient corresponding to the horizontal displacement due to such a load is evaluated as follows. It is assumed that the load is distributed over a small area in the vicinity of its application point. The displacement at that point is obtained by integrating Equation 3.12 over the area. It is better to choose a circular area, as it can easily lead the integration to a closed form (see Cheung and Zienkiewicz 1965, Melerski 1994, Izadnegahdar and Melerski 1997). For such a case, the associated flexibility coefficient with the horizontal displacement is given by:

\[
 f_{aa}' = f_{bb}' = \frac{(1 + v_s)(1 - 2v_s)}{\pi E_s r_0} = \frac{2\beta}{r_0}
\]
(3.35)

where \(r_0 \) is the radius of the assumed circle over which the load is distributed.

To obtain the corresponding flexibility coefficient for the vertical displacement, the total horizontal load acting at point \(b \) is divided into two equal forces which are applied on both sides in the vicinity of that point. Equation 3.13 gives the vertical displacements at both sides in the vicinity of this point (Figure 3.13).

These displacements are equal but in opposite directions. Hence, the total displacement, due to the continuity in surface deflection, is zero and the flexibility coefficient is:

\[
f_{aa}'' = f_{bb}'' = 0
\]
(3.36)
To determine the flexibility coefficient associated with the angle of rotation due to horizontal load Q_b, the load is distributed uniformly over a small circular area, and Cerruti's equation (i.e. Equation 3.13) is applied to derive the vertical displacement. This rotation can be found as the derivative of the vertical displacement at point b. Thus:

$$
\varphi_b = -\frac{dv}{dr} \bigg|_{r=r_0} = -\frac{d}{dr} \left[\int_{0}^{1} \frac{(1+\nu_s)(1-2\nu_s)}{2\pi E_s r} dQ_b \right]
$$

where $dQ_b = q_b \, dA$, $dA = r \, d\theta \, dr$ and $q_b = \frac{Q_b}{\pi r_0^2}$, then

$$
\varphi_b = -2 \frac{(1+\nu_s)(1-2\nu_s)}{2\pi E_s} q_b \frac{d}{dr} \int_{0}^{2\pi} \frac{r \, d\theta \, dr}{r} = 2 \frac{\beta}{r_0^2} Q_b
$$

Hence,

$$
f_{bb} = \frac{2\beta}{r_0^2}
$$

The flexibility coefficients given by Equations 3.35, 3.36 and 3.39 correspond to positions B_1, B_4 and B_7, respectively (Figure 3.3).

3.5.4.2. Flexibility Coefficients Associated with Vertical Force P_b

The horizontal displacement under vertical load P_b is obtained by considering the axial symmetry about the line of force action. Due to symmetry, such a displacement is zero and the associated flexibility coefficient is:

$$
f_{aa} = f_{bb} = 0
$$

To obtain the flexibility coefficient associated with the vertical displacement under a vertical point load when the distance (R_{ab}) tends to zero, direct application of Equation 3.20 leads to singularity. To overcome this singularity problem the vertical load is distributed over a small circle containing that point. Integration of the vertical
displacement due to the load over the infinitesimal area facilitates the calculation and leads to a finite value for the total vertical displacement (see Appendix A1) (Cheung and Zienkiewicz 1965). The flexibility coefficient is then given as:

\[
 f_{\alpha\alpha} = f_{\beta\beta} = \frac{2(1-\nu^2)}{\pi E_s r_0} = \frac{2\alpha}{r_0}
\]

(3.41)

where \(r_0 \) is the radius of the assumed load distribution circle, and the remaining quantities were defined in section 2.3.2.

Cheung and Zienkiewicz (1965) investigated load distribution over a foundation with different shapes such as a square and a rectangle with different aspect ratio. In that study, a rectangle \(a \times b \) was exposed to a uniform load and the Boussinesq force-displacement relationship was integrated over the area to obtain the vertical displacement under the rectangle.

To get the angle of rotation under a vertical load, symmetry of the load about the line of action is considered. Since the displacements due to applied force are symmetric the slope under the force must be zero. Thus:

\[
 f_{\beta\beta}^{kj} = 0
\]

(3.42)

The flexibility coefficients given by Equations 3.40, 3.41 and 3.42 correspond to positions \(B_2, B_3 \) and \(B_8 \), respectively (Figure 3.3).

3.5.4.3. Flexibility Coefficients Associated with Moment \(M_b \) about Horizontal Axis \(z \)

The flexibility coefficients (\(B_3 \) and \(B_6 \)) associated with the horizontal and vertical displacements are symmetrical with those at positions \(B_7 \) and \(B_8 \), which are obtained from Equations 3.39 and 3.42. Hence, only the flexibility coefficient that corresponds to the angle of rotation \(\phi_b \) is developed here.
Applying the method used for non-coincident points (section 3.5.3.3), as the distance R_{ab} tends to zero would cause singularity in Equation 3.33. Therefore, the moment M_b is replaced with a vertical linearly distributed load over an assumed circle ($r = r_0$, Figure 3.14). The total vertical load over both compression and tension half-circles are equal but in opposite directions. Hence, the integration of the vertical displacement due to the infinitesimal load over the area gives the vertical displacement and the derivative of this displacement with respect to the distance results in the angular change at that point.

The Boussinesq expression (i.e. Equation 3.20) is applied, and the total vertical displacement due to the distributed load over half of the area is obtained.

$$v_b = \frac{1}{2} \int \frac{(1-v^2) p_b \, dA}{\pi \, E_s \, r} \quad \quad (3.43)$$

where $p_b = \frac{P_{\max} \, r \cos \theta}{r_0}$ and $dA = r \, d\theta \times dr$ are the load and the corresponding infinitesimal area which the load acts upon, respectively. Substituting these quantities in Equation 3.42, the vertical displacement is obtained.

$$v_a = \frac{1}{2} \int \frac{(1-v^2) \, P_{\max} \, r \cos \theta \times r \, d\theta \, dr}{\pi \, E_s \, \frac{r_0}{r}} = \frac{2 \alpha \, P_{\max}}{r_0} \int_0^{\pi/2} r \cos \theta \, d\theta \, dr \quad \quad (3.44)$$

The angle of rotation is obtained as a derivative of the vertical displacement with respect to distance r as follows:

$$\phi_b = \frac{dv}{dr} \bigg|_{r=r_0} = \frac{2 \alpha \, P_{\max} \, r}{r_0} \int_0^{\pi/2} \cos \theta \, d\theta = \frac{2 \alpha \, P_{\max}}{r_0} \, r \sin \theta \bigg|_0^{\pi/2} \quad \quad (3.45)$$

$$\phi_b = \frac{2 \alpha \, P_{\max} \, r}{r_0} \quad \quad (3.46)$$

Hence, the angle of rotation at $r = r_0$ becomes:

$$\phi_b = 2 \alpha \, P_{\max} \quad \quad (3.47)$$
The relation between moment M_b and a linearly distributed load over a circle (Figure 3.14) is obtained as below.

The moment produced by such a vertical load over an infinitesimal area is as follows:

$$dM_b = (r \cos \theta) \, dp_b = r \cos \theta \, p_b \, dA$$ \hfill (3.48)

where dp_b is the vertical force acting on the small area and $r \cos \theta$ is (the projection of distance r on x direction) the distance of that force from the z axis. The vertical linear load distribution is given by:

$$p_b(r, \theta) = \frac{p_{\text{max}}}{r_0} \, r \cos \theta$$ \hfill (3.49)

The total moment due to such a load distribution over the entire area is calculated by integration.

$$M_b = \int dM_b = 4 \int_0^{\pi/2} \int_{0}^{r_0} r^2 \cos \theta \, p(r, \theta) \, dr \, d\theta = \frac{\pi}{4} p_{\text{max}} r_0^3$$ \hfill (3.50)

Thus, the following relation between the maximum vertical load representing a moment about horizontal axis and this moment is obtained.

$$p_{\text{max}} = \frac{4}{\pi r_0^3} M_b$$ \hfill (3.51)

Substituting p_{max} from Equation 3.51, the angle of rotation is obtained as follows:
Hence, the flexibility coefficient is:

\[f_{bb}^{kk} = \frac{8\alpha}{\pi r_0^3} \]

(3.53)

This coefficient corresponds to position \(B_y \) in the flexibility matrix (Figure 3.3).

3.5.5. Flexibility Coefficients Associated with Two Distinct Points on a Homogenous Cross-anisotropic Elastic Half-space

In this section, the flexibility coefficients associated with the displacements due to the application of loads to a medium with cross-anisotropic properties are developed. The development is based on the solutions discussed in the previous chapter. As mentioned in Chapter 2, when points of load application and displacement evaluation are different, the solutions from Gerrard and Wardle (1973) are applied, and the flexibility coefficients obtained.

The force-displacement relations due to three types of loads are discussed: horizontal force \(Q_b \), vertical force \(P_b \), and moment \(M_b \) about the horizontal axis \(z \), and the flexibility coefficients are obtained. The relationships for this soil model, as discussed in Chapter 2, are used while the sign convention for global Cartesian coordinates (Figure 3.1) is adopted.

As mentioned previously in section 2.4, the quantity \(\beta^2 \) is defined based on the cross-anisotropic properties. Hence, three cases are taken into account (i.e.: \(\beta^2 > 0 \), \(\beta^2 < 0 \) and \(\beta^2 = 0 \)) for individual loads (i.e. horizontal force \(Q_b \), vertical force \(P_b \), and moment \(M_b \) about the horizontal axis \(z \)). In these expressions, the elastic parameters as well as the integration coefficients are introduced in Appendices A2.1.2 and A2.1.2.2.
3.5.5.1. Flexibility Coefficients Associated with the Displacements due to Horizontal Load Q_b

Displacement components u_a, v_a and φ_a are due to a horizontal point load Q_b (Gerrard and Wardle 1973) (Figure 2.4a), and the corresponding flexibility coefficients for different cases of β^2 are given as follows:

- When $\beta^2 > 0$:

$$u_a = \frac{h_{10}}{2\pi R_{ab}} Q_b = f^{ii}_{ab} Q_b$$ (3.54)

$$v_a = \frac{h_1 - h_2}{2\pi R_{ab}} Q_b = f^{ji}_{ab} Q_b$$ (3.55)

$$\varphi_a = \frac{h_1 - h_2}{2\pi R_{ab}^2} Q_b = f^{ki}_{ab} Q_b$$ (3.56)

where h_1, h_2 and h_{10} quantities are integral constants that are defined in Appendix A2.1.2.2.

- For $\beta^2 < 0$ then:

$$u_a = \frac{j_{11}}{2\pi R_{ab}} Q_b = f^{ii}_{ab} Q_b$$ (3.57)

$$v_a = \frac{(r_{ab} - \alpha) j_1}{2\pi R_{ab}^2} Q_b = f^{ji}_{ab} Q_b$$ (3.58)

$$\varphi_a = \frac{j_1 (r_{ab} - 2\alpha)}{2\pi R_{ab}^3} Q_b = f^{ki}_{ab} Q_b$$ (3.59)

where j_1 and j_{11} are integral constants as defined in Appendix A2.1.2.2

- If $\beta^2 = 0$ then:

$$u_a = \frac{l_{10}}{2\pi R_{ab}^2} Q_b = f^{ii}_{ab} Q_b$$ (3.60)
\[v_a = \frac{t_1}{2\pi R_{ab}} Q_b = f_{ab}^{ij} P_b \]
(3.61)

\[\varphi_a = \frac{t_1}{2\pi R_{ab}^2} Q_b = f_{ab}^{kj} P_b \]
(3.62)

where \(t_1 \) and \(t_{10} \) are integral constants as defined in Appendix A2.1.2.2

3.5.5.2. Flexibility Coefficients Associated with the Displacements due to Vertical Load \(P_b \)

Displacement components \(u_a \), \(v_a \) and \(\varphi_a \) are due to the application of vertical point load \(P_b \) (Figure 2.4b) (Gerrard and Wardle 1973), and the corresponding flexibility coefficients for different cases of \(\beta^2 \) are shown below.

- When \(\beta^2 > 0 \):

\[u_a = \frac{g_3 - g_4}{2\pi R_{ab}} P_b = f_{ab}^{ij} P_b \]
(3.63)

\[v_a = \frac{g_1 - g_2}{2\pi R_{ab}} P_b = f_{ab}^{ij} P_b \]
(3.64)

\[\varphi_a = \frac{g_1 - g_2}{2\pi R_{ab}^2} P_b = f_{ab}^{kj} P_b \]
(3.65)

where \(g_1, g_2, g_3, \) and \(g_4 \) are integral constants as defined in Appendix A2.1.2.2

- For \(\beta^2 < 0 \):

\[u_a = \frac{(\alpha - r_{ab}) i_3}{2\pi R_{ab}^2} P_b = f_{ab}^{ij} P_b \]
(3.66)

\[v_a = \frac{i_1}{2\pi R_{ab}} P_b = f_{ab}^{jj} P_b \]
(3.67)
\[\varphi_a = \frac{i_1}{2\pi R_{ab}^2} P_b = f_{ab}^{ij} P_b \]

(3.68)

where \(i_1 \) and \(i_3 \) are integral constants as defined in Appendix A2.1.2.2.

- If \(\beta^2 = 0 \):

\[u_a = \frac{-s_3}{2\pi R_{ab}} P_b = f_{ab}^{ij} P_b \]

(3.69)

\[v_a = \frac{s_1}{2\pi R_{ab}} P_b = f_{ab}^{ij} P_b \]

(3.70)

\[\varphi_a = \frac{s_1}{2\pi R_{ab}^2} P_b = f_{ab}^{ij} P_b \]

(3.71)

where \(s_1 \) and \(s_3 \) are integral constants as defined in Appendix A2.1.2.2.

3.5.5.3. Flexibility Coefficients Associated with the Displacements due to Moment \(M_b \) about Horizontal Axis \(z \)

The horizontal, vertical and angular displacements \(u_a, v_a \) and \(\varphi_a \) resulting from the moment \(M_b \) (Gerrard and Wardle 1973) at point \(a \) on the surface of a cross-anisotropic elastic half-space are described below (see Figure 2.4c). The flexibility coefficients associated with the displacements for different quantities of \(\beta^2 \) are as follows:

- When \(\beta^2 > 0 \) then:

\[u_a = \frac{g_4 - g_3}{2\pi R_{ab}^2} M_b = f_{ab}^{ik} M_b \]

(3.72)

\[v_a = \frac{g_2 - g_1}{2\pi R_{ab}^2} M_b = f_{ab}^{jk} M_b \]

(3.73)

\[\varphi_a = \frac{g_2 - g_1}{2\pi R_{ab}^2} M_b = f_{ab}^{kk} M_b \]

(3.74)
where g_1, g_2, g_3 and g_4 are integral constants as defined in Appendix A2.1.2.2

- For $\beta^2 < 0$:

$$u_a = \frac{i_3}{2\pi R_{ab}^2} M_b = f_{ab}^{ik} M_b$$ \hspace{1cm} (3.75)

$$v_a = \frac{-i_1}{2\pi R_{ab}^2} M_b = f_{ab}^{jk} M_b$$ \hspace{1cm} (3.76)

$$\phi_a = \frac{-i_3}{2\pi R_{ab}^3} M_b = f_{ab}^{kk} M_b$$ \hspace{1cm} (3.77)

where i_1 and i_3 are integral constants as defined in Appendix A2.1.2.2

- If $\beta^2 = 0$:

$$u_a = \frac{s_3}{\pi R_{ab}^2} M_b = f_{ab}^{ik} M_b$$ \hspace{1cm} (3.78)

$$v_a = \frac{-s_1}{\pi R_{ab}^2} M_b = f_{ab}^{jk} M_b$$ \hspace{1cm} (3.79)

$$\phi_a = \frac{-s_3}{\pi R_{ab}^3} M_b = f_{ab}^{kk} M_b$$ \hspace{1cm} (3.80)

where s_1 and s_3 are integral constants as defined in Appendix A2.1.2.2

3.5.6. Flexibility Coefficients Associated with Two Coincident Points on a Homogenous Cross-anisotropic Elastic Half-space

When the points of load application and displacement evaluation are coincident, Gerrard and Harrison (1970a) solutions are applied to obtain the flexibility coefficients.

As discussed in the previous chapter, to derive the force-displacement relations, the horizontal and vertical concentrated loads are substituted with distributed loads over
a circle, which produce horizontal and vertical uniform stresses respectively \((q_b, p_b)\). The moment \(M_b\) is replaced with a linearly distributed load over a circle with its maximum value \(p_{b,\text{max}}\) appearing at \(r = r_0\).

3.5.6.1. Flexibility Coefficients Associated with the Displacements due to Horizontal Force \(Q_b\)

As shown earlier in Figure 2.5a, the horizontal force \(Q_b\) is applied at point \(b\) and the horizontal, vertical and angular components of the displacement at point \(b\) are determined (Gerrard and Harrison 1970a). Corresponding flexibility coefficients for different cases of \(\beta^2\) are presented below.

The uniformly distributed tangential load equivalent to a concentrated horizontal force is given by:

\[
q = \frac{1}{\pi r_0^2} Q_b
\]

(3.81)

where \(r_0\) is the radius of the load area

- When \(\beta^2 > 0\), then

\[
u_b = 0 = f_{ii}^{bb} Q_b
\]

(3.83)

\[
\varphi_b = \frac{(h_2 - h_1)}{2\pi r_0^2} Q_b = f_{ki}^{bb} Q_b
\]

(3.84)

where \(h_1, h_2, h_3, h_4\) and \(h_{i0}\) are integral constants as defined in Appendix A2.1.2.2.
• For $\beta^2 < 0$

$$ u_b = -\frac{(j_3 - j_{11})}{2\pi r_0} Q_b = f^{ii}_{bb} Q_b $$ \hspace{1cm} (3.85) \\

$$ v_b = 0 = f^{ii}_{bb} Q_b $$ \hspace{1cm} (3.86) \\

$$ \varphi_b = -\frac{j_1}{2\pi r_0^2} Q_b = f^{ii}_{bb} Q_b $$ \hspace{1cm} (3.87)

where j_1, j_3 and j_{11} are integral constants and are defined in Appendix A2.1.2.2.

• If $\beta^2 = 0$

$$ u_b = \frac{(t_{10} + t_3)}{2\pi r_0} Q_b = f^{ii}_{bb} Q_b $$ \hspace{1cm} (3.88) \\

$$ v_b = 0 = f^{ii}_{bb} Q_b $$ \hspace{1cm} (3.89) \\

$$ \varphi_b = -\frac{t_1}{2\pi r_0^2} Q_b = f^{ii}_{bb} Q_b $$ \hspace{1cm} (3.90)

where t_1, t_3 and j_{10} are integral constants as defined in Appendix A2.1.2.2.

3.5.6.2. Flexibility Coefficients Associated with the Displacements due to Vertical Force P_b

The horizontal, vertical and angular components of the displacement at point b due to the vertical force applied at the same point (Gerrard and Harrison 1970a), and their corresponding flexibility coefficients for different cases of β^2 are presented below (Figure 2.5b):

The uniform vertical load equivalent to that of a concentrated vertical force is as follows:

$$ p = \frac{1}{\pi r_0^2} P_b $$ \hspace{1cm} (3.91)
• For $\beta^2 > 0$, then

\[u_b = 0 = f_{bb}^{ij} P_b \tag{3.92} \]

\[v_b = \frac{(g_1 - g_2)}{\pi r_0} P_b = f_{bb}^{ij} P_b \tag{3.93} \]

\[\varphi_b = 0 = f_{bb}^{kij} P_b \tag{3.94} \]

where g_1 and g_2 are integral constants as defined in Appendix A2.1.2.2.

• For $\beta^2 < 0$:

\[u_b = 0 = f_{bb}^{ij} P_b \tag{3.95} \]

\[v_b = \frac{i_1}{\pi r_0} P_b = f_{bb}^{ij} P_b \tag{3.96} \]

\[\varphi_b = 0 = f_{bb}^{kij} P_b \tag{3.97} \]

where i_1 is integral constant as defined in Appendix A2.1.2.2.

• For $\beta^2 = 0$, then

\[u_b = \frac{s_3}{\pi r_0} P_b = f_{bb}^{ij} P_b \tag{3.98} \]

\[v_b = \frac{s_1}{\pi r_0} = f_{bb}^{ij} P_b \tag{3.99} \]

\[\varphi_b = 0 = f_{bb}^{kij} P_b \tag{3.100} \]

where s_1 and s_3 are integral constants as defined in Appendix A2.1.2.2.
3.5.6.3. Flexibility Coefficients Associated with the Displacements due to Moment M_b about Horizontal Axis z

With reference to Figure 2.5, the horizontal, vertical and angular displacements at point b due to the moment M_b applied at the same point (Gerrard and Harrison 1970a), and their corresponding flexibility coefficients for different cases of β^2 are presented below.

- As shown earlier in section 3.5.4.3, the moment M_b is replaced by its equivalent in terms of a linearly distributed load over a circle (Figure 3.15). The moment produced by the load distributed over an infinitesimal area dA is obtained as

$${dM} = (r \cos \theta) \cdot dp = r \cos \theta \cdot P(r, \theta) \cdot dA$$

(3.101)

where dp is the vertical force acting on the small area and $r \cos \theta$ is the distance of that force from the z axis (the projection of distance r on x direction). The vertical linear load distribution is given as follows:

$$p(r, \theta) = \frac{P_{\text{max}}}{r_0} \cdot r \cos \theta$$

(3.102)

The total moment due to such a load distribution over the entire area results from integration.

![Figure 3.15 Load distribution over a circle on the soil replacing moment M_b.](image-url)
\[M_b = \int_0^\Lambda dM_b = 4 \int_0^{\pi/2} r^2 \cos \theta p(r, \theta) \, dr \, d\theta = \frac{\pi}{4} p\max r_0^3 \]

(3.103)

Thus, the maximum vertical stress caused by this concentrated moment is

\[p\max = \frac{4}{\pi r_0^3} M_b \]

(3.104)

The resulting displacements and flexibility coefficients are:

- When \(\beta^2 > 0 \), then:

\[u_b = \frac{(g_3 - g_4)}{\pi r_0^2} M_b = f^{i^b} M_b \]

(3.105)

\[v_b = 0 = f^{j^b} M_b \]

(3.106)

\[\varphi_b = \frac{2(g_1 - g_2)}{\pi r_0^3} M_b = f^{k^b} M_b \]

(3.107)

where \(g_1, g_2, g_3 \) and \(g_4 \) are integral constants as defined in Appendix A2.1.2.2.

- For \(\beta^2 < 0 \), then:

\[u_b = \frac{-i_3}{\pi r_0^3} M_b = f^{i^b} M_b \]

(3.108)

\[v_b = 0 = f^{j^b} M_b \]

(3.109)

\[\varphi_b = \frac{2i_1}{\pi r_0^3} M_b = f^{k^b} M_b \]

(3.110)

where \(i_1 \) and \(i_3 \) are integral constants as defined in Appendix A2.1.2.2.

If \(\beta^2 = 0 \), then:

\[u_b = \frac{-s_3}{\pi r_0^2} M_b = f^{i^b} M_b \]

(3.111)
\[v_b = 0 = f_{bb}^{/k} M_b \]
(3.112)

\[\varphi_b = \frac{2 s_1}{\pi r_0^3} M_b = f_{bb}^{k/k} M_b \]
(3.113)

where \(s_1 \) and \(s_3 \) are integral constants as defined in Appendix A2.1.2.2.

3.6. CONCLUDING REMARKS TO CHAPTER

In this chapter, the combined and integrated system of soil-structure was introduced and the Direct Stiffness Matrix Method applied to analyse the system. The structure stiffness matrix for the soil-structure system was obtained. The force-displacement relationships for application of three different loads (horizontal force \(Q_b \), vertical force \(P_b \), and moment \(M_b \) about the horizontal axis \(z \)) to the soil media with isotropic and cross-anisotropic properties were obtained. The flexibility coefficients associated with two types of soils that is, isotropic elastic half-space and cross-anisotropic elastic half-space were developed.
CHAPTER

FOUR

SOFTWARE OF DEVELOPMENT

Elastostatic Interaction Analysis of Frames
Resting on Homogeneous Elastic Half-space
CHAPTER 4

SOFTWARE DEVELOPMENT

4.1. INTRODUCTION

The computer method discussed previously in section 3.3 for solving the elastic problem of the interaction between plane frame structures and a homogeneous elastic half-space medium is employed in a computer program that is introduced in this chapter. The data input and computation handling are facilitated by the use of windows, pull-down menus and dialogue boxes. The program requires minimal data and provides important structural response fields for design with modest computation time. Attention has been paid to providing the required checks to validate the input data/file and avoid quitting the program execution. Nevertheless, it is important that the user checks the analysis requirements, correctness of the data and its format in advance.

Two computer program modules were written: the first to enter the structural and loading data (DATAENTR), and the second to analyse the structure (ANALYSIS). These two programs are linked through a batch program (Genforms.bat). These two modules together with the batch program constitute an integrated program "Soil And Structure Interaction Analysis Package (SASIAP 1.0)" that the author developed as a tool for this research. Both modules are written in Turbo Pascal language (6.0 and 7.0 Borland 1990a -d, 1992a -d, O'Brien 1991, Palmer 1991). The former is enhanced with Turbo Vision (2.0) tools. Flow charts of Figures 4.1 to 4.3 provide an overview of SASIAP.
4.2. MODULE "DATAENTR"

The module DATAENTR has been developed as a DOS application with an executable file size of approximately 300 Kbytes. This module is a program that handles the structural and load data. At different stages, dialogue boxes with appropriate configurations are provided to facilitate data entry and editing of the data for structure and loads. This requirement was a significant factor in the selection of the language in which the program was written. Turbo Vision was the language chosen to write DATAENTR as Turbo Vision allows all the required features such as pull down menus, dialogue boxes, buttons and message boxes, to be incorporated into the program. A user’s manual was prepared to help the user with SASIAP, although the program design is such that users familiar with structural data requirements should have no difficulties. The program manual and the code listings are provided in detail in Appendix 4.

The program DATAENTR manages the data and is supported by a sub-program and two groups of computer programming units such as Dos, Objects, Drivers, Memory, Views (standard units), and MlistDlg, Mforms (modified units), as described below.

The first group consists of some standard units from Turbo Pascal 6.0 and 7.0, and the second group constitutes the modified standard units in conjunction with the standard units and new units that are prepared for individual needs.
There are two sets of dialogue boxes that manage the data. The first set facilitates the entry of the following structural data:

- Nodal Geometry
- Material Properties
- Cross Section Properties
- Member Data
- Nodal Restraints

The second set is designed to handle the structure loading data. The load cases catered for are:

- Nodal Load
- Nodal Prescribed Displacement Load
- Member Point Load
- Member Uniformly Distributed Load
- Member Trapezoidal Load

Figure 4.2 presents the flow chart for the module *DATAENTR*, and the sub-module *Genform* (a) is illustrated in Figure 4.3. A listing of the main program, sub-program and the referred programming units is included in Appendix A4.6.

Figure 4.2 Flow chart for module "DATAENTR".
When DATENTR is run, pre-configured blank dialogue boxes are generated by a batch program known as Genforms. Through individual procedures, the data as well as loading information are entered and saved in two forms: format for the user view, and Binary format for the program access. This becomes available for the whole analysis procedure. At this point, the user retrieves all the data for any additional (supplementary) analyses required.

4.3. MODULE "ANALYSIS"

The module ANALYSIS was developed as a DOS application with an executive size of 126 Kbytes. This module searches in the working directory for programming units and the required data files. In addition to some standard Pascal 6.0 programming units, there are three other units, namely: C for accommodating variables and constants, Build mainly for checking data consistency, and SoilMode for the soil consideration in the analysis. The execution task is carried out by appropriate responses received from the user interface via the keyboard. The program considers several types of nodal restraints such as: fully (infinitely rigid), linear elastic-restrained which some spring coefficient is included and free against any movement. Soil models that can be considered are elastic space with isotropic and cross-anisotropic properties. The flow chart for the module ANALYSIS, the soil and structure sections and the analysis procedure in an integrated manner are provided in Figures 4.3 to 4.6.

Diagram: Module "ANALYSIS"

- **Start**
 - Dynamic variables are declared
 - Variables of all kinds are initialised
 - Output files are defined
 - Structural and loading data are obtained

- **Validation**
 - Structural data

- **Decision**
 - Error in data; Program halted
 - Continue

- **Soil Section**
 - Detailed in chart in Figure

- **Structural Section**
 - Detailed in chart in Figure

- **System Analysis**
 - Detailed in chart in Figure

- **Dynamic variables are disposed of.**

Figure 4.3 Flow chart for module "ANALYSIS".
As mentioned earlier, the program first validates the data and then the restraint conditions are selected through the user interface. Any of the following options becomes available for analysis for an elastic soil:

- A single plane frame structure with no contribution from the effect of the neighbouring frames or the adjacent support nodes in the same frame (i.e. when...
DiagonalAlone is chosen). In this case, only the effect of support reactions under isolated individual nodes of a single frame on the soil in the structural analysis are evaluated.

- A single plane frame structure, incorporating the effect of the neighbouring support nodes of the same frame in that plane (i.e. when DiagonalAlone is not selected). This option is available for the study of not only of the individual support reactions of the single frame, but also the interaction of the other support nodes from the same frame, on each other, in the structural analysis.

- The effect of nodes from neighbouring parallel frames is considered (i.e. options: DiagonalAlone is not accepted, but 3D-extension is selected). This option is available to study the interaction amongst the support nodes of the same frame. The effect of other frames, which are assumed to be in parallel and to be related to the frame concerned through the soil medium (only in a direction perpendicular to the frame) is also taken into account.

4.4. OUTPUT OF ANALYSIS

When the program ANALYSIS is executed the output is written into text files in three different forms. One form gives the full information of the structure including nodes, elements, loads, internal forces and the nodal displacements and soil information. The second form prepares only a listing of the structural elements, the internal forces and the nodal displacements. The final form provides a summary of the reactions.

4.5. CONCLUDING REMARKS TO CHAPTER

In this chapter, the methodology discussed in the previous chapter was applied to construct the computer program. This approach is shown through use of appropriate flow charts and the program manual is prepared to help user with data entry. The program ANALYSIS can be used to analyse plane frames with contribution of two assigned soil types (isotropic and cross-anisotropic elastic half-space) at support nodes. Finally, output files are obtained in various forms that are tailored to provide specific information on structural properties, internal forces, nodal displacements and reactions at superstructure supports.
CHAPTER

FIVE

EXAMPLES OF ANALYSIS APPLICATIONS

Elastostatic Interaction Analysis of Frames
Resting on Homogeneous Elastic Half-space
CHAPTER 5

EXAMPLES OF ANALYSIS APPLICATIONS

5.1. INTRODUCTION

In this chapter, two examples of a plane frame are analysed using the computer program developed in the study and described in the previous chapter. The soil is first modelled as an elastic half-space with isotropic and subsequently with cross-anisotropic properties. A typical frame with pinned support condition is considered for this study. The example was analysed both as a single frame and as a member of a series of interacting frames.

5.2. HINGE-SUPPORTED FRAME AND SOIL MODEL APPLIED

In the examples, the frame is assumed to be pinned at its supports. Hence, the nodal supports are restrained against free translations in the horizontal and vertical directions.

The following cases are studied:

a) A single plane frame (Figure 5.1a) analysis where no interaction between the neighbouring supports is considered. In tables 5.1a to 5.1d, this option is represented by letter “D” as in the last character of the file name which refers to diagonal blocks in the soil flexibility matrix.

b) A single plane frame (Figure 5.1b) is considered with soil interaction between its supports. This option is represented by letter “P” as in the last character of the file name which stands for plane frame only in preparing the soil flexibility matrix.
c) Application of a series of typical single plane frames in parallel (in a direction perpendicular to the plane frame and on both sides of it, behind and in front) to form a space frame structure (Figure 5.2). These frames are under the same load as (or a portion of) the single plane frame. In Tables 5.1a through 5.1d, this option is marked by letter “S” as the last character of the file name which refers to spatial frame in the soil flexibility matrix.

The frame is analysed as being on an infinitely rigid foundation or on an elastic homogenous half-space (Figure 5.3) with isotropic / cross-anisotropic properties.

For simplicity of this example, the steel structural members are assumed prismatic (cross sections are uniform), and the material properties are constant and are:

- Cross-sectional area \(A = 0.0001 \, m^2 \)
- Second moment of cross-sectional area about \(z \) axis \(I_z = 0.00010 \, m^4 \)
- Young’s modulus \(E = 200 \, GPa \)
- There are four frames adjacent to the original frame, two of them are located at rear (back frames) with distances of 4 and 6 meters to the next frame; and
the other two frames are at front (front frames) with distances of 4 and 4 meters to the next frame.

Figure 5.3. Profile of the structure and the external applied loads.

5.3. EXAMPLES STUDIED IN THIS PROJECT

As shown in the flow chart of Figure 5.4, four sets of examples (Table 5.1a to d) for isotropic and cross-anisotropic elastic half-space parameters are investigated.
Values of moduli of elasticity (horizontal, vertical and shear moduli of elasticity E_H, E_V, F_V) and Poisson's ratios (ν_H, ν_{HV}, ν_{VH}), (see section 2.4 for details) are given in Table 5.1. This data (soil data based on a typical Australian soils) is taken from studies conducted by CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia, Gerrard and Wardle 1973). In each set, one of the soil elastic parameters is varied and the response of the structure investigated.

Cases studied are listed in Table 5.1 and constitute four groups of parameters that are identified as follows:

a) Cases 1 and 2 are related to isotropic elastic half-space with Poisson's ratios 0.25 and 0.43. The soil modulus of elasticity (E_H) in horizontal direction is varied between 5 MPa and 150 MPa (soil shear modulus F_V is also proportionally varied), while the Poisson's ratio remains unchanged. These are used for input into Table 5.1a.

b) Cases 3 and 5 are associated with cross-anisotropic half-space. The moduli of elasticity (horizontal, vertical and shear moduli of elasticity E_H, E_V, F_V) are varied while the Poisson's ratios remain unchanged. These are used for input into Table 5.1.b.

c) Cases 7 to 11 represent a cross-anisotropic half-space. Among the soil parameters, shear modulus of elasticity (F_V) is varied to investigate the four distinct cases of cross-anisotropic half-space (refer to Chapter 2 for details of cross-anisotropic cases). Parameters in item 10 where $\alpha=1$ and $\beta=0$, represent an isotropic property in the medium.

As mentioned in previous chapters, in a soil with isotropic properties there are three parameters involved: Young's modulus, Shear modulus and Poisson's ratio, (E, F and ν respectively). Only two of these parameters are independent elastic constants and the following equation expresses the relationship for the third quantity.

$$F_V = \frac{E}{1 + \nu}$$ \hspace{1cm} (5.1)
In a cross-anisotropic soil, six elastic parameters are defined: E_H, E_v, F_v, v_H, v_{nv} and v_{vh}. Only five of these quantities are independent and the following equation describes the inter-relationships for the sixth quantity

$$\frac{E_v}{E_H} = \frac{v_{vh}}{v_{nv}}$$ (5.2)

To define the equivalent for subgrade modulus k_s, it is assumed that the settlement of a circular rigid footing on Winkler medium should be the same as that for an identical footing resting on the elastic half-space (Hemsley 1987). Hence

$$k_s = \frac{2E_s}{\pi R(1-v_i^2)}$$ (5.3)

where R is the footing radius.

5.3.1. Nomenclature Applicable to Examples, Charts, Graphs and Tables

The following nomenclature is used in the tables and results:

1, 2, ...: Numbering of soil group (variation is only in one soil parameter)

Iso: Soil is "Isotropic" in the analysis

Cis: Soil is "Cross-anisotropic" in the analysis

D: Application of soil interaction is restricted to the individual supports of the single plane frame to obtain coefficients located in only the main Diagonal blocks of the soil flexibility matrix. Support nodes receive interaction only from the soil beneath them, i.e. Isolated interaction at nodes 1, 4 and 6 (see Figure 5.1a)

P: the coefficients in the soil flexibility matrix associated with the support interaction of the Plane 2D frame were considered. Support nodes 1, 4 and 6 receive 2D interaction (see Figure 5.1b)

S: the coefficients in the soil flexibility matrix associated with all the supports of the plane frame as well as the neighbouring frames which
form a Spatial 3D-structure were considered (1, 4, 6, 1a, 4a, 6a, 1b, 4b, 6b, see Figure 5.2)

Figures 5.5 and 5.6 show the symbols to assigned to the bending moments and nodal displacements discussed in outputs, tables and graphs. From the outputs, the quantities associated with the bending moments and nodal displacements under investigation as shown in Figure 5.3 are defined as follows:

\[M_{21} : \text{Bending moment in element 1 at end node 2} \]
\[M_{32} : \text{Bending moment in element 2 at end node 3} \]
\[M_{34} : \text{Bending moment in element 4 at end node 3} \]
\[\Delta_{x1}, \Delta_{y1} : \text{Displacements (translations) at node 1, in x and y directions} \]
\[\Phi_{z1} : \text{Angular displacement (rotation) at node 1, about z direction} \]
\[\Delta_{x3}, \Delta_{y3} : \text{Displacements (translations) at node 3, in x and y directions} \]
\[\Phi_{z3} : \text{Angular displacement (rotation) at node 3, about z direction} \]

As shown in the examples, the frame dimensions and the elastic quantities associated with the structural material remain constant while soil elastic parameters are varied for study.

![Figure 5.5 Nomination of symbols to element end-node moments associated with plane frame resulting from structural analyses](image-url)
Figure 5.6 Nomination of symbols to nodal displacements associated with analysis
Table of summary of soil properties

<table>
<thead>
<tr>
<th>sub-case</th>
<th>Soil type</th>
<th>soil constants</th>
<th>Reference and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Isotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.250 0.250 0.250 0.250</td>
</tr>
<tr>
<td>2</td>
<td>Isotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.70 0.430 0.430 0.430</td>
</tr>
<tr>
<td>3</td>
<td>Cross-anisotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.90 0.250 0.300 0.200</td>
</tr>
<tr>
<td>4</td>
<td>Cross-anisotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.15 0.250 0.350 0.175</td>
</tr>
<tr>
<td>5</td>
<td>Cross-anisotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.20 0.250 0.350 0.175</td>
</tr>
<tr>
<td>7</td>
<td>Cross-anisotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.400 0.400 0.400 0.466</td>
</tr>
<tr>
<td>8</td>
<td>Cross-anisotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.400 0.400 0.400 0.466</td>
</tr>
<tr>
<td>9</td>
<td>Cross-anisotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.400 0.400 0.400 0.466</td>
</tr>
<tr>
<td>10</td>
<td>Cross-anisotropic*</td>
<td>E_Ev / F_v / E_v</td>
<td>0.400 0.400 0.400 0.400</td>
</tr>
<tr>
<td>11</td>
<td>Cross-anisotropic</td>
<td>E_Ev / F_v / E_v</td>
<td>0.400 0.400 0.400 0.400</td>
</tr>
</tbody>
</table>

The above soil constants are the result of work carried out in the Department of Civil Engineering at the University of Melbourne under the direction of Professor A.J. Francis, which forms part of an investigation into the behaviour of road pavements which was sponsored by the Australian Road Research Board.

Soil constant definitions are as follows:

- **E_H & E_v**: Moduli of elasticity in horizontal and vertical directions;
- **F_v**: Shear modulus in vertical direction;
- **\(\nu_H\)**: Poisson's ratio in horizontal direction;
- **\(\nu_HV\)**: Poisson's ratio for the effect of vertical stress on horizontal strain;
- **\(\nu_VH\)**: Poisson's ratio for the effect of horizontal stress on vertical strain;

where \(E_H \times \nu_HV = E_V \times \nu_VH\) and \(F_v (1+\nu_H) = E_H\)

Table 5.1: Table of soil elastic properties considered in this research (Chapter 5)
<table>
<thead>
<tr>
<th>Sub-case</th>
<th>File name</th>
<th>Soil model</th>
<th>Horizontal and vertical elasticity moduli (MPa)</th>
<th>Shear modulus (MPa)</th>
<th>Poisson's ratio</th>
<th>α²</th>
<th>β²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-lsoD,P,S</td>
<td>Case 1 from Table 5.1</td>
<td>(E_h = E_v)</td>
<td>(F_v = E/(1+v))</td>
<td>(\nu_{H} = \nu_{V} = \nu_{HV})</td>
<td>0.250</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>2-lsoD,P,S</td>
<td></td>
<td>5</td>
<td>4</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>3-lsoD,P,S</td>
<td>Isotropic EHS (variable Eₜ)</td>
<td>10</td>
<td>8</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>4-lsoD,P,S</td>
<td></td>
<td>15</td>
<td>12</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>5-lsoD,P,S</td>
<td></td>
<td>20</td>
<td>16</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>6-lsoD,P,S</td>
<td></td>
<td>30</td>
<td>24</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>7-lsoD,P,S</td>
<td></td>
<td>40</td>
<td>32</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>8-lsoD,P,S</td>
<td></td>
<td>50</td>
<td>40</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>9-lsoD,P,S</td>
<td></td>
<td>60</td>
<td>46</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>10-lsoD,P,S</td>
<td></td>
<td>70</td>
<td>56</td>
<td>0.250</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>11-lsoD,P,S</td>
<td>Case 2 from Table 5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12-lsoD,P,S</td>
<td>Isotropic EHS (variable Eₜ)</td>
<td>5</td>
<td>3</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>13-lsoD,P,S</td>
<td></td>
<td>10</td>
<td>7</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14</td>
<td>14-lsoD,P,S</td>
<td></td>
<td>15</td>
<td>10</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>15</td>
<td>15-lsoD,P,S</td>
<td></td>
<td>20</td>
<td>14</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>16</td>
<td>16-lsoD,P,S</td>
<td></td>
<td>30</td>
<td>21</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>17</td>
<td>17-lsoD,P,S</td>
<td></td>
<td>40</td>
<td>28</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>18</td>
<td>18-lsoD,P,S</td>
<td></td>
<td>50</td>
<td>35</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>19</td>
<td>19-lsoD,P,S</td>
<td></td>
<td>70</td>
<td>40</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>20</td>
<td>20-lsoD,P,S</td>
<td></td>
<td>120</td>
<td>84</td>
<td>0.430</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 5.1a: Isotopic elastic soil constants (Gerrard 1967)
Details of cross-anisotropic soil parameters corresponding to sub-cases 1-10 and 21-30 (Gerrard 1967)

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>File name</th>
<th>Soil model</th>
<th>Horizontal elasticity modulus (MPa)</th>
<th>Vertical elasticity modulus (MPa)</th>
<th>Shear modulus (MPa)</th>
<th>Poisson’s ratios</th>
<th>α^2</th>
<th>β^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>E_H</td>
<td>E_V</td>
<td>F_V</td>
<td>v_{HV}</td>
<td>v_H</td>
<td>v_{HH}</td>
</tr>
<tr>
<td>1</td>
<td>1-CisoD,P,S</td>
<td>Cross-anisotropic EHS</td>
<td>39</td>
<td>26</td>
<td>23.4</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>2</td>
<td>2-CisoD,P,S</td>
<td>Case 3 from Table 5.1</td>
<td>40.5</td>
<td>27</td>
<td>24.3</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>3</td>
<td>3-CisoD,P,S</td>
<td>Case 3 from Table 5.1</td>
<td>42</td>
<td>28</td>
<td>25.2</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>4</td>
<td>4-CisoD,P,S</td>
<td>Cross-anisotropic EHS</td>
<td>43.5</td>
<td>29</td>
<td>25.1</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>5</td>
<td>5-CisoD,P,S</td>
<td>Case 3 from Table 5.1</td>
<td>45</td>
<td>30</td>
<td>27</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>6</td>
<td>6-CisoD,P,S</td>
<td>Cross-anisotropic EHS</td>
<td>46.5</td>
<td>31</td>
<td>27.9</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>7</td>
<td>7-CisoD,P,S</td>
<td>Cross-anisotropic EHS</td>
<td>48</td>
<td>32</td>
<td>28.8</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>8</td>
<td>8-CisoD,P,S</td>
<td>Cross-anisotropic EHS</td>
<td>49.5</td>
<td>33</td>
<td>29.7</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>9</td>
<td>9-CisoD,P,S</td>
<td>Cross-anisotropic EHS</td>
<td>51</td>
<td>34</td>
<td>30.6</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>10</td>
<td>10-CisoD,P,S</td>
<td>Cross-anisotropic EHS</td>
<td>52.5</td>
<td>35</td>
<td>31.5</td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>File name</th>
<th>Soil model</th>
<th>Horizontal elasticity modulus (MPa)</th>
<th>Vertical elasticity modulus (MPa)</th>
<th>Shear modulus (MPa)</th>
<th>Poisson’s ratios</th>
<th>α^2</th>
<th>β^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>E_H</td>
<td>E_V</td>
<td>F_V</td>
<td>v_{HV}</td>
<td>v_H</td>
<td>v_{HH}</td>
</tr>
<tr>
<td>21</td>
<td>21-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>150</td>
<td>75</td>
<td>67.5</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>22</td>
<td>22-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>152</td>
<td>76</td>
<td>68.4</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>23</td>
<td>23-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>154</td>
<td>77</td>
<td>69.3</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>24</td>
<td>24-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>156</td>
<td>78</td>
<td>70.2</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>25</td>
<td>25-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>158</td>
<td>79</td>
<td>71.1</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>26</td>
<td>26-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>160</td>
<td>80</td>
<td>72</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>27</td>
<td>27-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>162</td>
<td>81</td>
<td>72.9</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>28</td>
<td>28-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>164</td>
<td>82</td>
<td>73.8</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>29</td>
<td>29-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>166</td>
<td>83</td>
<td>74.7</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
<tr>
<td>30</td>
<td>30-CisoD,P,S</td>
<td>Case 5 from Table 5.1</td>
<td>168</td>
<td>84</td>
<td>75.6</td>
<td>0.350</td>
<td>0.250</td>
<td>0.175</td>
</tr>
</tbody>
</table>

Table 5.1b: Table of properties for cross-anisotropic soil Gerrard (1967)
Details of soil parameters corresponding to sub-case 32-36

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>File name</th>
<th>Soil model</th>
<th>Horizontal & vertical elasticity moduli (MPa)</th>
<th>Vertical shear modulus (MPa)</th>
<th>Poisson's ratios</th>
<th>α²</th>
<th>β²</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>35-CisoD,P,S</td>
<td>Special cross-aniso</td>
<td>E_H = 30, E_v = 30</td>
<td>F_v = 21.429</td>
<td>v_{HV} = 0.400, v_H = 0.400, v_{VH} = 1.000</td>
<td>zero</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32-CisoD,P,S</td>
<td>Cross-anisotropic</td>
<td>E_H = 30, E_v = 34.950</td>
<td>F_v = 21.450</td>
<td>v_{HV} = 0.400, v_H = 0.400, v_{VH} = 0.466</td>
<td><1 positive</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34-CisoD,P,S</td>
<td>Cross-anisotropic</td>
<td>E_H = 30, E_v = 34.952</td>
<td>F_v = 22.627</td>
<td>v_{HV} = 0.400, v_H = 0.400, v_{VH} = 0.466</td>
<td><1 zero</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33-CisoD,P,S</td>
<td>Cross-anisotropic</td>
<td>E_H = 30, E_v = 34.951</td>
<td>F_v = 23.000</td>
<td>v_{HV} = 0.400, v_H = 0.400, v_{VH} = 0.466</td>
<td><1 negative</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1c Listing of elastic properties for isotropic and Cross-anisotropic soil sub-cases 32-36 (Wardle 1977)

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>File name</th>
<th>Soil model</th>
<th>Horizontal & vertical elasticity moduli (MPa)</th>
<th>Corresponding Winkler spring#</th>
<th>Poisson's ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>36-CisoD,P,S</td>
<td>Isotropic 30</td>
<td>E_H = 30, E_v = 30, v_{HV} = 21.429</td>
<td>k_s = 30</td>
<td>v_{HV} = 0.400, v_H = 0.400, v_{VH} = 0.466</td>
</tr>
</tbody>
</table>

Table 5.1d Listing of elastic properties for isotropic soil sub-cases 37, 39, 40 and its equivalent of Winkler spring

: The Winkler spring coefficient corresponding to an isotropic soil (see equation 5.3) for a circle with D=1 m
5.3.2. Examples of Analysis of Frame Founded on Isotropic Soil

Two main types of soil with isotropic properties are considered in this subsection. An example of an output graph and the associated data is presented below. In the example below, soil properties corresponding to items 1 to 10 in Table 5.1a which relates to case 1 in Table 5.1 (i.e. Isotropic elastic half-space $E_r=5$ to 150 MPa, $v=0.25$). Element bending moment M_{21} from the SASIAP analysis is plotted against soil modulus of elasticity for three cases of support interaction: isolated interaction (D), interaction within plane (i.e. 2D interaction P), and interaction from spatial combination (i.e. 3D interaction S). The analysis results for element end-moments (M_{21}, M_{33}, M_{34}) and nodal displacements ($\Delta_{x1}, \Delta_{y1}, \Phi_{x1}, \Delta_{x3}, \Delta_{y3}, \Phi_{x3}$) are presented in Graphs 5.1 - 5.9 and Graphs 5.10 - 5.18 for case 1 and case 2 respectively (Table 5.1). The numerical values associated with these graphs are also available in the Appendix A5.1.

<table>
<thead>
<tr>
<th>item</th>
<th>E soil (MPa)</th>
<th>D group (kN-m)</th>
<th>P group (kN-m)</th>
<th>S group (kN-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-iso</td>
<td>5</td>
<td>13.8708</td>
<td>13.8171</td>
<td>12.1923</td>
</tr>
<tr>
<td>2-iso</td>
<td>10</td>
<td>18.2303</td>
<td>18.2473</td>
<td>17.1872</td>
</tr>
<tr>
<td>3-iso</td>
<td>15</td>
<td>20.2241</td>
<td>20.2531</td>
<td>19.4632</td>
</tr>
<tr>
<td>4-iso</td>
<td>20</td>
<td>21.3693</td>
<td>21.3996</td>
<td>20.7698</td>
</tr>
<tr>
<td>5-iso</td>
<td>30</td>
<td>22.6349</td>
<td>22.6619</td>
<td>22.2136</td>
</tr>
<tr>
<td>6-iso</td>
<td>40</td>
<td>23.3191</td>
<td>23.3423</td>
<td>22.9942</td>
</tr>
<tr>
<td>7-iso</td>
<td>50</td>
<td>23.7478</td>
<td>23.7679</td>
<td>23.4834</td>
</tr>
<tr>
<td>8-iso</td>
<td>70</td>
<td>24.2556</td>
<td>24.2712</td>
<td>24.0629</td>
</tr>
<tr>
<td>9-iso</td>
<td>120</td>
<td>24.8058</td>
<td>24.8158</td>
<td>24.6910</td>
</tr>
<tr>
<td>10-iso</td>
<td>150</td>
<td>24.9640</td>
<td>24.9722</td>
<td>24.8716</td>
</tr>
</tbody>
</table>

Table 5.2 Output data for element bending moment M_{21} from structure analysis when soil modulus of elasticity (Young's modulus) varies between 5 and 150 MPa for three different interaction cases.

Data associated with Graphs 5.1 to 5.18 is available in Appendix A5.1. Table 5.2 is presented as an example of values that is used for Graph 5.1. Tables associated with Graphs 5.2 to 5.18 are available in Appendix A5 for reference.
Graphs 5.1, 5.2 and 5.3 show the bending moment in the members 2-1, 2-3 and 3-4 (M_{21}, M_{32} and M_{34}) respectively for isotropic soil with $v=0.25$ (See Table 5.1a)
Graphs 5.4, 5.5 and 5.6 show the nodal displacements Δx_1, Δy_1 and nodal rotation Φ_{z1} respectively at node 1 for isotropic soil with $v = 0.25$ (see Table 5.1a).
Graphs 5.7, 5.8 and 5.9 show nodal displacements $\Delta x_3, \Delta y_3$ and nodal rotation Φ_{23} respectively at node 3 for isotropic soil $v = 0.25$ (see Table 5.1a)
Graphs 5.10, 5.11 and 5.12 show bending moments \((M_{21}, M_{32}, M_{34})\) in members 1-2, 2-3 and 3-4 respectively for \(v=0.43\) in isotropic soil (see Table 5.1a).
Graphs 5.13, 5.14 and 5.15 show nodal displacements $\Delta x_1, \Delta y_1$ and nodal rotation Φ_{x_1} respectively at node 1 for isotropic soil $\nu = 0.43$ (see Table 5.1a).
Graphs 5.16, 5.17 and 5.18 show nodal displacements Δ_{x3}, Δ_{y3} and nodal rotation Φ_{x3} respectively at node 3 for isotropic soil $v = 0.43$ (see Table 5.1a)
5.3.3. Set One Examples for Cross-anisotropic Soil

This section covers cases 3 and 5, shown in Table 5.1 and Table 5.1b. These cases use increments in vertical modulus of elasticity E_v as the reference parameter for two selected ranges of: 26 to 35 MPa and 75 to 84 MPa, using the following relations obtained by Gerrard, C. (1967) between elastic parameters. For the case 3:

$$\frac{E_H}{E_v} = 1.50 \text{ and } \frac{F}{E_v} = 0.90,$$

and for the case 5:

$$\frac{E_H}{E_v} = 2.00 \text{ and } \frac{F}{E_v} = 0.90.$$

In both cases, the remaining elastic quantities are unchanged.

For consistency in the structure dimension and eliminating the variation caused by load, the same loads used earlier apply and are presented in the figure below are applicable to the structure.

![Figure 5.3. Profile of the structure and external applied loads.](image)

Graphs 5.19-5.36 present analysis output for element end-moments (M_{21}, M_{33}, M_{34}) and nodal displacements (Δ_{x1}, Δ_{y1}, Φ_{z1}, Δ_{x3}, Δ_{y3}, Φ_{z3}) based on the elastic parameters from Tables 5.1b and 5.1c. Numerical values corresponding to these graphs are also available in Appendix A5-2.
Graphs 5.19, 5.20 and 5.21 show variation bending moments (M_{21}, M_{32}, M_{34}) in members 1-2, 2-3 and 3-4 respectively for E_v range between 26-35 MPa in cross-anisotropic soil (case 3 in Table 5.1b)
Graphs 5.22, 5.23 and 5.24 show variation of nodal displacements $\Delta x_1, \Delta y_1$ and nodal rotation Φ_{x1} respectively at node 1 for Ev range between 26-35 MPa in cross-anisotropic iso soil (case 3 in Table 5.1b).
Graphs 5.25, 5.26 and 5.27 show variation of nodal displacements $\Delta x_3, \Delta y_3$ and nodal rotation Φz_3 respectively at node 3 for E_v range between 26-35 MPa in cross-anisotropic iso soil (case 3 in Table 5.1b)
Graphs 5.28, 5.29 and 5.30 show variations in bending moments (M_{21}, M_{32}, M_{34}) for members 1-2, 2-3 and 3-4 for variation in E_v from 75 to 84 MPa of cross-anisotropic soil (case 5 in Table 5.1b).
Graphs 5.31, 5.32 and 5.33 show variation of nodal displacements Δ_{x1}, Δ_{y1} and nodal rotation Φ_{z1} respectively at node 1 for Ev range between 75-84 MPa in cross-anisotropic iso soil (case 5 in Table 5.1b)
Graphs 5.34, 5.35 and 5.36 show variation of nodal displacements Δx_3, Δy_3 and nodal rotation Φ_{z3} respectively at node 3 for E_v range between 75-84 MPa in cross-anisotropic soil (case 5 in Table 5.1b)
5.3.4. Set two Examples, Simulated Cases of Cross-anisotropic Soil

This section covers cases 7, 8, 9 and 10 (as shown in Tables 5.1 and 5.1c). These cases provide examples of cross-anisotropic soil. To investigate the structural internal forces and nodal displacements due to such a soil medium, one of the soil elastic parameters (i.e. Fv) of four independent parameters is varied and the response of β^2 and α to such variations are reviewed.

In cases 7 and 8 which are typical of the natural medium, combination of the elastic parameters produces β^2 positive and negative respectively. In case 9, $\beta^2 = 0$ and $\alpha \neq 1$ which is rather a rare combination of soil parameters to occur in nature. Whilst case 10 is a special configuration of cross-anisotropic soil where the elastic properties of soil represents isotropy in the medium.

The loaded structure is reproduced below, founded on a cross-anisotropic medium with properties mentioned in cases 7-10. These cases are presented in Table 5.1c.

![Figure 5.3 Profile of the structure and external applied loads](image)

Graphs 5.37 to 5.45 present analysis output for element bending end-moments (M_{21}, M_{33}, M_{34}) and nodal displacements (Δ_{x1}, Δ_{y1}, Φ_{z1}, Δ_{x3}, Δ_{y3}, Φ_{z3}). Numerical values corresponding to these graphs are available in Appendix A5-3.
Graphs 5.37, 5.38 and 5.39 show variations in bending moments (M_{21}, M_{32}, M_{34}) for members 1-2, 2-3 and 3-4 for variation in E_v from 21 to 23 MPa of cross-anisotropic soil (cases 7-11 in Table 5.1c).
Graphs 5.40, 5.41 and 5.42 show variation of nodal displacements Δ_x, Δ_y and nodal rotation Φ_z respectively at node 1 for E_v range between 21-23 MPa in cross-anisotropic soil (case 5 in Table 5.1b)
Graph 5.43 Nodal displacement Δy_3 vs modulus of elasticity F_v of cross-anisotropic soil (cases 7-11 in Table 5.1c)

Graph 5.44 Nodal displacement Δx_3 vs modulus of elasticity F_v of cross-anisotropic soil (cases 7-11 in Table 5.1c)

Graph 5.45 Nodal rotation Φz_3 vs modulus of elasticity F_v of cross-anisotropic soil (cases 7-11 in Table 5.1c)

Graphs 5.43, 5.44 and 5.45 show variation of nodal displacements $\Delta x_3, \Delta y_3$ and nodal rotation Φz_3 respectively at node 3 for F_v range between 21-23 MPa in cross-anisotropic soil (cases 7-11 in Table 5.1c)
5.4. STRUCTURE FOUND ON AN INFINITELY RIGID SOIL

For the purpose of comparison, the structure under the same load as that shown in Figure 5.3 is founded on infinitely rigid soil and the analysis is conducted using Space-Gass software (8.0, ITS 1999). The results for element bending moments, nodal displacements and support reactions are provided in Tables 5.3-5.5 respectively. Space-Gass is a frame analysis package widely used in structural design and analysis. This package has been extensively verified as producing data representative of true field performance (product users include BHP Engineering, CSIRO, Boral Johns Perry, Hydro Electric Commission, etc.).

Analysis results for the structure Z-dir hinge supported on an infinitely rigid medium

<table>
<thead>
<tr>
<th>Element</th>
<th>Location</th>
<th>Moment (kN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M_{12}</td>
<td>0.00E+00</td>
</tr>
<tr>
<td></td>
<td>M_{21}</td>
<td>2.56E+01</td>
</tr>
<tr>
<td>2</td>
<td>M_{23}</td>
<td>1.76E+01</td>
</tr>
<tr>
<td></td>
<td>M_{32}</td>
<td>3.66E+01</td>
</tr>
<tr>
<td>3</td>
<td>M_{34}</td>
<td>-3.23E+01</td>
</tr>
<tr>
<td></td>
<td>M_{43}</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>4</td>
<td>M_{35}</td>
<td>-4.27E+00</td>
</tr>
<tr>
<td></td>
<td>M_{50}</td>
<td>-6.20E+01</td>
</tr>
<tr>
<td>5</td>
<td>M_{56}</td>
<td>-8.20E+01</td>
</tr>
<tr>
<td></td>
<td>M_{65}</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

Table 5.3 Element end moments

<table>
<thead>
<tr>
<th>Node</th>
<th>Displacement (m) / Rotation (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x 0.0000E+00</td>
</tr>
<tr>
<td></td>
<td>y 0.0000E+00</td>
</tr>
<tr>
<td></td>
<td>z -8.6000E-03</td>
</tr>
<tr>
<td>2</td>
<td>x 1.9700E-02</td>
</tr>
<tr>
<td></td>
<td>y -1.0000E-03</td>
</tr>
<tr>
<td></td>
<td>z -3.6000E-03</td>
</tr>
<tr>
<td>3</td>
<td>x 1.3400E-02</td>
</tr>
<tr>
<td></td>
<td>y -1.0300E-02</td>
</tr>
<tr>
<td></td>
<td>z -2.9000E-03</td>
</tr>
<tr>
<td>4</td>
<td>x 0.0000E+00</td>
</tr>
<tr>
<td></td>
<td>y 0.0000E+00</td>
</tr>
<tr>
<td></td>
<td>z -5.3000E-03</td>
</tr>
<tr>
<td>5</td>
<td>x 7.2000E-03</td>
</tr>
<tr>
<td></td>
<td>y -8.2000E-03</td>
</tr>
<tr>
<td></td>
<td>z 7.0000E-04</td>
</tr>
<tr>
<td>6</td>
<td>x 0.0000E+00</td>
</tr>
<tr>
<td></td>
<td>y 0.0000E+00</td>
</tr>
<tr>
<td></td>
<td>z -4.0000E-03</td>
</tr>
</tbody>
</table>

Table 5.4 Nodal displacements in x and y directions are in meters, and rotation in z direction is in radian

Table 5.5 Support reactions in x and y directions in kN, and for z direction is in kN.m

Tables 5.3, 5.4 & 5.5 present structure analysis outputs from Space Gass for hinge support frame on rigid medium.

5.5. STRUCTURE FOUND ON WINKLER SOIL

In this sub-section, Winkler spring model for the soil is considered. As presented earlier in Equation 5.3, when the settlement of a circular rigid footing on Winkler
medium is the same as that for an identical footing on the elastic half-space, the properties of the Winkler springs can be determined.

Considering the elastic constants in the isotropic elastic half-space case 12, 14 & 15 ($E = 30 \text{ MPa}$ and $\nu = 0.40, 0.15, 0.49$) in Table 5.1, where it is assumed that $R = 0.50 \text{ m}$, then the corresponding spring coefficient is obtained.

In the Tables 5.6 to 5.14 the following denotations are used:

- **W**: Winkler model
- **Iso**: Isotropic soil idealisation
- **k_s**: Winkler spring coefficient
- **D, P, S**: Isolated footing, plane frame (2D) and spatial frame interaction (3D)

The structure is then supported on these springs and is loaded with the same loads as shown in Figure 5.3. Space Gass software (8.0) is utilised and the results for element end bending moments, nodal displacements/ angular rotations and support reactions (shown in Tables 5.6 – 5.8) represent the analysis output for bending moments (M_{21}, M_{32} & M_{34}) versus isotropic modulus/ Winkler spring (k_s) for soil data provided in Table 5.1d.

Table 5.6 Bending moment M_{21} for different Winkler springs and corresponding Isotropic values

<table>
<thead>
<tr>
<th>Item</th>
<th>Win. Spring Coef. k_s</th>
<th>Bending moment in Winkler model</th>
<th>Bending moment in Isotropic model (kN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN/m3</td>
<td>kN.m</td>
<td>ν, E (kN/m2)</td>
</tr>
<tr>
<td>Wiso37</td>
<td>45496</td>
<td>3.06E+01</td>
<td>0.40, 30000</td>
</tr>
<tr>
<td>Wiso-1</td>
<td>39096</td>
<td>3.05E+01</td>
<td>0.15, 30000</td>
</tr>
<tr>
<td>Wiso-2</td>
<td>50292</td>
<td>3.07E+01</td>
<td>0.48, 30000</td>
</tr>
</tbody>
</table>

Table 5.7 Bending moment M_{32} for different Winkler springs and corresponding Isotropic values

<table>
<thead>
<tr>
<th>Item</th>
<th>Win. Spring Coef. k_s</th>
<th>Bending moment in Winkler model</th>
<th>Bending moment in Isotropic model (kN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN/m3</td>
<td>kN.m</td>
<td>ν, E (kN/m2)</td>
</tr>
<tr>
<td>Wiso37</td>
<td>45496</td>
<td>-3.32E+01</td>
<td>0.40, 30000</td>
</tr>
<tr>
<td>Wiso-1</td>
<td>39096</td>
<td>-3.30E+01</td>
<td>0.15, 30000</td>
</tr>
<tr>
<td>Wiso-2</td>
<td>50292</td>
<td>-3.33E+01</td>
<td>0.49, 30000</td>
</tr>
</tbody>
</table>

Table 5.8 Bending moment M_{34} for different Winkler springs and corresponding Isotropic values

<table>
<thead>
<tr>
<th>Item</th>
<th>Win. Spring Coef. k_s</th>
<th>Bending moment in Winkler model</th>
<th>Bending moment in Isotropic model (kN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN/m3</td>
<td>kN.m</td>
<td>ν, E (kN/m2)</td>
</tr>
<tr>
<td>Wiso37</td>
<td>45496</td>
<td>-2.65E+01</td>
<td>0.40, 30000</td>
</tr>
<tr>
<td>Wiso-1</td>
<td>39096</td>
<td>-2.65E+01</td>
<td>0.15, 30000</td>
</tr>
<tr>
<td>Wiso-2</td>
<td>50292</td>
<td>-2.65E+01</td>
<td>0.49, 30000</td>
</tr>
</tbody>
</table>
Tables 5.9 – 5.11 represent the analysis output for nodal displacements (Δx_1, Δy_1 & Φ_{z1}) versus isotropic modulus/ Winkler spring (k_s) for the soil data provided in Table 5.1d.

<table>
<thead>
<tr>
<th>item</th>
<th>Win. Spring Coef. k_s</th>
<th>Nodal displacement Δx_1 in Winkler model</th>
<th>Nodal displacement Δy_1 in Isotropic model (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN/m3</td>
<td>m</td>
<td>v, E (kN/m3)</td>
</tr>
<tr>
<td>Wiso37</td>
<td>45496</td>
<td>0.0000E+00</td>
<td>0.40, 30000</td>
</tr>
<tr>
<td>Wiso-1</td>
<td>39096</td>
<td>0.0000E+00</td>
<td>0.15, 30000</td>
</tr>
<tr>
<td>Wiso-2</td>
<td>50292</td>
<td>0.0000E+00</td>
<td>0.49, 30000</td>
</tr>
</tbody>
</table>

Table 5.9 Nodal displacement Δx_1 for different Winkler springs and the corresponding Isotropic values

<table>
<thead>
<tr>
<th>item</th>
<th>Win. Spring Coef. k_s</th>
<th>Nodal displacement Δy_1 in Winkler model</th>
<th>Nodal displacement Δy_1 in Isotropic model (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN/m3</td>
<td>m</td>
<td>v, E (kN/m3)</td>
</tr>
<tr>
<td>Wiso37</td>
<td>45496</td>
<td>-3.00E-04</td>
<td>0.40, 30000</td>
</tr>
<tr>
<td>Wiso-1</td>
<td>39096</td>
<td>-3.00E-04</td>
<td>0.15, 30000</td>
</tr>
<tr>
<td>Wiso-2</td>
<td>50292</td>
<td>-2.00E-04</td>
<td>0.49, 30000</td>
</tr>
</tbody>
</table>

Table 5.10 Nodal displacement Δy_1 for different Winkler springs and the corresponding Isotropic values

<table>
<thead>
<tr>
<th>item</th>
<th>Win. Spring Coef. k_s</th>
<th>Nodal rotation Φ_{z1} in Winkler model</th>
<th>Nodal rotation Φ_{z1} in Isotropic model (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN/m3</td>
<td>m</td>
<td>v, E (kN/m3)</td>
</tr>
<tr>
<td>Wiso37</td>
<td>45496</td>
<td>-1.68E-02</td>
<td>0.40, 30000</td>
</tr>
<tr>
<td>Wiso-1</td>
<td>39096</td>
<td>-1.68E-02</td>
<td>0.15, 30000</td>
</tr>
<tr>
<td>Wiso-2</td>
<td>50292</td>
<td>-1.68E-02</td>
<td>0.49, 30000</td>
</tr>
</tbody>
</table>

Table 5.11 Nodal rotation Φ_{z1} for different Winkler springs and the corresponding Isotropic values

Tables 5.12 – 5.14 represent the analysis output for nodal displacements (Δx_3, Δy_3 & Φ_{z3}) versus isotropic modulus/ Winkler spring (k_s) for the soil data provided in Table 5.1d.

<table>
<thead>
<tr>
<th>item</th>
<th>Win. Spring Coef. k_s</th>
<th>Nodal displacement Δx_3 in Winkler model</th>
<th>Nodal displacement Δy_3 in Isotropic model (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN/m3</td>
<td>m</td>
<td>v, E (kN/m3)</td>
</tr>
<tr>
<td>Wiso37</td>
<td>45496</td>
<td>2.6000E-02</td>
<td>0.40, 30000</td>
</tr>
<tr>
<td>Wiso-1</td>
<td>39096</td>
<td>2.6100E-02</td>
<td>0.15, 30000</td>
</tr>
<tr>
<td>Wiso-2</td>
<td>50292</td>
<td>2.6000E-02</td>
<td>0.49, 30000</td>
</tr>
</tbody>
</table>

Table 5.12 Nodal Displacement Δx_3 for different Winkler springs and the corresponding Isotropic values

<table>
<thead>
<tr>
<th>item</th>
<th>Win. Spring Coef. k_s</th>
<th>Nodal displacement Δy_3 in Winkler model</th>
<th>Nodal displacement Δy_3 in Isotropic model (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN/m3</td>
<td>m</td>
<td>v, E (kN/m3)</td>
</tr>
<tr>
<td>Wiso37</td>
<td>45496</td>
<td>-2.1700E-02</td>
<td>0.40, 30000</td>
</tr>
<tr>
<td>Wiso-1</td>
<td>39096</td>
<td>-2.1900E-02</td>
<td>0.15, 30000</td>
</tr>
<tr>
<td>Wiso-2</td>
<td>50292</td>
<td>-2.1500E-02</td>
<td>0.49, 30000</td>
</tr>
</tbody>
</table>

Table 5.13 Nodal Displacement Δy_3 for different Winkler springs and the corresponding Isotropic values
5.6. VERIFICATION OF RESULTS OF ANALYSIS

Since the Direct Stiffness Matrix Method is a well-known approach for analysing structures and mainly used in computer programs, verification of this method is aimless. However, effort is made towards the verification of results of analyses.

To verify the results of the interaction analysis, the frame, which is subjected to the same external load stipulated in Figure 5.3 and the support displacements (as prescribed displacement) obtained from SASIAP, is considered. This frame is then analysed by Space Gass software (8.0, ITS 1999) which is a widely used industry standard package (I.T.S. Integrated Technical Softwares Pty. Ltd. 1999).

The reactions from the interaction analysis were applied to the half-space and the appropriate Boussinesq and Cerruti relations for isotropic soil were employed (by using the corresponding soil flexibility matrix), while the Gerrard, Wardle and Harrison force-displacement relations in soil were used for cross-anisotropic. For this verification, Microsoft Excel (1997) was used to check the support displacements obtained from the interaction analysis and the results were compared to those from Space Gass when the frame is subjected to the support displacements obtained from the force-displacement relationships. Good agreement of the corresponding results testified to the adequacy of the developed stiffness matrix of the elastic half-space. An example associated with result verification is shown in Tables 5.15 to 5.23, and a diagramatic representation is provided Graphs 5.46 to 5.48.

Tables 5.21 to 5.23 present numerical values for verification for an isotropic sub-case \(E_s = 50 \text{ MPa}, \nu = 0.25\) for three interaction modes \(D, P\) and \(S\). Graphs 5.46 to
5.48 are reproduction of Graphs 5.1 to 5.3 that are used to show the points for which the verification of results is conducted.

5.7. JUSTIFICATION OF THE TYPE OF FRAME AND LOADS USED IN THE ANALYSES

Frames are a popular type of superstructures that are regularly considered in structural design and construction. In this group of structures, depending on the demand and architecture of design, planar frames with two to three unequal bays mostly are found in industrial and residential buildings. These frames are subjected to different type of load and more frequently considered loads are gravity and wind loads. Due to design, construction, structure response, and frequency of applications, connection of frame columns to their footing (isolated footings) are considered hinged. This option of course is an alternative to a fixed connection that is used in continuous footings (beam foundations).

Briefly, as a typical structure, an unequal width two-bay planar single storey hinged support with a composition of loads such as different vertically distributed loads, a horizontal concentrated force and a concentrated moment (Figure 5.3) is taken as an example of an inclusive example for the analysis used in the project.

A particular load case and structure geometry (see Figure 5.3) is considered to illustrate the general analysis technique used to investigate the soil-structure interaction.
Reactions resulting from interaction analysis
Structure hinged to support in z-direction

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Infinitely Rigid</th>
<th>7-IsosD</th>
<th>7-Isop</th>
<th>7-IsosS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{x1}</td>
<td>-28.5385</td>
<td>-27.9160</td>
<td>-27.9226</td>
<td>-27.8278</td>
</tr>
<tr>
<td>R_{y1}</td>
<td>6.4433</td>
<td>7.5906</td>
<td>7.5809</td>
<td>7.7130</td>
</tr>
<tr>
<td>R_{x4}</td>
<td>-10.7806</td>
<td>-10.8284</td>
<td>-10.8051</td>
<td>-10.7933</td>
</tr>
<tr>
<td>R_{y4}</td>
<td>68.9279</td>
<td>67.0157</td>
<td>67.0318</td>
<td>66.8117</td>
</tr>
<tr>
<td>R_{x6}</td>
<td>-20.6809</td>
<td>-21.2557</td>
<td>-21.2723</td>
<td>-21.3789</td>
</tr>
<tr>
<td>R_{y6}</td>
<td>54.6288</td>
<td>55.3937</td>
<td>55.3873</td>
<td>55.4753</td>
</tr>
</tbody>
</table>

Table 5.15 Nodal reactions from interaction analysis (Isotropic $E_s=50$ MPa, $v=0.25$)

End-member bending moments resulting from interaction analysis (structure is hinged to support in z-direction)

<table>
<thead>
<tr>
<th>M_{21}</th>
<th>25.6155</th>
<th>23.4834</th>
<th>23.7478</th>
<th>23.7679</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{32}</td>
<td>-36.6114</td>
<td>-33.6645</td>
<td>-33.8898</td>
<td>-33.9083</td>
</tr>
<tr>
<td>M_{34}</td>
<td>32.3418</td>
<td>32.3798</td>
<td>32.4851</td>
<td>32.4152</td>
</tr>
<tr>
<td>M_{35}</td>
<td>4.2697</td>
<td>1.2847</td>
<td>1.4047</td>
<td>1.4931</td>
</tr>
<tr>
<td>M_{53}</td>
<td>-62.0427</td>
<td>-64.1368</td>
<td>-63.7671</td>
<td>-63.8169</td>
</tr>
<tr>
<td>M_{56}</td>
<td>62.0427</td>
<td>64.1368</td>
<td>63.7671</td>
<td>63.8169</td>
</tr>
</tbody>
</table>

Table 5.16 Members end moments (kN.m) from interaction analysis (Isotropic soil $E_s=50$ MPa, $v=0.25$)

Nodal displacements / Nodal rotations resulting from interaction analysis
Structure is hinged to support in z-direction

Δ_{x1}	0.00000	0.00028	0.00036	0.00074
Δ_{y1}	0.00000	-0.00023	-0.00035	-0.00069
Φ_{x1}	-0.00855	-0.00871	-0.00870	-0.00868
Δ_{x2}	0.01973	0.02062	0.02067	0.02103
Δ_{x3}	-0.00097	-0.00137	-0.00149	-0.00185
Φ_{x2}	-0.00363	-0.00393	-0.00391	-0.00392
Δ_{x4}	0.01344	0.01420	0.01425	0.01459
Δ_{x5}	-0.01034	-0.01205	-0.01213	-0.01257
Φ_{x3}	-0.00286	-0.00307	-0.00306	-0.00307
Δ_{x6}	-0.00000	0.00011	0.00021	0.00051
Δ_{y4}	0.00000	-0.00200	-0.00207	-0.00255
Φ_{x4}	-0.00529	-0.00551	-0.00549	-0.00550
Δ_{x5}	0.00724	0.00782	0.00787	0.00818
Δ_{x6}	-0.00819	-0.00996	-0.01004	-0.01053
Φ_{x5}	0.00069	0.00065	0.00064	0.00061
Δ_{x6}	0.00000	0.00021	0.00022	0.00040
Δ_{y5}	0.00000	-0.00165	-0.00173	-0.00220
Φ_{x6}	-0.00396	-0.00413	-0.00414	-0.00420

Table 5.17 Nodal displacements (m) Angle of rotations (rad) from interaction analysis (Isotropic soil $E_s=50$ MPa, $v=0.25$)
Verification for Input: 7-lsoD.txt (Isolated footing Interaction D)

Reactions from the interaction analysis (SASIAP, 7-lsoD.txt) are applied to the corresponding Soil Flexi
Matrix (diagonal mode). Then, the related transverse displacements are individually calculated.

<table>
<thead>
<tr>
<th>NODE # 1</th>
<th>H-reaction</th>
<th>V-reaction</th>
<th>M-reaction</th>
<th>NODE # 4</th>
<th>H-reaction</th>
<th>V-reaction</th>
<th>M-reaction</th>
<th>NODE # 6</th>
<th>H-reaction</th>
<th>V-reaction</th>
<th>M-reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE # 1</td>
<td>-2.79160E+01</td>
<td>7.59600E+00</td>
<td>0.00000E+00</td>
<td>NODE # 4</td>
<td>-1.08284E+01</td>
<td>6.70157E+01</td>
<td>0.00000E+00</td>
<td>NODE # 6</td>
<td>-2.12557E+01</td>
<td>5.53937E+01</td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>

Flexibility Coef's for Soil members (Displacement at DOF(j) due to unit force applied to the DOF(i)):

<table>
<thead>
<tr>
<th></th>
<th>NODE # 1</th>
<th>NODE # 4</th>
<th>NODE # 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.95000E-06</td>
<td>0.00000E+00</td>
<td>-2.48700E-05</td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>

Total Displacement:

<table>
<thead>
<tr>
<th>NODE # 1</th>
<th>NODE # 4</th>
<th>NODE # 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.77764E-04</td>
<td>0.00000E+00</td>
<td>-2.11494E-04</td>
</tr>
</tbody>
</table>

Table 5.18 Verification of displacement for sample: 7-1Iso D

Note: In section A, the support reactions from the interaction analysis (SASIAP) are associated with the corresponding soil flexibility matrix (for isolated case). In section B, quantities in vertical direction are obtained from multiplication of corresponding cells from section A. Finally, the end column in section B is produced from the summation of the individual sub-displacements of section B.
Verification for Input: 7-IsoP.txt (Plane frame Interaction P)

Reactions from the interaction analysis (SASIAP, 7-IsoP.txt) are applied to the corresponding soil flexibility matrix (Plane mode). Then, the related transverse displacements are individually calculated.

<table>
<thead>
<tr>
<th>NODE # 1</th>
<th>NODE # 4</th>
<th>NODE # 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-reaction</td>
<td>V-reaction</td>
<td>M-reaction</td>
</tr>
<tr>
<td>V-reaction</td>
<td>M-reaction</td>
<td>V-reaction</td>
</tr>
<tr>
<td>M-reaction</td>
<td>V-reaction</td>
<td>M-reaction</td>
</tr>
</tbody>
</table>

-2.79226E+01 7.58094E+00 0.00000E+00 -1.08051E+01 6.70318E+01 0.00000E+00 -2.12723E+01 5.53873E+01 0.00000E+00

Flexibility Coef's for Soil members (DISPLACEMENT AT DOF(j) DUE TO UNIT FORCE APPLIED TO THE DOF(i)):

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9500E-06</td>
<td>0.0000E+00</td>
<td>-2.4870E-05</td>
<td>1.9900E-06</td>
<td>-5.0000E-07</td>
<td>1.2000E-07</td>
<td>8.0000E-07</td>
<td>-2.0000E-07</td>
<td>2.0000E-08</td>
<td></td>
</tr>
<tr>
<td>2.9840E-05</td>
<td>0.0000E+00</td>
<td>-2.4870E-05</td>
<td>1.9900E-06</td>
<td>-5.0000E-07</td>
<td>1.2000E-07</td>
<td>8.0000E-07</td>
<td>-2.0000E-07</td>
<td>2.0000E-08</td>
<td></td>
</tr>
<tr>
<td>5.0000E-07</td>
<td>0.0000E+00</td>
<td>-2.4870E-05</td>
<td>1.9900E-06</td>
<td>-5.0000E-07</td>
<td>1.2000E-07</td>
<td>8.0000E-07</td>
<td>-2.0000E-07</td>
<td>2.0000E-08</td>
<td></td>
</tr>
<tr>
<td>7.4604E-04</td>
<td>0.0000E+00</td>
<td>-2.4870E-05</td>
<td>1.9900E-06</td>
<td>-5.0000E-07</td>
<td>1.2000E-07</td>
<td>8.0000E-07</td>
<td>-2.0000E-07</td>
<td>2.0000E-08</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL DISPLACEMENT

-2.77830E-04 0.00000E+00 0.00000E+00 -2.15021E-05 -3.35159E-05 0.00000E+00 -1.70178E-05 -1.10775E-05 0.00000E+00

Table 5.19 Verification of displacement for sample: 7-IsoP

Note: In section A, the support reactions from the interaction analysis (SASIAP) are associated with the corresponding soil flexibility matrix (for Plane frame case). In section B, quantities in vertical direction are obtained from multiplication of corresponding cells from section A. Finally, the end column in section B is produced from the summation of the individual sub-displacements of section B.
Verification for Input: 7-IsoS.txt (Space frame Interaction S)

Reactions from the interaction analysis (SASIAP, 7-IsoS.txt) are applied to the corresponding soil flexi matrix (Space mode). Then, the related transverse displacements are individually calculated.

<table>
<thead>
<tr>
<th>NODE # 1</th>
<th>NODE # 4</th>
<th>NODE # 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-reaction</td>
<td>V-reaction</td>
<td>M-reaction</td>
</tr>
<tr>
<td>-2.78278E+01</td>
<td>7.71301E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>-2.4570E-05</td>
<td>0.0000E+00</td>
<td>2.9000E-07</td>
</tr>
<tr>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>-1.6967E-04</td>
</tr>
<tr>
<td>1.5720E-05</td>
<td>0.0000E+00</td>
<td>2.5900E-06</td>
</tr>
</tbody>
</table>

Flexibility coefficients for soil members (displacement at DOF(j) due to unit force applied to the DOF(i)):

<table>
<thead>
<tr>
<th>NODE # 1</th>
<th>NODE # 4</th>
<th>NODE # 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-reaction</td>
<td>V-reaction</td>
<td>M-reaction</td>
</tr>
<tr>
<td>1.5720E-05</td>
<td>0.0000E+00</td>
<td>-2.4570E-05</td>
</tr>
<tr>
<td>6.4300E-06</td>
<td>1.6100E-06</td>
<td>-1.6967E-04</td>
</tr>
<tr>
<td>2.3932E-05</td>
<td>1.9977E-05</td>
<td>-1.7740E-06</td>
</tr>
<tr>
<td>-2.2262E-06</td>
<td>-1.7740E-06</td>
<td>0.0000E+00</td>
</tr>
</tbody>
</table>

Total displacement:

<table>
<thead>
<tr>
<th>NODE # 1</th>
<th>NODE # 4</th>
<th>NODE # 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-reaction</td>
<td>V-reaction</td>
<td>M-reaction</td>
</tr>
<tr>
<td>-4.3745E-04</td>
<td>0.0000E+00</td>
<td>-6.9401E-05</td>
</tr>
<tr>
<td>-2.4570E-05</td>
<td>0.0000E+00</td>
<td>-1.6100E-06</td>
</tr>
<tr>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>1.2500E-06</td>
</tr>
<tr>
<td>-6.8373E-04</td>
<td>8.6000E-07</td>
<td>5.0100E-06</td>
</tr>
<tr>
<td>8.0000E-08</td>
<td>-2.3000E-07</td>
<td>-4.0000E-08</td>
</tr>
</tbody>
</table>

Table 5.20 Verification of displacement for sample: 7-IsoS

Note: In section A, the support reactions from the interaction analysis (SASIAP) are associated with the corresponding soil flexibility matrix (for Space frame case). In section B, quantities in vertical direction are obtained from multiplication of corresponding cells from section A. Finally, the end column in section B is produced from the summation of the individual sub-displacements of section B.
Graphs 5.46, 5.47 and 5.48 show verification of results for the bending moment in the members 2-1, 2-3 and 3-4 (M_{21}, M_{32} and M_{34}) respectively for isotropic soil with v=0.25 (See Table 5.1a)
Table 5.1a: Bending Moment (M_{32} and M_{34}) vs Isotropic soil Modulus of Elasticity (E_h) for v=0.25

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>E soil</th>
<th>Verif. D</th>
<th>P group</th>
<th>Verif. S</th>
<th>IS group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>13.8708</td>
<td>13.8171</td>
<td>12.1923</td>
<td></td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>18.2303</td>
<td>18.2473</td>
<td>17.1872</td>
<td></td>
</tr>
<tr>
<td>3-lso</td>
<td>15</td>
<td>20.2241</td>
<td>20.2531</td>
<td>19.4632</td>
<td></td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>21.3693</td>
<td>21.3996</td>
<td>20.7698</td>
<td></td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>22.6349</td>
<td>22.6619</td>
<td>22.2136</td>
<td></td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>23.3191</td>
<td>23.3423</td>
<td>22.9942</td>
<td></td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>23.7468</td>
<td>23.7735</td>
<td>23.4699</td>
<td>23.4834</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>24.2556</td>
<td>24.2712</td>
<td>24.0629</td>
<td></td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>24.8058</td>
<td>24.8158</td>
<td>24.6910</td>
<td></td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>24.9640</td>
<td>24.9722</td>
<td>24.8716</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1b: Bending moment M_{32} vs Isotropic soil modulus of elasticity E_h for v=0.25

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>E soil</th>
<th>Verif. D</th>
<th>P group</th>
<th>Verif. S</th>
<th>IS group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>-20.0225</td>
<td>-19.8812</td>
<td>-18.9020</td>
<td></td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>-26.0066</td>
<td>-25.9861</td>
<td>-25.2084</td>
<td></td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>-30.4588</td>
<td>-30.4774</td>
<td>-29.9682</td>
<td></td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>-32.2790</td>
<td>-32.3090</td>
<td>-31.9264</td>
<td></td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>-33.2683</td>
<td>-33.2888</td>
<td>-32.9933</td>
<td></td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>-33.8989</td>
<td>-33.9083</td>
<td>-33.6535</td>
<td>-33.6645</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>-34.6275</td>
<td>-34.6426</td>
<td>-34.4621</td>
<td></td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>-35.4288</td>
<td>-35.4389</td>
<td>-35.3295</td>
<td></td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>-35.65952</td>
<td>-35.66786</td>
<td>-35.57937</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2: Bending moment M_{34} vs Isotropic soil modulus of elasticity E_h for v=0.25

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>E soil</th>
<th>Verif. D</th>
<th>P group</th>
<th>Verif. S</th>
<th>IS group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>33.9010</td>
<td>33.2873</td>
<td>33.0020</td>
<td></td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>33.1011</td>
<td>32.7724</td>
<td>32.6155</td>
<td></td>
</tr>
<tr>
<td>3-lso</td>
<td>15</td>
<td>32.8389</td>
<td>32.6142</td>
<td>32.5049</td>
<td></td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>32.7102</td>
<td>32.5396</td>
<td>32.4555</td>
<td></td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>32.5639</td>
<td>32.4687</td>
<td>32.4110</td>
<td></td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>32.5219</td>
<td>32.4349</td>
<td>32.3910</td>
<td></td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>32.4826</td>
<td>32.4851</td>
<td>32.4053</td>
<td>32.3902</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>32.4435</td>
<td>32.3934</td>
<td>32.3678</td>
<td></td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>32.4007</td>
<td>32.3713</td>
<td>32.3562</td>
<td></td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>32.3888</td>
<td>32.3653</td>
<td>32.3531</td>
<td></td>
</tr>
</tbody>
</table>

The above data is for Graphs 5.46, 5.47 & 5.48. The highlighted values are the verification of results.
Force-displacement relations in soil are implemented through the stiffness method to investigate the soil-structure interaction. In this way the soil response is contributed in the system analysis. This well-known approach is frequently utilised by many researchers (e.g. Lee 1975, Melterski 1992).

The verification tables can be obtained in Appendix A5-4 (Tables A5.46 – A5.52).

5.8. CONCLUDING REMARKS TO CHAPTER

In this chapter, a 2D-hinged-support frame, subjected to a set of loads and founded on an elastic medium, was analysed using three different models (Winkler, isotropic and cross-anisotropic homogeneous elastic half-space). The elastic properties of the soil medium were provided by elastic parameters (Winkler spring coefficient, moduli of elasticity and Poisson's ratios). SASIAP software package was used to analyse this frame. The application of force-displacement relations was verified for a frame with full restrained-support using Space Gass software and applying the support displacements obtained from SASIAP as prescribed displacement loads. The results of system analysis were tabulated for internal force quantities (element end-moments) and nodal displacements. Results for the Winkler model based on isotropic elastic half-space values were also tabulated. The outputs are discussed in detail in chapter 6.
CHAPTER SIX

DISCUSSION OF RESULTS

Elastostatic Interaction Analysis of Frames Resting on Homogeneous Elastic Half-space
CHAPTER 6

DISCUSSION OF RESULTS

6.1. INTRODUCTION

In Chapter 5 the outputs of structure (example) analyses (using the software described in Chapter 4 by incorporating typical soil parameters for a typical plane frame structure) are presented. The structure was pin-connected to isolated foundations and founded on isotropic and cross-anisotropic media.

This chapter reviews the performance of the applied technique by evaluating the effects of variations of soil parameters associated with the used soil models. The outputs of the structural analysis (bending moments, nodal displacements and rotations) obtained in Chapter 5 are discussed in detail.

A review of results with particular emphasis on development and variations of bending moments and displacements in the typical plane frame, due to the variations in the soil parameters, reveals that the bending moments and the nodal displacements are more sensitive to variation in the modulus of elasticity (E_s) than to variation in the soil Poisson's ratio (ν).

6.2. OBSERVATIONS AND DISCUSSIONS ON RESULTS OF ANALYSING FRAME ON ISOTROPIC ELASTIC HALF-SPACE

The author has considered a number of examples with a typical range of elastic parameters for the soil and the main observations of the results are discussed in sections 6.2.1 to 6.2.3.

In Tables 5.1 & 5.1a, based on soil parameters used in cases 1 and 2, (Gerrard 1967) two isotropic soils ($\nu = 0.25$ and $\nu = 0.43$) are considered.
6.2.1. Case One of an Isotropic Soil

In isotropic soil case one, the output graphs (Graphs 5.1 - 5.9), a general hyperbolic trend is repeatedly observed in all the obtained curves for \(D \) (isolated footing interaction), \(P \) (plane interaction) and \(S \) (spatial interaction). These curves show an asymptotic trend in both horizontal and vertical axes. In the bending moment or nodal displacement versus the soil stiffness curves (Graphs 5.1 to 5.3), with a reduction in stiffness, there are increases in internal forces or nodal displacements. The percentages associated with such increases are greater for the bending moments than the nodal displacements.

In the bending moment and nodal displacement graphs, the curve \(P \) (associated with footing interactions within the frame plane) is located between curves \(D \) (the isolated footing interaction) and \(S \) (spatial interaction). This situation for such a given frame occurs as the accumulation of interaction received from adjacent supports (within the frame and neighbouring frames) exceeds the interaction at isolated footings. However, if the distances between the supports within the frame and the neighbouring frames vary these curves \((D, P \) and \(S) \) may have different positions with respect to each other — which can be investigated by conducting a parametric study.

Tables 6.1 to 6.9 summarise the general response of a typical plane frame with isolated footings on isotropic elastic half-space. The bending moments for the case of \(\nu = 0.25 \) associated with three cases of interaction (isolated interaction \(D \); plane frame interaction \(P \); spatial interaction \(S \)) are drawn in Graphs 5.1 to 5.9.
Variation of bending moments M_{21}, M_{32}, M_{34} associated with Graphs 5.1 to 5.9 for $v=0.25$; and Graphs 5.10 to 5.18 for $v=0.43$ respectively

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>M_{21}</th>
<th>%</th>
<th>M_{32}</th>
<th>%</th>
<th>M_{34}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing-1D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>21.400</td>
<td>-</td>
<td>-30.477</td>
<td>-</td>
<td>32.710</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>22.090</td>
<td>3.2</td>
<td>-30.972</td>
<td>1.6</td>
<td>32.356</td>
<td>1.1</td>
</tr>
<tr>
<td>P (Plane frame-2D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>21.400</td>
<td>-</td>
<td>-30.477</td>
<td>-</td>
<td>32.540</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>22.245</td>
<td>3.8</td>
<td>-30.994</td>
<td>1.7</td>
<td>32.153</td>
<td>1.2</td>
</tr>
<tr>
<td>S (Spatial frame-3D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>20.768</td>
<td>-</td>
<td>-29.968</td>
<td>-</td>
<td>32.460</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>21.895</td>
<td>5.4</td>
<td>-30.600</td>
<td>2.1</td>
<td>32.085</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 6.1 Variation of bending moment M_{21}, M_{32}, M_{34} for $E_s=20$ MPa, corresponding items ($v_{0.25}-v_{0.43}$) in percentage. Base values are $v=0.25$ for individual cases D, P & S.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>M_{21}</th>
<th>%</th>
<th>M_{32}</th>
<th>%</th>
<th>M_{34}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing-1D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>23.778</td>
<td>11.0</td>
<td>-33.908</td>
<td>11.3</td>
<td>32.480</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>24.080</td>
<td>9.1</td>
<td>-34.154</td>
<td>10.3</td>
<td>32.342</td>
<td>0.4</td>
</tr>
<tr>
<td>P (Plane frame-2D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>23.778</td>
<td>13.1</td>
<td>-33.908</td>
<td>11.3</td>
<td>32.420</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>24.153</td>
<td>8.6</td>
<td>-34.176</td>
<td>10.3</td>
<td>32.260</td>
<td>0.3</td>
</tr>
<tr>
<td>S (Spatial frame-3D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>23.480</td>
<td>13.0</td>
<td>-33.664</td>
<td>12.3</td>
<td>32.380</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>23.995</td>
<td>9.6</td>
<td>-33.994</td>
<td>12.7</td>
<td>32.232</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 6.2 Variation of bending moment M_{21}, M_{32}, M_{34} for $E_s=50$ MPa, corresponding items (Table 6.2 - Table 6.1) in percentage. Table 6.1 is the base line.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>M_{21}</th>
<th>%</th>
<th>M_{32}</th>
<th>%</th>
<th>M_{34}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing-1D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>24.271</td>
<td>13.4</td>
<td>-34.628</td>
<td>13.6</td>
<td>32.444</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>24.496</td>
<td>10.8</td>
<td>-34.843</td>
<td>12.5</td>
<td>32.341</td>
<td>0.5</td>
</tr>
<tr>
<td>P (Plane frame-2D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>24.271</td>
<td>13.4</td>
<td>-34.642</td>
<td>13.7</td>
<td>32.393</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>24.554</td>
<td>10.4</td>
<td>-34.843</td>
<td>12.4</td>
<td>32.283</td>
<td>0.4</td>
</tr>
<tr>
<td>S (Spatial frame-3D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>24.063</td>
<td>15.9</td>
<td>-34.462</td>
<td>15.0</td>
<td>32.368</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>24.438</td>
<td>11.6</td>
<td>-34.710</td>
<td>13.4</td>
<td>32.262</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 6.3 Variation of bending moment M_{21}, M_{32}, M_{34} for $E_s=70$ MPa, corresponding items (Table 6.3 - Table 6.1) in percentage. Table 6.1 is the base line.
Variation of nodal displacements/rotation Δx_1, Δy_1, Φz_1, associated with Graphs 5.1 to 5.9 for $\nu=0.25$; and Graphs 5.10 to 5.18 for $\nu=0.43$ respectively

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>Δx_1</th>
<th>Δy_1</th>
<th>Φz_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (Isolated)</td>
<td>footing - 1D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00070</td>
<td>-0.00067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00020</td>
<td>-0.00060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00020</td>
<td>-0.00060</td>
</tr>
<tr>
<td>P (Plane)</td>
<td>frame- 2D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00090</td>
<td>-0.00097</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00040</td>
<td>-0.00080</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00040</td>
<td>-0.00080</td>
</tr>
<tr>
<td>S (Spatial)</td>
<td>frame- 3D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00180</td>
<td>-0.00184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00120</td>
<td>-0.00160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00120</td>
<td>-0.00160</td>
</tr>
</tbody>
</table>

Table 6.4 Nodal displacements/rotation variation Δx_1, Δy_1, Φz_1, for $E_s=20$ MPa, corresponding items ($\nu_{0.25}$ - $\nu_{0.43}$) in percentage. Base values are $\nu=0.25$ for individual cases D, P and S.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>Δx_1</th>
<th>Δy_1</th>
<th>Φz_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (Isolated)</td>
<td>footing - 1D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00030</td>
<td>-0.00023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00010</td>
<td>-0.00020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00010</td>
<td>-0.00020</td>
</tr>
<tr>
<td>P (Plane)</td>
<td>frame- 2D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00040</td>
<td>-0.00035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00020</td>
<td>-0.00030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00020</td>
<td>-0.00030</td>
</tr>
<tr>
<td>S (Spatial)</td>
<td>frame- 3D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00070</td>
<td>-0.00069</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00050</td>
<td>-0.00060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00050</td>
<td>-0.00060</td>
</tr>
</tbody>
</table>

Table 6.5 Nodal displacements/rotation variation Δx_1, Δy_1, Φz_1, for $E_s=50$ MPa, corresponding items (Table 6.5 - Table 6.4) in percentage. Table 6.4 is the base line.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>Δx_1</th>
<th>Δy_1</th>
<th>Φz_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (Isolated)</td>
<td>footing - 1D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00020</td>
<td>-0.00016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00010</td>
<td>-0.00010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00010</td>
<td>-0.00010</td>
</tr>
<tr>
<td>P (Plane)</td>
<td>frame- 2D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00030</td>
<td>-0.00024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00010</td>
<td>-0.00020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00010</td>
<td>-0.00020</td>
</tr>
<tr>
<td>S (Spatial)</td>
<td>frame- 3D</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.00050</td>
<td>-0.00049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.00040</td>
<td>-0.00040</td>
</tr>
</tbody>
</table>

Table 6.6 Nodal displacements/rotation variation Δx_1, Δy_1, Φz_1, for $E_s=70$ MPa, corresponding items (Table 6.6 - Table 6.4) in percentage. Table 6.4 is the base line.
Variation of nodal displacements/rotation $\Delta x_3, \Delta y_3, \Phi$, associated with
Graphs 5.1 to 5.9 for $v=0.25$; and Graphs 5.10 to 5.18 for $v=0.43$ respectively

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>Δx_3</th>
<th>$%$</th>
<th>Δy_3</th>
<th>$%$</th>
<th>Φ</th>
<th>$%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated) footing (1D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01529</td>
<td>-</td>
<td>-0.01451</td>
<td>-</td>
<td>-0.00337</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01481</td>
<td>3.1</td>
<td>-0.01399</td>
<td>3.6</td>
<td>-0.00329</td>
<td>12.1</td>
</tr>
<tr>
<td>P (Plane frame-2D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01543</td>
<td>-</td>
<td>-0.01470</td>
<td>-</td>
<td>-0.00335</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01495</td>
<td>3.1</td>
<td>-0.01416</td>
<td>3.6</td>
<td>-0.00326</td>
<td>2.7</td>
</tr>
<tr>
<td>S (Spatial frame-3D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01627</td>
<td>-</td>
<td>-0.01578</td>
<td>-</td>
<td>-0.00337</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01578</td>
<td>3.0</td>
<td>-0.01511</td>
<td>4.2</td>
<td>-0.00328</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Table 6.7 Nodal displacements/rotation variation $\Delta x_3, \Delta y_3, \Phi$, for $E_s=20$ MPa, corresponding items ($v=0.25 - v=0.43$) in percentage. Base values are $v=0.25$ for individual cases D, P and S.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>Δx_3</th>
<th>$%$</th>
<th>Δy_3</th>
<th>$%$</th>
<th>Φ</th>
<th>$%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated) footing (1D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01469</td>
<td>3.9</td>
<td>-0.01205</td>
<td>17.0</td>
<td>-0.00307</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01400</td>
<td>5.5</td>
<td>-0.01184</td>
<td>15.0</td>
<td>-0.00304</td>
<td>7.6</td>
</tr>
<tr>
<td>P (Plane frame-2D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01478</td>
<td>4.2</td>
<td>-0.01213</td>
<td>17.5</td>
<td>-0.00306</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01406</td>
<td>6.0</td>
<td>-0.01190</td>
<td>16.0</td>
<td>-0.00303</td>
<td>7.0</td>
</tr>
<tr>
<td>S (Spatial frame-3D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01534</td>
<td>5.7</td>
<td>-0.01257</td>
<td>20.0</td>
<td>-0.00307</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01439</td>
<td>8.8</td>
<td>-0.01229</td>
<td>18.7</td>
<td>-0.00304</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Table 6.8 Nodal displacements/rotation variation $\Delta x_3, \Delta y_3, \Phi$, for $E_s=50$ MPa, corresponding items (Table 6.8 - Table 6.7) in percentage. Table 6.7 is the base line.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>Δx_3</th>
<th>$%$</th>
<th>Δy_3</th>
<th>$%$</th>
<th>Φ</th>
<th>$%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated) footing (1D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01420</td>
<td>7.1</td>
<td>-0.01157</td>
<td>20.0</td>
<td>-0.00301</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01384</td>
<td>6.5</td>
<td>-0.01141</td>
<td>18.4</td>
<td>-0.00299</td>
<td>9.1</td>
</tr>
<tr>
<td>P (Plane frame-2D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01425</td>
<td>7.6</td>
<td>-0.01162</td>
<td>21.0</td>
<td>-0.00301</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01388</td>
<td>7.2</td>
<td>-0.01141</td>
<td>19.4</td>
<td>-0.00298</td>
<td>8.6</td>
</tr>
<tr>
<td>S (Spatial frame-3D)</td>
<td>1, $v=0.25$</td>
<td>Isotropic</td>
<td>0.01459</td>
<td>10.3</td>
<td>-0.01194</td>
<td>24.0</td>
<td>-0.00301</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>2, $v=0.43$</td>
<td>Isotropic</td>
<td>0.01412</td>
<td>10.5</td>
<td>-0.01174</td>
<td>22.0</td>
<td>-0.00299</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Table 6.9 Nodal displacements/rotation variation $\Delta x_3, \Delta y_3, \Phi$, for $E_s=70$ MPa, corresponding items (Table 6.9 - Table 6.7) in percentage. Table 6.7 is the base line.
6.2.2. Case Two of an Isotropic Soil

Similar to case one of isotropic soil (section 6.2.1), in this soil case, the output graphs (Graphs 5.10 - 5.18) show a general hyperbolic trend which is repeatedly observed in all the curves D, P and S. Bending moment and nodal displacement versus the soil stiffness curves show large internal forces and nodal displacements variations for softer soil. Moreover, these variations are greater in bending moments in comparison to nodal displacements. For instance, bending moment M_{21} associated with curve D varies 11 and 13.4% (see Tables 6.1 to 6.3) for soil stiffness $E_s = 20, 50$ and 70 MPa respectively, and the corresponding variations for nodal displacements Δ_{x3} are 3.9 and 7.1% (see Tables 6.7 to 6.9).

As expected, it is seen that nodal displacement becomes negligible as soil stiffness increases. Variation in bending moment as a function of soil stiffness also becomes negligible when soil stiffness exceeds around 30 to 50 MPa.

Similarly to the case in section 6.2.1, in Graphs 5.10 to 5.18 associated with the bending moments and nodal displacements, the curve P is located between curves D and S. The soil-structure interaction received from the individual footings is relatively small (due to relatively large bearing areas) in comparison to the interaction from cases P and S (as the distances between these footings and the adjacent frames are not significantly large, which cause higher interaction on the structure). In comparing Graphs 5.3 with 5.12, the bending moment M_{34} versus the soil modulus of elasticity, it can be seen that in Graph 5.12, curve D follows the same trend as Graph 5.3 does. That is the bending moment decreases when the soil stiffness increases while curves P and S do otherwise. This behaviour may help estimation of internal forces when considering three-dimensional frames.

Similarly, for the case of $\nu = 0.43$ the structure response fields are shown in Graphs 5.10 to 5.18. Tables 6.1 to 6.9 are arranged for three different values of soil modulus of elasticity ($E_s = 20, 50$ and 70 MPa) and the quantity changes were calculated and are shown as percentage values for easy comparison.
6.2.3. Comparison of Cases One and Two of the Isotropic Soil

Tables 6.1 to 6.9 are prepared for the purpose of comparing structural responses associated with two different isotropic soils ($\nu = 0.43$ and $\nu = 0.25$). Tables 6.1, 6.4 and 6.7 show the percentage changes of output fields for $\nu = 0.43$ as compared with the corresponding quantities for $\nu = 0.25$ in the same table used as the base case. However, in Tables 6.2, 6.3, 6.5, 6.6, 6.8 and 6.9, the percentage values are calculated based on the comparison with the corresponding values in Tables 6.1, 6.4 and 6.7 (taken as base cases) accordingly.

Tables 6.1 to 6.3 show that for a given soil Poisson's ratio ($\nu = 0.25$), the bending moments M_{21} and M_{32} have a direct relationship with the soil Young's modulus ($E_s = 20$ to 70 MPa). That is increase in bending moment due to the increase in soil modulus of elasticity can be observed. There is also an increase in bending moment due to the increase in soil Poisson's ratio. When ν increases from 0.25 to 0.43, bending moment M_{21} increases from 21.4 kN.m to 22.09 for case D, and from 20.768 kN.m to 21.896 kN.m in case S. Similar variations are observed for M_{32}.

Table 6.2 shows that the bending moments for $\nu = 0.25$ for three cases of D, P and S interactions possess the highest variations.

In Tables 6.4 to 6.9, the nodal displacements and rotations for nodes 1 and 3 are presented. Tables 6.5 and 6.6 show that the variations of horizontal and vertical nodal displacements (Δx_1, Δy_1, Δx_3, and Δy_3) are quite large (50-83%) in comparison to the nodal rotation variations Φ_{x1} and Φ_{x2} (2-3%). On the other hand, the corresponding variation quantities shown in Tables 6.8 and 6.9 are 3-24% for the nodal displacements and 7-10.5% for the nodal rotations respectively.

Graphs 5.1 to 5.18 show that the structural response fields represented by curves P (interaction confined to plane frame) are relatively close to those represented by curves S (spatial interaction). However, there is a significant difference between curves P and D. In general, one should expect that when the frame bay length increases the difference between the corresponding curves P and D diminishes.

135
The curves for the estimation of displacements (Graphs 5.1 to 5.18), although having
the form of the elastic-type solutions, are in fact non-linear functions of the soil
parameters. The influence of certain basic factors on the deformations of
cohesionless soils, such as, the effect of stress history and the dimensions of the
foundation are considerable (Papadopoulos, 1992). Therefore, it is important to have
accurate soil data for evaluating displacements of shallow foundations. This problem
is especially important when the foundation rests on a cohesionless soil, owing to the
impossibility of having undisturbed samples (Maugen et al. 1998). The author has
restricted the study to use of data presented in previous studies (Gerrard 1976 and
Wardle 1977) in soil-structure analysis.

Although the discussion in this work is confined to soil-structure interaction on the
surface of the soil mass, a similar approach can be used to analyse frames with
supports within the elastic medium. In this case, the appropriate solutions such as
Mindlin's relationships for loads and deformations should be used instead of those
applied in this work.

6.3. OBSERVATIONS AND DISCUSSIONS ON RESULTS OF
ANALYSING FRAME ON CROSS-ANISOTROPIC ELASTIC HALF-SPACE

Tables 6.10 to 6.15 summarise the response of a plane frame (Graphs 5.19 to 5.36)
with isolated footings on a soil medium, which is modelled as a cross-anisotropic
elastic half-space. The five independent parameters defining the cross-anisotropic
medium used in the analysis have been restricted to typical values obtained from
earlier studies. Similarly to Table 6.3, the variations in internal forces (the bending
moments) are shown in Table 6.11.

The range of soil parameters considered for analysis in cross-anisotropic case was not
wide enough to show a full spectrum of the outputs. However, even with the existing
limited input, curves in Graphs 5.19 to 5.36 show already general trends of the
solutions.

Graphs 5.19 to 5.36 show that the structural response fields represented by curves \(P \)
(interaction confined to plane frame) are relatively close to those represented by
curves D (isolated footing interaction). However, there is a significant difference between curves P and S. An explanation for this behaviour, which is in contrast with isotropic cases in section 6.2, is that the internal force redistribution through the frame itself has stronger effect on the analysis fields than from the adjacent frames. This may be due to the variation of cross-anisotropic soil properties in different directions whereas in isotropic soil there is a uniformity of properties in all directions. Consequently, the increases bay dimension is expected to result in increases the difference between the corresponding curves P and D as the interaction via soil medium weakens.

In Graphs 5.20, 5.21, 5.22 and 5.25 associated with M_{32}, M_{34}, Δ_{x1}, and Δ_{x3} respectively, it is observed that these fields variations have inverse relationships with E_v in a cross-anisotropic soil. While in Graph 5.21, the bending moments M_{34} associated with isolated footings (D) are higher than the corresponding quantities for plane (P) and spatial (S) interactions, the curves S in the other three graphs present higher values as compared with the corresponding values in curves D and P. This trend indicates that the isolated footing case (D) has a stronger effect on the internal force M_{34} than the cases P and S. However, as shown in Table 6.10, in the plane frame interaction (curve P), due to contribution of interaction from nodes within the frame despite the stress redistribution, the interaction effect remains relatively large. Although, such variations are moderate in a softer soil.
Variation of bending moments M_{21}, M_{32}, M_{34} associated with Graphs 5.19 to 5.36 for $E_v=26$ and 35 MPa, $\nu_{HV}=0.30$; (refer to Table 5.1b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case, ν_{HV}</th>
<th>Soil type</th>
<th>M_{21}</th>
<th>%</th>
<th>M_{32}</th>
<th>%</th>
<th>M_{34}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing-1D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>21.8510</td>
<td>-</td>
<td>-32.4010</td>
<td>-</td>
<td>33.3255</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>22.7303</td>
<td>4.0</td>
<td>-33.753</td>
<td>3.0</td>
<td>33.0790</td>
<td>0.7</td>
</tr>
<tr>
<td>P (Plane frame-2D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>21.8785</td>
<td>-</td>
<td>-32.4440</td>
<td>-</td>
<td>33.2285</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>22.7546</td>
<td>4.0</td>
<td>-33.4120</td>
<td>0.1</td>
<td>33.0057</td>
<td>0.7</td>
</tr>
<tr>
<td>S (Spatial frame-3D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>21.4490</td>
<td>-</td>
<td>-32.6470</td>
<td>-</td>
<td>33.1741</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>22.4214</td>
<td>4.5</td>
<td>-33.1142</td>
<td>1.6</td>
<td>32.9647</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 6.10 Variation of bending moment M_{21}, M_{32}, M_{34} for $E_v=26$ MPa and $E_v=35$ MPa in a soft to medium soil, corresponding $(E_{35} - E_{26})$ in percentage.

Case $E_v=26$ MPa is the base line for individual cases D, P, S.

Variation of bending moments M_{21}, M_{32}, M_{34} associated with Graphs 5.19 to 5.36 for $E_v=75$ and 84 MPa, $\nu_{HV}=0.35$; (refer to Table 5.1b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case, ν_{HV}</th>
<th>Soil type</th>
<th>M_{21}</th>
<th>%</th>
<th>M_{32}</th>
<th>%</th>
<th>M_{34}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing-1D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>24.3209</td>
<td>11.3</td>
<td>-35.0783</td>
<td>8.3</td>
<td>32.6218</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>24.4544</td>
<td>7.6</td>
<td>-35.2359</td>
<td>5.6</td>
<td>32.5920</td>
<td>1.5</td>
</tr>
<tr>
<td>P (Plane frame-2D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>24.3358</td>
<td>11.2</td>
<td>-35.1026</td>
<td>8.2</td>
<td>32.5930</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>24.4680</td>
<td>7.5</td>
<td>-35.2578</td>
<td>5.5</td>
<td>32.5662</td>
<td>1.3</td>
</tr>
<tr>
<td>S (Spatial frame-3D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>24.1869</td>
<td>12.8</td>
<td>-34.9631</td>
<td>7.0</td>
<td>32.5762</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>24.3341</td>
<td>8.5</td>
<td>-35.1323</td>
<td>6.0</td>
<td>32.5513</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 6.11 Variation of bending moment M_{21}, M_{32}, M_{34} for $E_v=75$ MPa and $E_v=84$ MPa in a medium to hard soil, corresponding $(Table 6.11 - Table 6.10)$ in percentage

Table 6.10 is base line.
Variation of nodal displacements/rotation Δx_1, Δy_1, Φz_1 associated with Graphs 5.19 to 5.36 for $E_v=26$ and 35 MPa, $\nu_{Hv}=0.30$; (refer to Table 5.1b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case, E_v (MPa)</th>
<th>Soil type</th>
<th>Δx_1</th>
<th>$%$</th>
<th>Δy_1</th>
<th>$%$</th>
<th>Φz_1</th>
<th>$%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing: 1D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>0.00140</td>
<td>-</td>
<td>-0.00045</td>
<td>-</td>
<td>-0.00872</td>
<td>-</td>
</tr>
<tr>
<td>D (isolated footing: 1D)</td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>0.00105</td>
<td>25.0</td>
<td>-0.00020</td>
<td>56.0</td>
<td>-0.00868</td>
<td>0.4</td>
</tr>
<tr>
<td>P (Plane frame: 2D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>0.00153</td>
<td>-</td>
<td>-0.00067</td>
<td>-</td>
<td>-0.00871</td>
<td>-</td>
</tr>
<tr>
<td>P (Plane frame: 2D)</td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>0.00115</td>
<td>24.8</td>
<td>-0.00048</td>
<td>28.4</td>
<td>-0.00867</td>
<td>0.4</td>
</tr>
<tr>
<td>S (Spatial frame: 3D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>0.00208</td>
<td>-</td>
<td>-0.00130</td>
<td>-</td>
<td>-0.00872</td>
<td>-</td>
</tr>
<tr>
<td>S (Spatial frame: 3D)</td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>0.00156</td>
<td>25.0</td>
<td>-0.00094</td>
<td>27.7</td>
<td>-0.00865</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 6.12 Nodal displacements/rotation variation $\Delta x_1, \Delta y_1, \Phi z_1$ for $E_v=26$ MPa and 35 MPa in a soft to medium soil, corresponding (E_{v_35}, E_{v_26}) in percentage.

Case E_{s_26} MPa is the base line for individual cases D, P, S.

Variation of nodal displacements/rotation Δx_1, Δy_1, Φz_1 associated with Graphs 5.19 to 5.36 for $E_v=75$ and 84 MPa, $\nu_{Hv}=0.35$; (refer to Table 5.1b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case, E_v (MPa)</th>
<th>Soil type</th>
<th>Δx_1</th>
<th>$%$</th>
<th>Δy_1</th>
<th>$%$</th>
<th>Φz_1</th>
<th>$%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing: 1D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>0.00041</td>
<td>70.7</td>
<td>-0.00012</td>
<td>73.3</td>
<td>-0.00860</td>
<td>1.4</td>
</tr>
<tr>
<td>D (isolated footing: 1D)</td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>0.00037</td>
<td>65.0</td>
<td>-0.00011</td>
<td>45.0</td>
<td>-0.00861</td>
<td>0.8</td>
</tr>
<tr>
<td>P (Plane frame: 2D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>0.00045</td>
<td>70.0</td>
<td>-0.00020</td>
<td>70.0</td>
<td>-0.00860</td>
<td>1.3</td>
</tr>
<tr>
<td>P (Plane frame: 2D)</td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>0.00040</td>
<td>65.0</td>
<td>-0.00018</td>
<td>62.0</td>
<td>-0.00860</td>
<td>0.8</td>
</tr>
<tr>
<td>S (Spatial frame: 3D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>0.00061</td>
<td>71.0</td>
<td>-0.00040</td>
<td>69.0</td>
<td>-0.00860</td>
<td>1.4</td>
</tr>
<tr>
<td>S (Spatial frame: 3D)</td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>0.00055</td>
<td>65.0</td>
<td>-0.00036</td>
<td>62.0</td>
<td>-0.00860</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 6.13 Nodal displacements/rotation variation $\Delta x_1, \Delta y_1, \Phi z_1$ for $E_v=75$ MPa and 84 MPa in a medium to hard soil, corresponding (Table 6.13 - Table 6.12) in percentage.

Table 6.12 is base line.
Variation of nodal displacements/rotation $\Delta x_3, \Delta y_3, \Phi z_3$ associated with Graphs 5.19 to 5.36 for $E_v=26$ and 35 MPa, $v_{Hv}=0.30$ (Table 5.1b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case, v_{Hv}</th>
<th>Soil type</th>
<th>Δx_3</th>
<th>%</th>
<th>Δy_3</th>
<th>%</th>
<th>Φz_3</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing- 1D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>0.01539</td>
<td>-</td>
<td>-0.01335</td>
<td>-</td>
<td>-0.00327</td>
<td>-</td>
</tr>
<tr>
<td>D (isolated footing- 1D)</td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>0.01490</td>
<td>3.2</td>
<td>-0.01260</td>
<td>5.6</td>
<td>0.00317</td>
<td>3.0</td>
</tr>
<tr>
<td>P (Plane frame- 2D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>0.01547</td>
<td>-</td>
<td>-0.01349</td>
<td>-</td>
<td>-0.00326</td>
<td>-</td>
</tr>
<tr>
<td>P (Plane frame- 2D)</td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>0.01495</td>
<td>3.3</td>
<td>-0.01270</td>
<td>5.8</td>
<td>-0.00316</td>
<td>3.1</td>
</tr>
<tr>
<td>S (Spatial frame- 3D)</td>
<td>3, 0.30, 26</td>
<td>Cross-anisotropic</td>
<td>0.01595</td>
<td>-</td>
<td>-0.01426</td>
<td>-</td>
<td>-0.00327</td>
<td>-</td>
</tr>
<tr>
<td>S (Spatial frame- 3D)</td>
<td>3, 0.30, 35</td>
<td>Cross-anisotropic</td>
<td>0.01534</td>
<td>3.8</td>
<td>-0.01328</td>
<td>7.2</td>
<td>-0.00317</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table 6.14 Nodal displacements/rotation variation $\Delta x_3, \Delta y_3, \Phi z_3$ for $E_v= 26$ MPa and $E_v=35$ MPa in a soft to medium soil, corresponding ($E_v= 26$ - $E_v= 28$) in percentage

Case $E_s=26$ MPa is the base line for individual cases D, P, S.

Variation of nodal displacements/rotation $\Delta x_3, \Delta y_3, \Phi z_3$ associated with Graphs 5.19 to 5.36 for $E_v=75$ and 84 MPa, $v_{Hv}=0.35$ (Table 5.1b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case, v_{Hv}</th>
<th>Soil type</th>
<th>Δx_3</th>
<th>%</th>
<th>Δy_3</th>
<th>%</th>
<th>Φz_3</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (isolated footing- 1D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>0.01405</td>
<td>8.7</td>
<td>-0.01135</td>
<td>15.0</td>
<td>-0.00300</td>
<td>8.2</td>
</tr>
<tr>
<td>D (isolated footing- 1D)</td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>0.01398</td>
<td>6.2</td>
<td>-0.01124</td>
<td>10.8</td>
<td>-0.00300</td>
<td>5.4</td>
</tr>
<tr>
<td>P (Plane frame- 2D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>0.01407</td>
<td>9.0</td>
<td>-0.01139</td>
<td>15.6</td>
<td>-0.00300</td>
<td>8.0</td>
</tr>
<tr>
<td>P (Plane frame- 2D)</td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>0.01400</td>
<td>6.4</td>
<td>-0.01128</td>
<td>11.2</td>
<td>-0.00300</td>
<td>5.0</td>
</tr>
<tr>
<td>S (Spatial frame- 3D)</td>
<td>5, 0.35, 75</td>
<td>Cross-anisotropic</td>
<td>0.01422</td>
<td>10.8</td>
<td>-0.01165</td>
<td>18.3</td>
<td>-0.00300</td>
<td>8.2</td>
</tr>
<tr>
<td>S (Spatial frame- 3D)</td>
<td>5, 0.35, 84</td>
<td>Cross-anisotropic</td>
<td>-0.01414</td>
<td>7.8</td>
<td>-0.01151</td>
<td>13.3</td>
<td>-0.00300</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Table 6.15 Nodal displacements/rotation variation $\Delta x_3, \Delta y_3, \Phi z_3$ for $E_v= 75$ MPa and $E_v= 84$ MPa in a medium to hard soil, corresponding (Table 6.15 - Table 6.14) in percentage

Table 6.14 is base line.
Graphs 5.37 to 5.45 are obtained based on cross-anisotropic soil parameters. In this set, one of the independent soil parameters (soil shear modulus of elasticity in vertical direction) is varied to investigate its effect on the frame internal forces and nodal displacements. Tables 6.16 to 6.18 provide numerical summary of the outputs.

In the cross-anisotropic soil in this study, with interim parameters, when \(\beta^2 \) takes quantities such as positive, zero and negative in conjunction with \(\alpha^2 \), the bending moments \(M_{21} \) and \(M_{32} \), and the nodal displacements \(\Delta_{x3} \) and \(\Delta_{y3} \) show a greater increase (up to 3.2 \%) than bending moment \(M_{34} \) and nodal rotations \(\Phi_{z1} \) and \(\Phi_{z3} \) (see Tables 6.16 to 6.18). However, the nodal displacements \(\Delta_{x1} \) and \(\Delta_{y1} \) show no significant response (almost zero \%) to the changes in the soil parameter. In comparing with the isotropic soil, the case of cross-anisotropic soil bed is associated with larger variations in the nodal displacements.
Variation of bending moments M_{21}, M_{32}, M_{34} and nodal displacements/rotations Δx_1, Δy_1, Φ_{z1}, Δx_3, Δy_3, Φ_{z3} associated with Graphs 5.37 to 5.45

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>M_{21} & %</th>
<th>M_{32} & %</th>
<th>M_{34} & %</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>10</td>
<td>Special Cross-anisotropic ($\alpha^2=1; \beta^2=0$)</td>
<td>22.129</td>
<td>-</td>
<td>-33.229</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Cross-anisotropic ($\alpha^2=1; \beta^2=0$)</td>
<td>22.670</td>
<td>1.1</td>
<td>-33.629</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Cross-anisotropic ($\alpha^2>1; \beta^2=0$)</td>
<td>22.439</td>
<td>1.4</td>
<td>-33.699</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Cross-anisotropic ($\alpha^2<1; \beta^2=0$)</td>
<td>22.460</td>
<td>1.5</td>
<td>-33.707</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (Plane frame-2D)</th>
<th>S (Spatial frame-3D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, $F_v=21.429MPa$</td>
<td>Special Cross-anisotropic ($\alpha^2=1; \beta^2=0$)</td>
</tr>
<tr>
<td>7, $F_v=21.450MPa$</td>
<td>Cross-anisotropic ($\alpha^2>1; \beta^2>0$)</td>
</tr>
<tr>
<td>9, $F_v=22.627MPa$</td>
<td>Cross-anisotropic ($\alpha^2<1; \beta^2=0$)</td>
</tr>
<tr>
<td>8, $F_v=23.000MPa$</td>
<td>Cross-anisotropic ($\alpha^2>1; \beta^2<0$)</td>
</tr>
</tbody>
</table>

Table 6.16 Variation of bending moment M_{21}, M_{32}, M_{34} versus Soil shear modulus of elasticity F_v

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-case</th>
<th>Soil type</th>
<th>Δx_1 & %</th>
<th>Δy_1 & %</th>
<th>Φ_{z1} & %</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>10</td>
<td>Special Cross-anisotropic ($\alpha^2=1; \beta^2=0$)</td>
<td>0.0016</td>
<td>NSV</td>
<td>-0.0004 NSV</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Cross-anisotropic ($\alpha^2=1; \beta^2=0$)</td>
<td>0.0016</td>
<td>NSV</td>
<td>-0.0003 NSV</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Cross-anisotropic ($\alpha^2>1; \beta^2=0$)</td>
<td>0.0016</td>
<td>NSV</td>
<td>-0.0003 NSV</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Cross-anisotropic ($\alpha^2<1; \beta^2=0$)</td>
<td>0.0016</td>
<td>NSV</td>
<td>-0.0003 NSV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (Plane frame-2D)</th>
<th>S (Spatial frame-3D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, $F_v=21.429MPa$</td>
<td>Special Cross-anisotropic ($\alpha^2=1; \beta^2=0$)</td>
</tr>
<tr>
<td>7, $F_v=21.450MPa$</td>
<td>Cross-anisotropic ($\alpha^2>1; \beta^2>0$)</td>
</tr>
<tr>
<td>9, $F_v=22.627MPa$</td>
<td>Cross-anisotropic ($\alpha^2<1; \beta^2=0$)</td>
</tr>
<tr>
<td>8, $F_v=23.000MPa$</td>
<td>Cross-anisotropic ($\alpha^2>1; \beta^2<0$)</td>
</tr>
</tbody>
</table>

Table 6.17 Variation of nodal displacements/rotation Δx_1, Δy_1, Φ_{z1} versus Soil shear modulus of elasticity F_v

NB: NSV is No Significant Variation

Table 6.16 is base line for the comparison used for individual items in this table. Case $\alpha^2=1$, $\beta^2=0$ is base line for the comparison between other three cases.
Table 6.18 Variation of nodal displacements/rotation $\Delta x_3, \Delta y_3, \Phi_{23}$ versus Soil shear modulus of elasticity F_v

Case $\alpha^2=1$ $\beta^2=0$ is base line for the comparison between other three cases
It can be observed that element end bending moments in frames with isolated and plane interactions are very close (see Graphs 5.19, 5.20, 5.25, 5.26, 5.28). However, they differ quite significantly from the corresponding quantities associated with the space interactions.

According to the results from the cross-anisotropic cases (sub-cases 32 to 35), the soil elastic parameters are chosen such that these parameters make the two interim quantities α and β (see sections 3.5.5, A2.1.2.1 and A2.2.2.2) become $\alpha^2 = 1$ and $\beta^2 = 0$. In this group of examples, a especial response appears which is expected due to variations of α^2 and β^2 when these two quantities together establish an isotropic state in the soil (Graphs 5.37 to 5.45). In Graphs 5.37, 5.38, 5.41 and 5.44 there is a rapid variation at the point representing isotropic status, while in the rest of graphs the transition status occurs smoother.

It can be noticed that for the cases considered the internal force variations (Tables 6.10 and 6.11) are much smaller (4 to 13 percent) than the variations of the support displacements (25 to 73 percent - Tables 6.12 and 6.13). Especially, the vertical displacements appear to be very sensitive to variations of soil properties. However, this feature of the soil-structure interaction should not be surprising since the internal force variations depend upon the differential settlements and not on the settlements themselves. Hence, the increase of settlements does not have to translate into increase of internal forces. It should be pointed out, however, that for cases of loads causing reactions of opposite sense at adjoining support the situation can be reversed. That means that relatively small changes in support displacements may be associated with relatively large variations of internal forces, because displacements at adjoining supports have opposite directions.
6.4. FINDINGS AND DISCUSSION ON RESULTS OF ANALYSIS: WINKLER MODEL AS COMPARED WITH ISOTROPIC ELASTIC HALF-SPACE

To investigate the dependency of structural response fields such as the bending moments, nodal displacements and rotations, on the variations of soil parameters, three sets of isotropic constants \(E_s = 30 \text{ MPa} \) and \(\nu = 0.40, 0.15 \) and 0.49) and the corresponding Winkler spring coefficients \(k_s = 45.496, 39.096 \) and 50.292 MN/m\(^3\)) based on equal settlement of an isolated footing (Hemsley 1987) were considered. The Poisson's ratios were selected to represent three different cases: a mixed soil type, which is frequently observed, a soil with small volume changes and finally, a soil with large volume variation.

Tables 5.3 to 5.5 summarise the response (internal forces and nodal displacements) of a typical plane frame with isolated footings on a soil medium, which is modelled as being infinitely rigid. Similarly, for an isotropic soil medium and its corresponding Winkler's spring, Tables 5.6 to 5.14 are developed to review the interaction quantities.

Referring to Table 5.6, as the spring coefficient \(k_s \) increases, the bending moment \(M_{21} \) increases. For instance, for a 28.6% increase in the spring coefficient (from 39096 to 50292 kN/m\(^3\)), the corresponding bending moment in isotropic model increased 4% (22.449 to 23.3858 kN.m) in isolated footing interaction case \(D \) and 6.6% increase (21.910 to 23.3635 kN/m\(^3\)) in space frame interaction case \(S \), while the variation in the bending moment due to Winkler is 30.5129 to 30.7013.

In Table 5.6, across from cases \(D \) to \(S \) in isotropic model, despite increases in the interaction between the isolated footings, there is reduction of 2.4% in bending moment (22.449 to 21.910 kN.m), which corresponds to Winkler spring coefficient of 39096 kN/m\(^3\), and a reduction of 0.1% in bending moments in isotropic model corresponding to the Winkler spring coefficient of 50292 kN/m\(^3\), respectively. Associating these cases with Table 5.8, the variations in the bending moment \(M_{34} \)
are less than the previous case. In the case D in isotropic model, only 1.3% increase in this bending moment (32.6846 to 32.5186 kN.m) and only 1.4% (32.5186 to 32.0655 kN.m) in case S is observed, while the negative bending moment for the Winkler idealisation has less significant increase (in absolute value) 0.03% (-28.4515 to -28.4607 kN.m).

Displacements corresponding to support node (Node 1) in Tables 5.9 to 5.11, and for an inner structure node (Node 3) Tables 5.12 to 5.14 are shown respectively. Horizontal displacement Δ_{x1} presents an increase of about 133% comparing cases D with S (0.0006 to 0.0014 m) in isotropic soil associated with a softer spring coefficient 39.096 MN/m3, while the maximum increase for such a displacement occurred in the stiffest soil (almost 0.0000 to 0.0006 m) in the case S, which is relatively significant.

For individual cases D, P and S of the isotropic soil, the vertical deflection decreases a significant 25%, (0.0004 to 0.0003 m) corresponding with an increase in spring coefficient k_v. This situation is observed in the isotropic soil with the minimum variations from 0.0012 to 0.0010 m for the case S, and in the case D for the highest employed corresponding spring coefficient (50.292 MN/m3) there is no deflection at all (Tables 5.9 and 5.10). The variations in deflection imply that the isolated footings show strongest effect due to the spring stiffness k_v in compare to the isotropic cases of plane and spatial P and S.

Vertical displacements for an inner node (Node 3) shown in Table 5.13 indicate small decreases of 5%, (0.0133 to 0.0126 m in isotropic cases, and 0.0219 to 0.0215 m in Winkler model). The corresponding increase in the Winkler coefficient is from 39.096 to 50.292 MN/m3.

There are no significant changes in angles of rotation for Node 1 or Node 3 (Tables 5.11 and 5.14) associated with Winkler idealisation or cases of isotropic model at any interaction options (D, P or S).
Outcomes of the analysis from this research on the soil-structure interaction associated with the Winkler model in comparison to the isotropic idealisation are found similar to those of Lee and Brown (1972) regarding a continuous foundation beam. In comparison to the structure internal forces between the Winkler and the elastic half-space analyses, they assumed a correlation between the elastic soil parameters and Winkler springs based on equal settlements for an isolated footing. Lee and Brown (1972) found that the differences in maximum bending moment in the foundation beam for a typical frame structure were relatively small. However, there was an expected trend of decreasing maximum moment with increasing flexibility of the foundation beam.

6.5. SENSITIVITY ANALYSIS

As described earlier in Chapter 2, determining soil parameters involves laboratory or in situ tests and associated measurements. These processes often incorporate errors that affect the accuracy of the soil-parameters obtained. To conduct a sensitivity analysis each parameter should be incremented or decremented for individual analysis and the interaction results assessed. Similarly to soil parameters, the elastic parameters of the superstructure also involve inaccuracies. As a result, the process of sensitivity of system analysis to parameters can be summarised as follows.

The overall soil-structure interaction analysis can be reduced to three hierarchical levels of parameters as illustrated in Figure 6.1 (Ang and Tang 1975 and 1984). The first level of variables considers the primary input variables (the environmental parameters such as moisture, consolidation, fissures and porosity) which are required as input into the models to determine elastic parameters such as Poisson’s ratio and elastic moduli. The entire or some of the level one variables may depend upon the above-mentioned environmental parameters.
The elastic coefficients (refer to the above figure) are considered as the level two parameters or intermediate variables. Finally, level three variables represent the final interaction analysis result.

The sensitivity of a given variable depends on the level at which it is being measured. For instance, a variable of level one, whilst having a significant influence on the next level variable, in the context of the overall results may in fact not be at all significant. This depends on how the soil model and the system analysis incorporate each variable and how the internal processes treat that variable.

Throughout the numerical examples of analysis conducted in this project, an overall view of influence of soil parameters is given in sections 6.2 to 6.4. However, for a broader scope of analysis, the problem should be viewed as involving random variables and, therefore, probability functions associated with each parameter should be used, which is beyond the scope of this project.

6.6. CONCLUDING REMARKS TO CHAPTER

The structure analysis output graphs, Graphs 5.1 to 5.18 associated with isotropic and Graphs 5.19 to 5.45 for cross-anisotropic elastic half-space are used to arrange Tables 6.1 to 6.9 and 6.10 to 6.18 respectively. These tables are prepared to classify the outputs and facilitate the conducted discussion. Bending moments M_{21}, M_{32} and M_{34},
CHAPTER

SEVEN

SUMMARY AND CONCLUSION

Elastostatic Interaction Analysis of Frames Resting on Homogeneous Elastic Half-space
CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1. SUMMARY

The main objective of this project was the development of a technique of interaction analysis of soil-structure systems involving frames. In the structural modelling used, the classical direct stiffness method was employed whilst the stiffness matrix of the foundation bed was derived from the force-displacement relationships associated with the appropriate elastic half-space media representing the soil. Particular attention was given to planar frames, assuming that these are capable of adequately representing the actual, three-dimensional frame systems.

In the current design analysis of frames involving soil-structure interaction, Winkler foundation is the prevailing soil idealisation. Since Winkler foundation is widely regarded as a poor soil model, in this work, the concepts of homogeneous, elastic half-spaces with either isotropic or cross-anisotropic properties are employed to represent the media supporting the frames considered. As such media are known to be capable of providing better idealisations of soils than the Winkler foundation is, the proposed analysis of frames seems to possess a real, practical value.

The following three soil-structure interaction patterns are considered in this study:

- The interaction is confined to that of individual footings of the frame and the soil masses directly underneath those footings. That means that no interaction through the soil between the frame footings is taken into account. Because of the localised interaction pattern, the case is somewhat similar to that of Winkler springs. It is the simplest and the most crude soil-structure interaction model applied in this work.

- This soil-structure interaction pattern improves the above one by adding the interaction through the soil media among the footings of a plane frame.
• The third interaction model is somewhat more rigorous than the second one as it takes account of interaction among not only footings within a plane frame but also among the plane frames representing the actual, three-dimensional structure. This three-dimensional interaction, however, is only soil-induced as no structural connections between adjacent two-dimensional frames are considered.

7.2. CONCLUSIONS

This research shows that soils depending on their mechanical properties may considerably affect the responses of superstructures to applied loads. Therefore, the application of appropriate tools of structural analysis allowing for adequate modelling of soil-structure interaction is of genuine importance to design process. The technique of analysis proposed in this work can be viewed as right steps towards achieving the goal of better design of frame structures.

The examples of analysis provided in Chapter 5 and whose results were discussed in Chapter 6, although showing certain trends, aimed primarily at general illustration of effects of soil interaction on the frame structural responses. Since for a given frame, the structural response fields are non-linear functions of soil parameters linear interpolation of results is not recommended. However, as the proposed analysis is easy to perform it is no real problem to investigate the structural responses of frames for a relevant range of soil parameters. This would allow frame designers to base the structural dimensioning on the most unfavorable work conditions.

An alternative approach to safe design of frames related to soil-structure interactions is to put more effort into the process of evaluation of appropriate soil properties at the building site. However, in many situations this may be a difficult task. Cases of this nature will usually be associated with cohesionless soils where it is quite difficult to extract undisturbed soil samples. As a result, the properties of soil based on such samples exhibit poor correlation with the properties of the foundation bed. Also, in cross-anisotropic soils, the range of uncertainties is rather large making it difficult to
find appropriate correlation between the measured and real properties of the foundation bed.

The effects of interaction between the footings within the same frame and also between frames observed in the examples of Chapter 5 should not be taken as a guide to choose a particular interaction analysis variant (\(D, P\) or \(S\)). In general, the level of such interactions depends strongly not only on the soil parameters but also upon the distances between the footings in the actual three-dimensional structure. Consequently, in certain cases, it may be sufficient to use the simplest interaction variant (variant \(D\) - no soil-transmitted interaction between footings), in others, interaction between footings of a single, planar frame (\(P\)) is needed, and yet in another cases, the space interaction (\(S\)) is the appropriate choice. Also, it does not seem to be possible to develop a specific formula for this purpose.

One should not be surprised to see that the results of analysis associated with the Winkler idealisation of the soil do not correspond well to those from the analysis involving the elastic half-space foundation bed. The Winkler model is not equivalent to the elastic half-space model. Since Winkler springs have been found to be a worse representation of real soils than the elastic half-space media, it is important to have appropriate tools of analysis of frames employing such media.

The implementation of this study clearly requires very much less input than similar ones using the finite element method. As a result, the developed computer program could become an efficient and popular design tool.

While this study has not broken new ground, the approach developed by the author allows for relatively easy examination of sensitivity of frames to variations of soil parameters. This should contribute to better understanding of the soil-structure interaction as well as to enable the frame designers to better account for such an interaction. This work may also encourage other researchers to develop techniques and tools that will really break ground in this area.
7.3. FUTURE WORK

This study, although relatively extensive, is by no means fully exhaustive. Consequently, further work in the area is recommended, which might proceed on a range of the associated topics. Some of these are listed below:

1. Extension of work to cover layered soil,

2. Development and implementation of computer procedures for analysis of frames with footings inside the soil mass. This should be relatively easy since appropriate force-displacement relations for such cases already exist (Mindlin's solutions 1936),

3. Extension of the present, deterministic approach to probabilistic elastic analysis that would better reflect the nature of soil properties,

4. A much more demanding extension of this work would be to consider non-linear behaviour of soil.
REFERENCES
REFERENCES

References

References

References
126. Melerski, E.S. (1995b) Finite Element Analysis of a General Shape Mat
Foundation Resting on an Elastic Half-space. 14th Australasian Conference on the

105-121.

an Elastic Half-space Interacting with a Beam, Including the Shear Stresses at the

Am. Soc. Civ. Engrs 91, No.SM2, pp. 21-31

132. Michell, J.H. (1900) Stresses and Displacements in an Aeolotropic Solid with an
Infinite Plane Boundary. Proceedings London Mathematic Society, 32, pp. 247-
258.

Science Publishers B.V in Geotechnical Engineering.

Geometrical Effects. Geotecnique, 47, No 1, pp. 49-60.

Sites. Australian Road Research Board (ARRB) AIR 392-2.

SNTL + Alfa, 388 pp.

141. Newmark, N.M. (1942) Influence Charts for Computation of Stresses in Elastic

142. Newmark, N.M. (1947) Influence Charts for Computation of Vertical
No. 367.

References

APPENDICES
Appendix A1
APPENDIX A1

A1. VERTICAL DISPLACEMENT UNDER A LOAD DISTRIBUTED OVER A CIRCLE AND A RECTANGLE

Two different methods for distributing a concentrated load are presented in this section. Integration of the vertical displacement due to the load over an infinitesimal area is used to obtain the total displacement. The areas considered are a circle and a rectangle.

- A circle (radius \(r_0 \))

Using Equation 2.7, the vertical displacement under the load due to a vertical load can be determined via integration. It is assumed that the load is uniformly distributed over the area (Figure A1.1). The Boussinesq expression is applied to a small area and is integrated. This gives the relationship shown in equation A1.1

\[
\nu_a = \frac{(1-\nu_s^2)}{\pi E_s} \int \frac{dP}{r} = \frac{(1-\nu_s^2)}{\pi E_s} \int_0^{2\pi} \int_0^{r_0} \frac{rdrd\theta}{r} = \frac{2(1-\nu_s^2)}{E_s} p r_0
\]

when \(P_a = \pi r_0^2 p \) is substituted into Equation A1.1, Equation A1.2 is obtained.

![Figure A1.1. Parameters used for a distributed load over a circle.](image)

\[
\nu_a = \frac{2(1-\nu_s^2)}{\pi E_s r_0} P_a = f_{aa} P_a
\]

- A rectangle \((a \times b)\)

Cheung and Zienkiewicz (1965) presented a technique involving a uniform distribution of a vertical load over a rectangle (Figure A1.2). The deflection at any point due to a point load is given by the Boussinesq Equation 3.20.
The deflection at the centre of the uniformly loaded rectangular area \((a \times b)\) is obtained by integrating the Boussinesq equation over the area:

\[
\begin{align*}
 u_i &= 2 \int_{\zeta=0}^{\zeta=a/2} \int_{\eta=0}^{\eta=b/2} \frac{P_i (1-v_i^2)}{ab\pi E_s \sqrt{\zeta^2 + \eta^2}} d\zeta d\eta = \frac{P_i (1-v_i^2)}{4\pi E_s} \chi_{aa}^{ii}
\end{align*}
\]

(A1.3)

Figure A1.2 Surface vertical displacement due to a uniformly loaded rectangular area on elastic half-space (Cheung and Zienkiewicz 1965).

In the integration, a rectangle \(a \times b\) with a range of aspect ratios \((b/a)\) was considered. The resulting values of parameter \(\chi_{aa}^{ii}\) associated with the vertical displacement at the centre of the rectangle for different aspect ratios are given in Table A1.1 (Cheung and Zienkiewicz 1965).

<table>
<thead>
<tr>
<th>b/a</th>
<th>2/3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_{aa}^{ii})</td>
<td>4.265</td>
<td>3.525</td>
<td>2.406</td>
<td>1.867</td>
<td>1.543</td>
<td>1.322</td>
</tr>
</tbody>
</table>

Table A1.1 Coefficient for deflection at the centre of rectangle \(a \times b\)
Appendix A2
A2.1. HOMOGENEOUS ELASTIC HALF-SPACE

A2.1.1. Isotropic Elastic Half Space

Mindlin's solutions for the vertical and horizontal displacements for a point within the medium (Figure A2.1) are given below. The displacements due to vertical load P are as follows:

$$ u = \frac{PR}{16\pi G_s(1-\nu_s)} \left[\frac{z-c}{R_1^3} + \frac{(3-4\nu_s)(z-c)}{R_2^3} \right] - \frac{4(1-\nu_s)(1-2\nu_s)}{R_1(R_2+z+c)} + \frac{6cz(z+c)}{R_2^5} $$

(A2.1)

$$ w = \frac{P}{16\pi G_s(1-\nu_s)} \left[\frac{3-4\nu_s}{R_1} + \frac{8(1-\nu_s)^2-(3-4\nu_s)}{R_2} + \frac{(z-c)^3}{R_1^3} + \frac{(3-4\nu_s)(z+c)^2-2cz}{R_2^3} + \frac{6cz(z+c)^2}{R_2^5} \right] $$

(A2.2)

where G_s is the soil shear modulus (in a homogeneous isotropic half-space), and is defined:

Figure A2.1 Illustration of the Mindlin's case in x-z plane within the medium.
\[G_s = \frac{E_s}{2(1 + \nu_s)} \quad \text{(A2.3)} \]

where \(\nu_s \) is the soil’s Poisson’s ratio. The displacements due to horizontal load \(Q \) are given:

\[u = \frac{Q}{16\pi G_s(1-\nu_s)} \left[\frac{(3-4\nu_s)}{R_1} + \frac{1}{R_2} + \frac{x^2}{R_3} + \frac{(3-4\nu_s)x^2}{R_3} + \frac{2cz}{R_2^2} \left(1 - \frac{3x^2}{R_2^2}\right) + \frac{4(1-\nu_s)(1-2\nu_s)}{R_2(z+c)} \left(1 - \frac{x^2}{R_2^2(R_2 + z + c)}\right) \right] \quad \text{(A2.4)} \]

\[w = \frac{Qz}{16\pi G_s(1-\nu_s)} \left[\frac{(z-c)}{R_1} + \frac{(3-4\nu_s)(z-c)}{R_2^3} \right] - \frac{6cz(z+c)}{R_2^5} + \frac{4(1-\nu_s)(1-2\nu_s)}{R_2(R_2 + z + c)} \quad \text{(A2.5)} \]

All the parameters in the above equations are shown in the Figure A2.1.

A2.1.2. Cross-anisotropic Elastic Half-Space

The following constants are defined in order to simplify the original soil elasticity constants:

\[a = \frac{E_h(1-\nu_{hv},\nu_{vh})}{(1+\nu_h)(1-\nu_h - 2\nu_{hv},\nu_{vh})} \quad \text{(A2.6)} \]

\[b = \frac{E_s(\nu_h + \nu_{hv},\nu_{vh})}{(1+\nu_h)(1-\nu_h - 2\nu_{hv},\nu_{vh})} \quad \text{(A2.7)} \]

\[c = \frac{E_h\nu_{vh}}{(1-\nu_h - 2\nu_{hv},\nu_{vh})} \quad \text{(A2.8)} \]

\[d = \frac{E_h\nu_{vh}(1-\nu_h)}{\nu_{hv}(1-\nu_h - 2\nu_{hv},\nu_{vh})} \quad \text{(A2.9)} \]

\[f = F_v \text{ soil shear modulus} \quad \text{(A2.10)} \]
A2.1.2.1. Dirac Delta Function:

In the case of application of a point force or moment on a cross-anisotropic medium, Dirac delta function is used to define load distribution.

Briefly, the Dirac delta function is a pseudo function that is defined so that it has a defined value everywhere in a domain except at one point. In this approach, the function is expressed as

\[\delta(x) = 0 \text{ for } x \neq 0 \]

(A2.11a)

and

\[\int f(x)\delta(x)d(x) = f(0) \]

(A2.11b)

The function \(\delta(x) \) defined in this way is not like the ordinary functions of mathematical analysis, which are defined to have definite values at each point in certain domains. This form of function is used only when it is obvious that no inconsistency will follow from its use. This option facilitates the integration procedure at the point of load application.

The application of the Dirac delta function to the different loads is as follows.

The vertical force load \((P_z) \) through the Dirac delta function \(f_a(r) \), for the vertical stress is distributed such that

\[\sigma_z(r,\theta,0) = \begin{cases} f_a(r) & r < r_0 \\ 0 & r > r_0 \end{cases} \]

(A2.12a)

Then

\[f_a(r) = \frac{P_z \delta(r)}{2\pi r} \]

(A2.12b)

Hence

\[P_z = 2\pi \int_0^{r_0} r f_a(r)dr \]

(A2.12c)

The appropriate Hankel transform simplifies to

\[aH_0(k) = \frac{P_z}{2\pi} \]

(A2.12d)

Horizontal force load \((Q_x) \) through the Dirac delta function \(f_b(r) \), for the unidirectional stress, is distributed such that
\[\tau_{xz}(r, \theta, 0) = \begin{cases} f_b(r) r < r_0 \\ 0 > r_0 \end{cases} \]
(A2.13a)

Then

\[f_b(r) = \frac{Q_x \delta(r)}{2 \pi r} \]
(A2.13b)

Hence

\[Q_x = 2\pi \int_0^r r f_b(r) dr \]
(A2.13c)

The appropriate Hankel transform simplifies

\[\mathcal{H}_b H_0(k) = \frac{Q_x}{2 \pi} \]
(A2.13d)

Finally, the horizontal moment load \(M_y \), through the Dirac delta function \(f_c(r) \), for the linearly vertical stress, is distributed such that

\[\sigma_z(r, \theta, 0) / \cos \theta = \begin{cases} f_c(r) r < r_0 \\ 0 > r_0 \end{cases} \]
(A2.14a)

Then

\[f_c(r) = \frac{2 M_y \delta(r)}{2 \pi r^2} \]
(A2.14b)

And

\[\tau_{\alpha}(r, \theta, 0) = \tau_{\alpha}(r, \theta, 0) = 0 \]
(A2.14c)

Hence

\[M_y = \pi \int_0^r r^2 f_c(r) dr \]
(A2.14d)

And the appropriate Hankel transform simplifies

\[\mathcal{H}_c H_0(k) = \frac{M_y}{2 \pi} k \]
(A2.14e)

A2.1.2.2. Constants and Coefficients Associated with Numerical Integration Method

Generally, the external load is described by a stress distribution function over a circular area with radius \(R \). Such a function is expressed either in the form of \((1 - R^2)^q\) or \(R (1 - R^2)^t\) with parameters \(q \) and \(t \) are obtained accordingly (Sneddon 1951, Tranter, 1952).
In general, the solutions are products of coefficients \((g_1, \ldots, g_4, h_1, \ldots, h_4, h_{10}, i_1, \ldots, i_4, j_1, \ldots, j_4, j_{11}, s_1, \ldots, s_4, i_1, \ldots, i_4, i_{10})\) and integrals \((I, A, \text{ and } M \text{ types})\). The coefficients are functions only of the elastic properties while the integrals are in general functions of depth, radial offset and elastic parameters. The following integrals are used to develop solutions for displacements:

\[
I_{\eta\mu}(\Psi) = \int_{0}^{\infty} J_{0.5\eta}(K) J_{0.5r}(KR) K^{0.5(\mu-2)} \exp(-\Psi K) dK \tag{A2.15a}
\]

\[
\epsilon I_{\eta\mu} = \int_{0}^{\infty} J_{0.5\eta}(K) J_{0.5r}(KR) K^{0.5(\mu-2)} \cos \omega KZ \exp(-\alpha KZ) dK \tag{A2.15b}
\]

\[
s I_{\eta\mu} = \int_{0}^{\infty} J_{0.5\eta}(K) J_{0.5r}(KR) K^{0.5(\mu-2)} \sin \omega KZ \exp(-\alpha KZ) dK \tag{A2.15c}
\]

\[
A_{\eta\mu}(\Psi) = \frac{1}{2} \left[I_{\eta(\eta+2)\mu}(\Psi) + I_{\eta(\eta-2)\mu}(\Psi) \right] \tag{A2.15d}
\]

\[
M_{\eta\mu}(\Psi) = \frac{1}{2} \left[I_{\eta(\eta+2)\mu}(\Psi) - I_{\eta(\eta-2)\mu}(\Psi) \right] \tag{A2.15e}
\]

\[
s M_{\eta\mu}(\Psi) = \frac{1}{2} \left[s I_{\eta(\eta+2)\mu} + s I_{\eta(\eta-2)\mu} \right] \tag{A2.15f}
\]

Integrals of products of Hankel transform kernels, Bessel functions, trigonometric and exponential functions are employed to find the solutions for the displacement functions. The load coefficients are presented in their generalised form as follows:

\[
L_{\zeta\lambda}(\psi) = \int_{0}^{\infty} H_{\zeta}(k) J_{0.5r}(kr) k^{0.5\lambda} \exp(-\psi k) dk \tag{A2.16a}
\]

\[
\epsilon L_{\zeta\lambda} = \int_{0}^{\infty} H_{\zeta}(k) J_{0.5r}(kr) k^{0.5\lambda} \exp(-\alpha kZ) \cos \alpha kZ dk \tag{A2.16b}
\]

\[
s L_{\zeta\lambda} = \int_{0}^{\infty} H_{\zeta}(k) J_{0.5r}(kr) k^{0.5\lambda} \exp(-\alpha kZ) \sin \alpha kZ dk \tag{A2.16c}
\]

\[
P_{\zeta\lambda}(\psi) = \frac{1}{2} L_{\zeta(\tau+2)\lambda}(\psi) + \frac{1}{2} L_{\zeta(\tau-2)\lambda}(\psi) \tag{A2.16d}
\]
\[S_{\xi \lambda}(\psi) = \frac{1}{2} L_{\xi(r+2)\lambda}(\psi) - \frac{1}{2} L_{\xi(r-2)\lambda}(\psi) \] (A2.16e)

\[e^i S_{\xi \lambda} = \frac{1}{2} e^i L_{\xi(r+2)\lambda} - \frac{1}{2} e^i L_{\xi(r-2)\lambda} \] (A2.16f)

\[s^i S_{\xi \lambda} = \frac{1}{2} s^i L_{\xi(r+2)\lambda} - \frac{1}{2} s^i L_{\xi(r-2)\lambda} \] (A2.16g)

The following relations were defined to come up with the expression of displacements in a cross-anisotropic medium in section 2.4 of Chapter 2.

\[\phi = \alpha - \beta \] (A2.17a);
\[\rho = \alpha + \beta \] (A2.17b)

\[\omega^2 = -\beta^2 \] (A2.18);
\[\gamma^2 = \frac{(a - b)}{f} \] (A2.19)

\[\psi = \omega z, \phi z, \rho z, \gamma z \] (A2.20)

\[g_1 = \frac{(2c + f)\rho \phi}{f(\rho - \phi)(c + d \phi^2)} \] (A2.21);
\[g_2 = \frac{(2c + f)\rho \phi}{f(\rho - \phi)(c + d \rho^2)} \] (A2.22)

\[g_3 = \frac{(2d \phi^2 - f)\rho}{f(\rho - \phi)(c + d \phi^2)} \] (A2.23);
\[g_4 = \frac{(2d \rho^2 - f)\rho}{f(\rho - \phi)(c + d \rho^2)} \] (A2.24)

\[h_1 = \frac{(2c + f)\phi}{f(\rho - \phi)(c + d \phi^2)} \] (A2.25);
\[h_2 = \frac{(2c + f)\rho}{f(\rho - \phi)(c + d \rho^2)} \] (A2.26)

\[h_3 = \frac{(2d \phi^2 - f)}{f(\rho - \phi)(c + d \phi^2)} \] (A2.27);
\[h_4 = \frac{(2d \rho^2 - f)}{f(\rho - \phi)(c + d \rho^2)} \] (A2.28)

\[h_{10} = t_{10} = j_{11} = \frac{2}{f \gamma} \] (A2.29)

\[i_1 = \frac{2\alpha \sqrt{ad}}{ad - c^2} \] (A2.30);
\[i_2 = \frac{\sqrt{a}}{f \omega \sqrt{d}} \] (A2.31)

\[i_3 = \frac{1}{\sqrt{ad} + c} \] (A2.32);
\[i_4 = -\frac{\alpha}{\omega \sqrt{ad - c}} \] (A2.33)
\[j_1 = \frac{1}{\sqrt{ad + c}} \] \hspace{1cm} (A2.34); \hspace{1cm} \[j_2 = \frac{\alpha(\sqrt{ad - c})}{\omega} \] \hspace{1cm} (A2.35)

\[j_3 = -\frac{2ad}{ad - c^2} \] \hspace{1cm} (A2.36); \hspace{1cm} \[j_4 = \frac{1}{f \omega} \] \hspace{1cm} (A2.37)

\[t_1 = \frac{(2c + f)(d\alpha^2 - c)}{f(c + d\alpha^2)^2} \] \hspace{1cm} (A2.38); \hspace{1cm} \[t_2 = \frac{(2c + f)\alpha}{f(c + d\alpha^2)} \] \hspace{1cm} (A2.39)

\[t_3 = \frac{(2c + f)2d\alpha}{f(c + d\alpha^2)^2} \] \hspace{1cm} (A2.40); \hspace{1cm} \[t_4 = \frac{(2d\alpha^2 - f)}{f(c + d\alpha^2)} \] \hspace{1cm} (A2.41)

\[s_1 = \frac{(2c + f)2d\alpha^3}{f(c + d\alpha^2)^2} \] \hspace{1cm} (A2.42); \hspace{1cm} \[s_2 = \frac{(2c + f)\alpha^2}{f(c + d\alpha^2)} \] \hspace{1cm} (A2.43)

\[s_3 = \frac{(2c + 3f - 2d\alpha^2)d\alpha^2 + cf}{f(c + d\alpha^2)^2} \] \hspace{1cm} (A2.44); \hspace{1cm} \[s_4 = \frac{(2d\alpha^2 - f)\alpha}{f(c + d\alpha^2)} \] \hspace{1cm} (A2.45)

Equations A2.16a to A2.16g are applied to obtain the integral constants, which were used to express the displacements, occurred in the cross-anisotropic medium. The expressions in the form of \(_2F_1(a_1, a_2, a_3, a_4) \) are hyper-geometric functions that are described in Equations A2.76 to A2.80.

\[
A_{220}(0) = \begin{cases}
\frac{1}{2}x_2F_1\left(\frac{1}{2}, \frac{-1}{2}; 2; \frac{1}{r^2}\right) \\
\frac{1}{2r}x_2F_1\left(\frac{1}{2}, \frac{-1}{2}; 2; \frac{1}{r^2}\right)
\end{cases} \hspace{1cm} (A2.46)
\]

\[
I_{200}(0) = c I_{200} = \begin{cases}
_2F_1\left(\frac{1}{2}, \frac{-1}{2}; 1; r^2\right) \\
\frac{1}{2r}x_2F_1\left(\frac{1}{2}, \frac{-1}{2}; 2; \frac{1}{r^2}\right)
\end{cases} \hspace{1cm} (A2.47); \hspace{1cm} I_{200} = I_{220} = 0 \hspace{1cm} (A2.48)
\]
\[I_{220} = s M_{220} = \begin{cases} 0 \\ 0 \end{cases} \quad (A2.49) \; ; \; \; I_{420}(0) = c I_{420} = \begin{cases} \frac{1}{2} r \times _2 F_1 \left(\frac{3}{2} , -\frac{1}{2} ; 2 ; r^2 \right) \\ \frac{1}{8 r^2} \times _2 F_1 \left(\frac{3}{2} , \frac{1}{2} ; 3 , \frac{1}{r^2} \right) \end{cases} \quad (A2.50) \]

\[I_{422}(0) = s I_{420} = s M_{420} = \begin{cases} 0 \\ 0 \end{cases} \quad (A2.51) \]

\[L_{000} (\psi) = \frac{P_z}{2 \pi} \frac{1}{\sqrt{\left(\psi^2 + r^2 \right)}} \quad (A2.52) \]

\[e L_{000} = \frac{P_z}{2 \pi} \frac{\cos 0.5 \psi}{\sqrt{R_p}} \quad (A2.53) ; \quad s L_{000} = \frac{P_z}{2 \pi} \frac{\sin 0.5 \psi}{\sqrt{R_p}} \quad (A2.54) \]

\[L_{020}(\psi) = \frac{P_z}{2 \pi} \left(\frac{1}{r} - \frac{\psi}{r \sqrt{\psi^2 + r^2}} \right) \quad (A2.55) \]

\[e L_{020} = \frac{P_z}{2 \pi} \frac{\sqrt{R_p} - \alpha \cos 0.5 \psi - \omega \sin 0.5 \psi}{r \sqrt{R_p}} \quad (A2.56) \]

\[s L_{020} = \frac{P_z}{2 \pi} \frac{\omega z \cos 0.5 \psi - \alpha z \sin 0.5 \psi}{r \sqrt{R_p}} \quad (A2.57) \]

\[L_{002} (\psi) = \frac{P_z}{2 \pi} \frac{\psi}{\sqrt{\left(\psi^2 + r^2 \right)^3}} \quad (A2.58) ; \quad L_{022}(\psi) = \frac{P_z}{2 \pi} \frac{r}{\sqrt{\left(\psi^2 + r^2 \right)^3}} \quad (A2.59) \]

\[L_{120}(\psi) = \frac{M_y}{2 \pi} \frac{r}{\sqrt{\left(\psi^2 + r^2 \right)^3}} \quad (A2.60) ; \quad e L_{120} = \frac{M_y}{2 \pi} \frac{r \cos \frac{3}{2} \psi}{\sqrt{R_p^3}} \quad (A2.61) \]

\[s L_{120} = \frac{M_y}{2 \pi} \frac{r \sin \frac{3}{2} \psi}{\sqrt{R_p^3}} \quad (A2.62) ; \quad L_{122}(\psi) = \frac{M_y}{2 \pi} \frac{3 \psi r}{\sqrt{\left(\psi^2 + r^2 \right)^5}} \quad (A2.63) \]

where

\[R_p = \sqrt{\left((\alpha^2 - \omega^2) z^2 + r^2 \right)^2 + 4 \alpha^2 \omega^2 z^4} \quad (A2.64) \]
\[v_p = \tan^{-1}\left[\frac{2\alpha \omega z^2}{(\alpha^2 - \omega^2) z^2 + r^2} \right] \]

(A2.65)

where \(P_{020}(0), S_{020}(0), c_{020}, S_{022}, S_{120}(0), c_{120}, S_{122}, \) and \(S_{122}(0) \) are the symbols which were used in defining load functions in sections 2.4.1 and 2.4.2 of Chapter 2.

The following relations have been used in section 2.4.2.3 of Chapter 2 to express the displacements occurred due to the applied tangential and vertical loads.

\[M_{220}(0) = c_{M_{220}} \begin{cases}
- \frac{1}{2} x F_1(\frac{3}{2}, -\frac{1}{2}; 2; r^2) \\
- \frac{1}{8} \frac{1}{r^3} x F_1(\frac{3}{2}, \frac{1}{2}; 3; \frac{1}{r^2})
\end{cases} \]

(A2.66)

\[c_{M_{420}} = \begin{cases}
\frac{1}{4} \\
\frac{1}{8} \frac{1}{r^2}
\end{cases} \]

(A2.67)

\[M_{422}(0) = \begin{cases}
\frac{1}{2} x F_1(\frac{3}{2}, \frac{1}{2}; 2; \frac{1}{r^2}) - x F_1(\frac{3}{2}, -\frac{1}{2}; 2; r^2) \\
\frac{1}{2 r^3} \left[x F_1(\frac{3}{2}, \frac{1}{2}; 2; \frac{1}{r^2}) - \frac{1}{2} x F_1(\frac{3}{2}, \frac{1}{2}; 3; \frac{1}{r^2}) \right]
\end{cases} \]

(A2.68)

In a cross-anisotropic medium, when elasticity moduli are such that \(\alpha^2 = 1 \) and \(\beta^2 = 0 \), the soil is then simplified to one with isotropic properties, where coefficients \(s_1, s_2, \ldots, s_8 \) and \(f \) are simplified to the following terms:

\[s_1 = \frac{2 (1 - \nu_z^2)}{E_z} \quad (A2.69); \quad s_2 = s_4 = \frac{1 + \nu_z}{E_z} \quad (A2.70) \]

\[s_3 = s_6 = \frac{2(1 + \nu_z)(1 - 2\nu_z)}{E_z} \quad (A2.71); \quad s_3 = s_8 = 1 \quad (A2.72) \]
\[s_7 = 2\nu_s \quad \text{(A2.73)}; \quad s_8 = 0 \quad \text{(A2.74)} \]

\[f = a - b = \frac{E_s}{1 + \nu_s} \quad \text{(A2.75)} \]

In integral constants, \(_2F_1(a_1, a_2, a_3, a_4) \) expressions are hyper-geometric functions. The numerical values of these functions are obtained either from the terms of their series or the hyper-geometric tables. The formulation to evaluate these expressions is as follows:

\[F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n z^n}{(c)_n n!} \quad \text{(A2.77)} \]

\[= \frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a + n) \Gamma(b + n) z^n}{\Gamma(c + n) n!} \quad \text{(A2.78)} \]

where \(\Gamma(a) \) is a gamma function in general is defined as \(\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt, \quad (a > 0) \).

Also,

\[\frac{d}{dz} _2F_1(a, b; c; z) = \frac{ab}{c} _2F_1(a + 1, b + 1; c + 1; z) \quad \text{(A2.79)} \]

For the case where \(z = r^2 \), the Equation (A2.79) simplifies

\[\frac{d}{dz} _2F_1(a, b; c; r^2) = \frac{2r a b}{c} _2F_1(a + 1, b + 1; c + 1; r^2) \quad \text{(A2.80)} \]

A2.2. METHODS OF OBTAINING SOIL PARAMETERS

Methods to obtain elastic parameters in soil which are used in road and structure designs are based on a number of assessments. California Bearing Ratio (CBR) is one of these tests that may be used to determine the modulus of sub-grade reaction, as is applied in the Winkler model. When the sub-grade is in a critical moisture condition a degree of caution in carrying out the tests is required, or alternatively, seasonal adjustments may be made.
A2.2.1. Determination of Elastic Parameters of an Isotropic Soil

A uniaxial soil test is carried and vertical compression and lateral expansion is obtained such that

\[\varepsilon_z = \frac{\sigma_z}{E} \quad (A2.81) \]

\[\varepsilon_x = \varepsilon_y = -\nu \varepsilon_z \quad (A2.82) \]

where \(\varepsilon_x, \varepsilon_y, \varepsilon_z \) are strains in the \(x, y, z \) directions respectively, \(E \) and \(\nu \) are Young's modulus and Poisson’s ratio.

If shear stresses \(\tau_{\alpha\beta} \) are applied to an elastic cube, there will be a shear distortion such that

\[\gamma_{\alpha\beta} = \frac{\tau_{\alpha\beta}}{G} \quad (A2.83) \]

where \(G \) is shear modulus. Equations A2.82 and A2.83 define the three basic constants of the theory of elasticity: \(E, G, \nu \). In fact, only two of these constants are independent since

\[G = \frac{E}{2(1+\nu)} \quad (A2.84) \]

A2.2.2. In situ Determination of CBR and Elastic Parameters

A number of field tests can be used to estimate sub-grade \(CBR \), e.g. in situ \(CBR \) test and Cone Penetrometer. The results of such tests should be statically analysed and a design \(CBR \) chosen at a percentile level appropriate to the particular case. The ten percentile level value (Mean minus 1.3 times Standard Deviation) is commonly used for design of highway pavements (Austroads, Pavement Design 1992).

The in situ \(CBR \) test procedure is outlined in AS1289. This test is time-consuming and expensive. The number of tests required to establish the variability of the \(CBR \) for each type of soil may be so large as to make the use of an in situ \(CBR \) test impracticable.
Cone Penetrometer tests (AS1289) may be used for fine-grained subgrades. *CBR* results can be determined from Graph A2.1 for a static cone penetrometer and from Graph A2.2 for a dynamic cone penetrometer. The relationship that can be obtained from Graphs A2.1 and A2.2 is a general relation that suits most soil types. Further information regarding specific soil types can be obtained from Smith and Pratt (1983), Mulholland (1984) and Schofield (1986). When using the cone penetrometers extensively for subgrade investigation, a limited number of in situ *CBR* measurements should be carried out on the particular material that are being tested to confirm that the adopted relation is valid.

Graph A2.1 Correlation of static cone penetrometer and CBR (Austroads, Pavement Design 1992)
A2.2.3. Laboratory Determination of CBR and Soil Elastic Parameters

Laboratory procedure may be used to determine design CBR or soil elastic modulus where sufficient samples of the subgrade material can be obtained for detailed laboratory investigations and where a reasonable estimate can be made of likely subgrade density and moisture conditions in service. This method is particularly useful when a close similarity in density, moisture content and material is not available between the proposed pavement and any existing half-space.

Laboratory tests may be undertaken on specimens compacted at the design moisture content (DMC) and density which correspond to those likely to occur in service or at a particular compaction standard and moisture as a characterising test. Alternatively, undisturbed samples can be obtained from the field coring. Further suggestions have been provided by Pavement Design (Austroads 1992) where it is not possible to prepare laboratory specimens at the selected density.

For a cross-anisotropic medium, Wardle (1977) considered that the elastic constants required are three moduli (vertical, horizontal and shear) and two Poisson's ratios. By
taking the ratio of vertical to horizontal modulus to be 2 and if both Poisson’s ratios are equal, the following relationship between three of these quantities can be obtained

\[
\text{Shear Modulus} = \frac{\text{Vertical Modulus}}{1 + \text{Poisson’s Ratio}}
\]

(A2.85)

Hence, the values of the 5 parameters can be determined from those for vertical modulus and Poisson’s ratio.

The vertical modulus of a subgrade can be determined either from the laboratory testing of conditioned specimens (Thompson and Quentin 1976) or from the following empirical relationship (This relationship was mentioned earlier in Chapter 2)(Austroads, Pavement Design 1992)

\[
\text{Vertical Modulus of Elasticity (MPa)} = 10 \ CBR
\]

(A2.86)

This equation is at best an approximation. The modulus has been found to vary in the range 5-20 \ CBR (Sparks and Potter 1982).

Due to the complexity of soil, even an estimation of the approximate values for soil properties may be difficult. To overcome this issue, a more consistent nature of the unloading curve is utilised, and a resilient (Young’s) modulus is defined in terms of the recoverable strain upon unloading (Lay 1984). This modulus depends on the size of the applied stress and the number of prior load applications. The modulus also depends upon material type, moisture content, density soil suction and grading. Barret and Smith (1976) found that the modulus of elasticity for a crushed doleraite with clay binder, from repeated load triaxial tests (Figure A2.1) could be adequately predicted by the following equation

\[
E = k (\sigma_1 + 2\sigma_3)^m \quad \text{MPa}
\]

(A2.87)

where \(k \) and \(m \) are parameters shown in Figure A2.2 and seen to depend on the number of load repetitions, \(\sigma_1 \) is the applied compressive stress, \(\sigma_3 \) is the orthogonal
restraining stress and \((\sigma_1 + 2\sigma_3)\) is thus proportional to the mean normal stress defined

\[
S = \frac{(\sigma_1 + 2\sigma_3)}{3}
\]

(A2.88)

![Stress definitions in triaxial test](image)

Figure A2.2 Stress definitions in triaxial test

Barret and Smith (1976) showed (Graph A2.3) that the values of \(k\) and \(m\) depend on the number of load repetitions.

![Variation in stiffness parameters](image)

Graph A2.3 Variation in stiffness parameters used in equation (2.79) with load repetitions (Barret and Smith 1976)

A maximum value of 150 MPa is normally used for subgrade materials (Austroads, Pavement Design 1992). Variation of \(\nu\) is between 0.1 to 0.50, with the lower limit corresponding to rocks or sands with a high amount of volume changes whereas the upper limit is associated with a saturated soil with almost zero volumetric change under external load materials. Pavement Design (Austroads, 1992) suggests values of Poisson's ratio for subgrades to be taken 0.45 for cohesive material and 0.35 for non-cohesive material.
A2.2.4. Adoption of Presumptive CBR Values

When no other relevant information is available, some values for the CBR are assumed. Typical presumptive values of CBR are given in Table A2.1. However, such values should be determined on the basis of local experience.

Some other researchers have suggested similar equations, e.g. Heaton and Bullen (1980) for blast furnace slag. A hyperbolic relation between stress deviation and permanent strain was suggested by Akili (1980) and stated in the following form

\[
\frac{E}{E_{\text{initial}}} = \left(1 - \frac{\text{deviator}}{\text{ultimate stress}}\right)^2
\]

According to suggestions made by Uzan et al. (1980) the modulus of elasticity \(E \) in M\(\text{Pa} \) is somewhere between 10 and 16 times the CBR in percent. This study leads subgrade \(E \)'s of between 10 and 300 M\(\text{Pa} \).

Another approach to determining in situ \(E \) values is Deflection bowl analysis. The bowl is determined during Benkelman beam testing, which is normally conducted as part of a pavement evaluation study. Scala (1978) proposed the following equation for the estimation of \(E \) for a two-layer pavement

\[
E_1 = 185 \left(\frac{dm}{d_{250}} - 1 \right)^{-1.75} \text{ MPa}
\]
where \(d_m \) is the bowl and usually measured under dual-tyre loading and \(d_{250} \) on the line of travel. He suggested that \(E_1 \) for granular bases is reasonably constant at 350 MPa. However, values as low as 100 MPa can be encountered.

The approximate stiffness moduli for a given existing medium can be non-destructively determined using the wave propagation or dynamic modulus method (Potter 1977). In this method, the pavement surface is subjected to vertical vibrations of a known frequency. The velocity of the waves radiating horizontally from the vibrator is determined for a number of different frequencies. By comparing these measurements with theoretical predictions, the elastic moduli for the various pavement layers can be deduced. Use of the method requires knowledge of the number and thickness of any medium layers present. The values obtained by this approach have about 30% accuracy.
Appendix A3
A3. DEVELOPMENT OF STRUCTURE STIFFNESS MATRICES & DIRECT STIFFNESS MATRIX METHOD

The direct stiffness matrix method due to its importance is presented here. Further reference can be made to Ghali and Neville (1989) and Hsieh and Mau (1995). This method is used to analyse a superstructure that lies in $x - y$ plane, where the forces, the displacements and the translations occur in the same plane, whereas the nodal rotations and the moments occur about the z-axis, which is perpendicular to the plane $x - y$. These axes follow the right hand rule. The applied sign convention is presented in a free-body diagram of the structure element in Figure A3.1.

![Free-body diagram of structure element](image)

Figure A3.1 Element free-body diagram in local coordinates.

The element stiffness coefficient is represented by k_{ab}, where a force at point a corresponds to a displacement at point b. In general, with any two points a and b, there are four possible stiffness coefficients k_{aa}, k_{bb}, k_{ab} and k_{ba}. The first two are known as direct stiffness coefficients and the remaining two are called cross stiffness coefficients.

Steps of the analysis are as follows:
1. Stiffness coefficients for each element (Figure A3.1) are developed and a double subscript k_{ab} is assigned. The first subscript a, addresses the location
of the force for which the equation is written, and the second subscript \(b \) refers to the associated degree of freedom.

2. Generally, for each element, the stiffness matrix is generated in local coordinates where both ends are fixed. The matrix stiffness relation is as follows:

\[
\begin{bmatrix}
EA & 0 & 0 & -\frac{EA}{l} & 0 & 0 \\
0 & \frac{12EA}{l^3} & \frac{6EA}{l^2} & 0 & -\frac{12EA}{l^3} & \frac{6EA}{l^2} \\
0 & \frac{6EA}{l^2} & 4EA & 0 & -\frac{6EA}{l^2} & 2EA \\
\frac{12EA}{l^3} & \frac{6EA}{l^2} & \frac{12EA}{l} & 0 \\
0 & \frac{6EA}{l^2} & \frac{2EA}{l} & 0 \\
0 & \frac{6EA}{l^2} & \frac{4EA}{l} & \frac{12EA}{l^3}
\end{bmatrix}
\begin{bmatrix}
F_{x'a} \\
F_{y'a} \\
F_{z'a} \\
F_{y'b} \\
F_{z'b}
\end{bmatrix}_{e} = \begin{bmatrix}
u'_{a} \\
\nu'_{a} \\
\theta'_{a} \\
\nu'_{b} \\
\theta'_{b}
\end{bmatrix}_{e}
\]

The element stiffness relation (Equation A3.1a) can be written as

\[
\{F\}_{e} = [k]_{e} \{\Delta\}_{e}
\]

where \(\{F\}_{e} \) and \(\{\Delta\}_{e} \) are the column vector of element nodal forces and the column vector of element nodal displacements, respectively.

Matrix \([k]_{e}\) is the element stiffness matrix in the local coordinates, which is symmetric with respect to its main diagonal. Symbols \(l, A, I \) and \(E \) designated as length, cross-sectional area, moment of inertia about the z-axis and Young's modulus, respectively. The prime () indicates the local coordinates for the element, and the bar over the element end forces indicates that these end forces result from the nodal displacements only.

3. Combining the element stiffness matrices according to their nodes and degrees of freedom establishes the superstructure stiffness matrix \([K]_{u}\). Such a combination for a beam structure with three nodes and two elements, where node 2 is common to both elements (1 and 2) is shown in Figure A3.2.

Appendix A3 3-2
In Figure A3.2, \(\{\Delta_i\} \) (\(i = 1, 2, 3 \) in this example) represent three columns related to the displacements \(u_i, v_i \) and \(\theta_i \) of node \(i \) and \([k_{ab}]_e \) is a 3×3 sub-matrix of stiffness matrix for element \((e) \) associated with the forces at node \(a \) due to displacements of node \(b \).

In the above figure, the boundaries of the stiffness matrices of the first and the second element are shown by a broken line (— — ——) and a dotted line (…………) respectively.

Each element based on its alignment (angle \(\phi \)), with respect to the global coordinates, has its own transformation matrix (Figure A3.3). For a structure composed of elements with different local coordinates, if both the element nodal forces and displacements are expressed in global coordinates, the conditions of both equilibrium of forces and compatibility of displacements at the structure nodes can be applied.

The following transformation matrix is used for a typical element transformation from global to local coordinates as shown in Figure A3.3.
The transformation of nodal displacements is carried out using the following relationship.

\[
[T]_e = \begin{bmatrix}
\cos \phi & \sin \phi & 0 & 0 & 0 & 0 \\
-sin \phi & \cos \phi & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos \phi & \sin \phi & 0 \\
0 & 0 & 0 & -\sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

The transformation of nodal displacements is carried out using the following relationship.

\[
\begin{bmatrix}
u_a' \\
v_a' \\
\theta_a \\
u_b' \\
v_b' \\
\theta_b
\end{bmatrix} = [T]_e
\begin{bmatrix}
u_a \\
v_a \\
\theta_a \\
u_b \\
v_b \\
\theta_b
\end{bmatrix}
\]

This equation can be written as

\[
\{\Delta\}_e = [T]_e \{\Delta\}_e
\]

where \(\{\Delta\}_e\) and \([T]_e\) are the vector of element nodal displacements in the global coordinates and the transformation matrix respectively (see Figure A3.3).

The transformation matrix \([T]_e\) is orthogonal, therefore, its inverse matrix equals its transpose. Hence,

\[
[T]^{-1}_e = [T]_e^T
\]

This property facilitates the transformations between the coordinates, which apply to both vectors of forces and displacements. The nodal displacements in the global coordinates are obtained by

\[
\{\Delta\}_e = [T]_e^T \{\Delta\}_e
\]

Similarly, the nodal forces can be transformed between the two coordinates as follows:

\[
\{\bar{F}\}_e = [T]_e \{\bar{F}\}_e
\]

\[
\{\bar{F}\}_e = [T]_e^T \{\bar{F}\}_e
\]
The element stiffness matrix relation in the global coordinates can be obtained as

\[
\{\vec{F}\} = [k]_e \{\Delta\}_e
\]
(A3.8)

where

\[
[k]_e = [T]^T_e [k]_e [T]_e
\]
(A3.9)

Matrix \([k]_e\) is the global element stiffness matrix.

4. When calculating the fixed-end forces, the loads applied between the element nodes that cause the fixed end forces are taken into account. For a member \(a - b\), the fixed-end forces are

\[
\{F^o\} = \begin{bmatrix}
F_{x,a}^o \\
F_{y,a}^o \\
M_{z,a}^o \\
F_{x,b}^o \\
F_{y,b}^o \\
M_{z,b}^o
\end{bmatrix}
\]
(A3.10)

These fixed end forces are illustrated in Figure A3.4.

The total element end forces can be expressed by combining both the end forces that result from the end displacements with those associated with the loads applied to the member. Thus

\[
\{F\}_e = \{\vec{F}\}_e + \{F^o\}_e = [k]_e \{\Delta\}_e + \{F^o\}_e
\]
(A3.11)
where \(\{F\}_e \) is the vector of total element end forces in local coordinates and \(\{F^0\}_e \) is the vector of fixed end forces due to the loads applied to the element, all in local coordinates. Similarly, in global coordinates

\[
\{F\}_e = \{F\}_e + \{F^0\}_e = \{k\}_e \{\Delta\}_e + \{F^0\}_e
\]

(A3.12)

where

\[
\{F^0\}_e = [T]^T \{F^0\}_e
\]

(A3.13)

where \(\{F^0\}_e \) is the vector of global fixed end forces due to loads applied to the element.

5. To account for the support conditions, the soil stiffness matrix is combined with the global structure stiffness matrix according to their degrees of freedom, and the system stiffness matrix is obtained

\[
[K]_{sys} = [K]_s + [K]_f
\]

(A3.14)

Then, the system equilibrium matrix equation in global coordinates is

\[
\{P\} = [K]_{sys} \{\Delta\} + \{P^0\}
\]

(A3.15)

where \(\{P\} \) is the vector of the external forces applied to the structure nodes, \(\{P^0\} \) is the vector of equivalent nodal forces for the structure that are obtained by combining the corresponding global fixed-end forces of the individual members \(\{F^0\} \) common at each node, and \(\{\Delta\} \) is the vector of the global system nodal displacements.

Equation (A3.15) can be written in the following form:

\[
[K]_{sys} \{\Delta\} = \{P\} - \{P^0\} = \{P\}_{eff}
\]

(A3.16)

6. The vector of nodal displacements is obtained

\[
\{\Delta\} = [K]_{sys}^{-1} \{P\}_{eff}
\]

(A3.17)
7. Finally, the displacements from Equation A3.17 are substituted back into the individual element force-displacement equations. The result for the \(i^{th}\) element internal forces with corresponding displacements \(\{\Delta\}_i\) is obtained from the following equation

\[
\{F\}_i = [k]_i \{\Delta\}_i + \{F\}_0
\]

(A3.18)

Both the internal forces and the nodal displacements are obtained in the global coordinates, and can be transformed to the local coordinates using the transformation matrix. Thus

\[
\{F\}_e = [T]_e \{F\}_e
\]

(A3.19)
Appendix A4
A4.1. Introduction

The description given in this manual is a user guide for software package (Soil And Structure Interaction Analysis Package SASIAP) discussed in Chapter 4 of the thesis with the aim of only implementation of the basic approach presented in that chapter. Considering this aim and also resources restrictions, developer has set out some initial conditions that user requires attention. The following information introduces user with capability of this package and provides some instruction.

SASIAP is a DOS application programme. This software like any software has some restrictions. In summary, structural data is validated after being entered and before analysis proceeds. If there is some inconsistency such as conflicting data or structural instability, the programme warns through appropriate dialog boxes accordingly, and after giving advice about the possible problem it quits execution where the situation needs to be amended. A number of flow charts are provided in Chapter 4 to view the locations of these checkpoints.

In summary, operation of this package is based on execution of two modules. The structural data is entered through first module DATAENTR. Then, second module ANALYSIS analyses the structure according to the options made via interface during execution.

The conditions are as follows:
1. SASIAP package is a tool for planar frame structure elastostatic analysis using Direct Stiffness Matrix method, incorporating various member connections, restraints, cross-section modulus and loads applicable to the structure.
2. Before analysis, structural external stability should be checked.
3. Implying half-space, the structural supporting nodes are considered geometrically in the same level.

4. Global coordinates should cover the entire structural nodes in the quarter of plane frame where $x \geq 0$ and $y \geq 0$.

5. Assigning start and end nodes in each member should keep the angle between the member’s alignment and the global coordinates in $-0.5 \pi \leq \phi \leq +0.5 \pi$ zone.

6. Structural node numbering should be in an increasing order for a narrower bandwidth and achieving a faster operation.

7. To create blank input structural data files, first *Genforms.bat* should be executed.

8. *DATAENTR* is then run to enable enter, save and retrieve the structural data.

9. Finally, programme *ANALYSIS* analyses the structure contributing soil interaction according to options selected by user, then the output files are saved in different forms.

There are several pull-down menus at the top of the menu screen that can be accessed by the mouse, or using "Alt" key combined with the letter key high-lighted in red for that menu (Figures A4.1, ..., A4.30). The arrow keys are used to move up, down or across the pull-down menus. Feature of few menus is described in the following sections.

A4.2. Data Menu

Data pull-down menu (Figure A4.2) includes the following operations:
- "New" creates a blank text window with a default file named NoName.DAT linked to structural and load data, which would be accessed via interface and is associated with individual project (Figures A4.2 and A4.3).

- "Open" prepares a window for user with a list of existing files to select for a specific task, and open the required file (Figure A4.4).

- "Save" option writes the content of an open data file (an active window) to disk under the name which a file was opened.

- "Save as ..." saves the active data file in association with a task under a different name with a default extension DAT (Figure A4.5).

- "Print File" sends the entire contents of an active window to the printer.
• "Change directory..." opens a dialog box that contains a directory tree with the DOS structure. This option allows the user to change the currently working directory. To select a new directory, a double-click on the destination address is required (Figure A4.6).

![Figure A4.6 illustrates the root and current directories for any new location of a directory](image1)

![Figure A.7 DOS shell access within the program](image2)

• "DOS shell" opens a temporary DOS prompt line within integrated development environment (IDE) where Turbo Pascal environment is operational. By typing "Exit" in the DOS prompt at any time, the user can return back to the DATAENTR's menu system (Figure A4.7).

• "Exit" quits the user from the DATAENTR programme.
A4.3. Edit Menu

Upon selecting this pull-down menu, a series of structural data becomes available for edition. This includes "General Data", "Node Geometry", "Material Prop", "CrossSect Spec", "Member Data" and "Restraints" (see Figure A4.8).

Figure A4.8 illustrates the items of Edit data pull-down menu

Figure A4.8 Window associated with the title of a structure

By selecting any of the items from this pull-down menu, a directory tree appears that allows the user to open an existing file of structural or load data. Alternatively, by opting for the default blank file associated with a record containing a single member, user may key in the structural data. On quitting, a new name with a default extension (which is strongly recommended) or the existing default name and extension can be assigned to save the data entered. The assignment of individual items of this menu is described below:

- "General Data" a title can to assigned to a set of data that is either a default title or a new one. This title brings all the associated structural and load data files under one cover (incorporates all the corresponding structural data files) (Figure A4.9).

- "Node Geometry" provides access to view or amend node geometry data of a planar structure to be saved or was saved earlier. Node number, global coordinates X and Y, and some space for some description for each node is saved (Figures A4.10 and A4.11).
Figure A4.10 Selection of a data file associated with Geometry of a Structure nodes

Figure A4.11 Geometry details of a structure node entered or edited

- "Material Properties" provides access to view or amend materials properties data associated with every structural member. This includes material type number, modulus of elasticity, thermal coefficient and some space for relevant description (Figures A4.12 and A4.13).

Figure A4.12 Window to access a file of material properties

Figure A4.13 Illustration of material properties data window

- "Cross-section Specifications" provides access to view or amend member cross-section data associated with each of the structure member that includes cross section type number, cross section area, moment of inertia about the axis perpendicular to the frame plane, member width and some space for relevant description (Figures A4.14 and A4.15).

Appendix A4
Figure A4.14 allocating a cross section data file

Figure A4.15 Cross-section properties associated with structure members

- "Member Data" enables user retrieve the information associated with each member of a structure. That is member number, start and end node numbers including type of inter-connections such as fixed or hinged, cross-section type, material type and some space for relevant description (Figures A4.16 and A4.17).

Figure A4.16 Allocating a member data file

Figure A4.17 Data associated with members of a structure

- "Restraints" provides access to the information related to restraints applicable to structure nodes. This includes number of the node associated with support; type of support applicable in X, Y and Z directions such as fully restrained, free to take displacement and elastic restraint with a required field for the spring coefficient in kPa and some space for relevant description (Figures A4.18 and A4.19).
A4.4. Load Menu

By this pull-down menu, a series of load becomes available that includes "Prescribed Displacement Load PDL", "Nodal Point Load NPL", "Member Point Load MPL", "Member Distributed Load" with two options "Uniform Load MUL" and "Trapezoidal Load MTL" (Figure A4.20).

By selecting any of the items from this pull-down menu, a directory tree allows the user to open an existing data load file associated with every member of structure for view or edit. On quitting, a new name with a default extension (which is strongly recommended), or the existing default name and extension can be assigned to save the data. The assignment of individual items of this menu is described below:
• "Prescribed Displacement Load PDL" user retrieves information regarding implemented prescribed displacements. This information is number of the node where the displacement is applied, amount of displacement along X, Y directions in meter and rotation about Z axis in radian, and also some space for individual technical description; Figures A4.21 and A4.22).

Figure A4.21 Allocating Prescribed Load file.

Figure A4.22 Details of prescribed displacement loads applicable to structure nodes

• "Nodal Point Load NPL" provides access to information regarding nodal loads. This includes number of node where a concentrated load is applied, amount of force in X and Y directions in kN or moment about Z axis in kN/m and some space for technical description (Figures A4.23 and A4.24).

Figure A4.23 Allocating Node load file

Figure A4.24 Details of Node loads applicable to structure

• "Member Point Load MPL" provides access to data regarding concentrated loads applicable to members. This includes assigned number to each point load; number
of member; and location of acting point along the member in *meters*. Also, amount of these loads in *X*, *Y* directions in *kN* and about *Z* direction in *kN.m*, and some space for individual technical description are included (Figures A4.25 and A4.26). Multiples of this type of load can be applied to any member.

- "*Member Distributed Load*" with sub menu "*Uniform Load MUL*" provides access to the data regarding uniformly distributed loads applicable to members. These include the number of the member where the load applies, the amounts of the loads in *X* and *Y* directions in *kN*, and some space for individual technical notes (Figures A4.27 and A4.28).
• "Member Trapezoidal Load MTL" under "Member Distributed Load" menu provides access to data regarding trapezoidal distributed loads that apply to structure members. This includes an assigned number to each load and member number. In addition, this programme accepts data in global or local coordinates, for location of the start point along the member (distance in meters) as well as the amount of force components (in kN/m) in X, and Y directions and moment component (kN.m/m) about Z direction. Similar space for data associated with the end point of the load as well as some space for individual technical description regarding that load is provided (Figures A4.29 and A4.30). Application of multiples of this load type to structure member is allowed.

Figure A4.29 Allocation of file associated with trapezoidal loads

Figure A4.30 Details of trapezoidal loads applicable to structure
Appendix A4.5

Computer Program Listings for:

- Program GENFORMS 12 - 13
- Unit GLOBALS 14 - 20
- Program DATAENTR 21 - 43
- Program ANALYSIS 44 - 63
- Unit BUILD 64 - 79
- Unit SOILMODE 80 - 88
@ECHO OFF

rem next line sets up the dos and turbo compiler environment available
PATH=c:\;c:\windows;c:\windows\command;c:\progra-1\tp\bin;DOSKEY;SMARTDRV;
prompt SpSg
cd c:\mydocu-1\3tp\a_work;

ECHO Programme DataEntr needs to check its initial requirements.
pause

ECHO ***DataEntr***
ECHO This section of batch file generates BLANK forms for data files
ECHO using different settings obtained from GENEDIT#.PAS and GENLOAD#.PAS
ECHO Attempting to generate blank data files for DATENTR program
ECHO if there is not any type of those forms available in this directory ...
ECHO off

IF exist GEOMETRY.BGM GOTO Next1
 tpc /m /q /dEDIT1 genform
 IF ERRORLEVEL 1 GOTO CompilerError
genform
 IF ERRORLEVEL 1 GOTO RuntimeError

:Next1
@ECHO There is a copy of GEOMETRY.BGM available.
IF exist MAT_PROP.BPM GOTO Next2
 tpc /m /q /dEDIT2 genform
 IF ERRORLEVEL 1 GOTO CompilerError
genform
 IF ERRORLEVEL 1 GOTO RuntimeError

:Next2
@ECHO There is a copy of MAT_PROP.BPM available.
IF exist SEC_PROP.BCS GOTO Next3
 tpc /m /q /dEDIT3 genform
 IF ERRORLEVEL 1 GOTO CompilerError
genform
 IF ERRORLEVEL 1 GOTO RuntimeError

:Next3
@ECHO There is a copy of SEC_PROP.BCS available.
IF exist MEMBDATA.BMD GOTO Next4
 tpc /m /q /dEDIT4 genform
 IF ERRORLEVEL 1 GOTO CompilerError
genform
 IF ERRORLEVEL 1 GOTO RuntimeError

:Next4
@ECHO There is a copy of MEMBDATA.BMD available.
IF exist RESTRAIN.BRS GOTO Next5
 tpc /m /q /dEDIT5 genform
 IF ERRORLEVEL 1 GOTO CompilerError
genform
 IF ERRORLEVEL 1 GOTO RuntimeError

:Next5
@ECHO There is a copy of RESTRAIN.BRS available.
IF exist PRESLOAD.BPD GOTO Next6
 tpc /m /q /dLOAD1 genform
 IF ERRORLEVEL 1 GOTO CompilerError
genform
 IF ERRORLEVEL 1 GOTO RuntimeError

:Next6
@ECHO There is a copy of PRESLOAD.BPD available.
IF exist NODELOAD.BNL GOTO Next7
 tpc /m /q /dLOAD2 genform
 IF ERRORLEVEL 1 GOTO CompilerError
genform
 IF ERRORLEVEL 1 GOTO RuntimeError

:Next7
@ECHO There is a copy of NODELOAD.BNL available.
IF exist MPOINTLD.BPL GOTO Next8

Appendix A4.5, Program GENFORMS

4 - 12
tpc /m /q /dLOAD3 genform
IF ERRORLEVEL 1 GOTO CompilerError
genform
IF ERRORLEVEL 1 GOTO RuntimeError

:Next8
@ECHO There is a copy of MPOINTLD.BPL available.
tpc /m /q /dLOAD4 genform
IF ERRORLEVEL 1 GOTO CompilerError
genform
IF ERRORLEVEL 1 GOTO RuntimeError
:Next9
@ECHO There is a copy of MMUNIFLD.BMU available.
IF exist MMTRAPLD.BMT GOTO EndFirstSection
tpc /m /q /dLOAD5 genform
echo it is almost the last line of the first section
IF ERRORLEVEL 1 GOTO RuntimeError

goto EndFirstSection

:CompilerError
ECHO Error encountered trying to make GENFORM.PAS
GOTO EndFirstSection

:RuntimeError
ECHO Error trying to run GENFORM.EXE
GOTO EndFirstSection

:EndFirstSection

echo Now, the batch file (Build) compile, then executes DATAENTR program
echo to allow user fill-in or update data in the data files.
echo Programme DataEntr is about to start.
echo off
pause

IF not exist DATAENTR.PAS GOTO CompileError2
tpc DataEntr /b /l
IF ERRORLEVEL 1 GOTO CompilerError2
@ECHO DataEntr is compiled successfully. Now is about to execute.
pause

DataEntr
IF ERRORLEVEL 1 GOTO RuntimeError2

GOTO Done

:CompilerError2
Error encountered trying to build & link DataEntr.PAS
GOTO Done

:RuntimeError2
Error trying to run DataEntr.EXE
GOTO Done

:Done

Appendix A4.5, Program GENFORMS 4-13
Unit Globals;
(* This unit has all the variables and constants used in the *)
(* Soil And Structure Interaction Analysis Package SASIAP *)

{SN+}
INTERFACE
(* D+,N+ do activate when necessary*)
USES
Crt,Dos;

CONST
 days : array [0..6] of String[9] =
 ('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday');
 Yes = ['Y', 'y'];
 No = ['N', 'n'];
 MaxDescrLen = 250;
 {these maxima should be adjusted with the size of structure}
 MaxNodes = 6; (* 24 maximum capacity confirmed *)
 (* 25 maximum capacity confirmed after splitting the files *)
 NoFtNd = 3; (%)
 {number of nodes located for footing. this figure is the same as MaxNodes for Beams}
 MaxX_T = 3;
 MaxS_T = 3;
 MaxMembers = 8;
 MaxNLD = 8;
 MaxPtLD = 8;
 MaxUDLD = 8;
 MaxFrame = 5; {Initial estimate for 3-D Extension model. It can be more}

 PI = 3.14159265359;

{INPUT DATA FILES:}
 InputFileNodeGeom = 'GEOMETRY.TGM'; (1)
 InputFileMatProp = 'MAT_PROP.TPM'; (2)
 InputFileSecProp = 'SEC_PROP.TCS'; (3)
 InputFileMemberData = 'MEMBDATA.TMD'; (4)
 InputFileRestrain = 'RESTRAIN.TRS'; (5)
 InputFilePresLoad = 'PRESLOAD.TPD'; (6)
 InputFileNodeLoad = 'NODELOAD.TNL'; (7)
 InputFileMpointLd = 'MPOINTLD.TPL'; (8)
 InputFileMMunifLd = 'MMUNIFLD.TMU'; (9)
 InputSoilModeData = 'SoilData.DAT'; (10)
 SpaceData = '3DSpace.txt'; (data2 spacing setup for neighbouring frames)
 SupportData = 'SprtDat.txt'; (data5 support setup)

{OUTPUT DATA FILES below:}
 OutFileStructure='c:\My Documents\3tp\A_Work*Out*.txt';
 {data1 is the user defined OUTPUTFILE}
 OutFullCompar = 'c:\My Documents\3tp\A_Work\AllOuts\FullComp.out';
 OutFullCompar = 'c:\My Documents\3tp\A_Work\AllOuts\FullComp.out';
 {data2 OUTPUT FILE} (CMP-FD.TXT'; (TEMPORARY CHANGE NOMINATION)
 NodalG_DeflCompar = 'c:\My Documents\3tp\A_Work\AllOuts\DflComp.out';
 NodalG_DeflCompar = 'c:\My Documents\3tp\A_Work\AllOuts\DflComp.out';
 {data3 OUTPUT FILE} (CMP-D.TXT'; (TEMPORARY CHANGE NOMINATION)

{ISOTROPIC SOIL CONSTANTS in analytical approach}
 E_Soil = 30000;(KPa) (Poisson's ratio)
 NuSoil = 0.49; {Young modulus}

{CROSS-ANISOTROPIC SOIL CONSTANTS in numerical approach}
 Vhv = 0.49;
 Vh = 0.49;
 Vvh = 0.49;
 Eh = 30000; {Ev*Vhv/Vvh} (KPa) {Non-integer format, dependent parameter(2.084;
 Ev = 30000; {Eh*Vvh/Vhv} (KPa) {Non-integer format, Fv=E/(1+V) for isotropic case}
 Fv = 21429; (KPa)

Appendix A4.5, Unit GLOBALS 4 - 14
\{ Eh=EV=E_YM=E_Soil \text{ parameters from csio. to iso.}
Vh=Vhv=VYV=V=PR+NuSoil \}

TYPE
Description = STRING[MaxDescrLen];
NodeType = ARRAY[1..MaxNodes] OF RECORD
 Name : LONGINT;
 Xcoord : extended;
 Ycoord : extended;
 Descr : Description;
end; (*RECORD*)
MatType = ARRAY[1..MaxM_T] OF RECORD
 Name : LONGINT;
 Elasticity_M : extended;
 Thermal_M : extended;
 Descr : Description;
end; (*RECORD*)
SecType = ARRAY[1..MaxS_T] OF RECORD
 Name : LONGINT;
 Area : extended;
 M_Inertia : extended;
 Width : extended;
 Descr : Description;
end; (*RECORD*)
MemberType = ARRAY[1..MaxMembers] OF RECORD
 Name : LONGINT;
 S_Node : LONGINT;
 S_Join : LONGINT;
 E_Node : LONGINT;
 E_Join : LONGINT;
 C_Sec : LONGINT;
 Mat : LONGINT;
 L : extended;
 Fi : extended;
 Descr : Description;
end; (*RECORD*)
NdRsType = ARRAY[1..MaxNodes] OF RECORD
 Name : LONGINT;
 Xdir : LONGINT;
 SprX : extended;
 Ydir : LONGINT;
 SprY : extended;
 Zrot : LONGINT;
 SprZ : extended;
 Descr : Description;
end; (*RECORD*)
F_D_LdType = ARRAY[1..MaxNodes] OF RECORD \{ prescribed Displ Load \}
 Name : LONGINT;
 XDispl : EXTENDED;
 YDispl : EXTENDED;
 ZDispl : EXTENDED;
 XDispl_Loc : EXTENDED;
 YDispl_Loc : EXTENDED;
 Descr : Description;
end; (*RECORD*)
NdLdType = ARRAY[1..MaxNodes] OF RECORD
 Pos : LONGINT;
 Name : LONGINT;
 XForce : EXTENDED;
 YForce : EXTENDED;
 ZMoment : EXTENDED;
 Descr : Description;
end; (*RECORD*)
PtLdType = ARRAY[1..MaxPtLd] OF RECORD \{ point Load \}
 Pos : LONGINT;
 Mem : LONGINT;
 XLoc : EXTENDED;
 Fx : EXTENDED;
 Fy : EXTENDED;
 Hz : EXTENDED;
 Fx_L : EXTENDED;
 Fy_L : EXTENDED;
 Descr : Description;
end; (*RECORD*)
UDistLdType = ARRAY[1..MaxUDLd] OF RECORD \{ Uniformly Distributed Member Load \}
 Mem : LONGINT;
 Ux : EXTENDED;

Appendix A4.5, Unit GLOBALS
Uy : EXTENDED;
Ux_L : EXTENDED;
Uy_L : EXTENDED;
Descr : Description;
END; (*RECORD*)
FtNdType = ARRAY[1..NoFtNd] OF RECORD(%)
(probably it may need to change the size of matrix to "MaxNodes")
Order : LONGINT;
Name : LONGINT;
END; (*RECORD*)
SoilMemType = ARRAY[1..NoFtNd-1] OF RECORD(%)
Name : LONGINT;
Sn : LONGINT;
Sx : EXTENDED;
En : LONGINT;
Ex : EXTENDED;
Length : EXTENDED;
END; (*RECORD*)
PositionType = ARRAY[1..3*MaxNodes] OF RECORD
GlobStif : LONGINT;
FulPopSoil : LONGINT;
end; (*RECORD*)
FrameSetUpType = ARRAY[1..MaxFrame] OF RECORD
FrameNumber : LONGINT;
RelDistanc : EXTENDED;
LoadFactor : EXTENDED;
end; (*RECORD*)
OneDArrayM = ARRAY[1..MaxMembers] OF EXTENDED;
Matrix3X3 = ARRAY[1..3,1..3] OF EXTENDED;
Matrix6X6 = ARRAY[1..6,1..6] OF EXTENDED;
OneDMatrixM = ARRAY[1..MaxMembers] OF Matrix6X6;
Vector6 = ARRAY[1..6] OF EXTENDED;
OneDMatrixV6 = ARRAY[1..MaxMembers] OF Vector6;
OneDMatrixN = ARRAY[1..3*MaxNodes] OF EXTENDED;
OneDArrayN = ARRAY[1..3*MaxNodes] OF LONGINT;
glphbysmp = ARRAY[1..3*MaxNodes,1..1] OF EXTENDED;
glphnp = ARRAY[1..3*MaxNodes,1..1] OF EXTENDED;
TwoDMatrix = ARRAY[1..3*MaxNodes,1..3*MaxNodes] OF EXTENDED;
OneDMatrixF = ARRAY[1..3*MaxNodes,1..3*MaxNodes] OF EXTENDED;
TwoDMatrixF = ARRAY[1..3*NoFtNd,1..3*NoFtNd] OF EXTENDED;

VAR
Node : NodeType;
Mat : MatType;
Sec : SecType;
Member : MemberType;
NdRs : NdRsType;
P_D_Ld : P_D_LdType;
NdLd : NdLdType;
PtLd : PtLdType;
UDistLd : UDistLdType;
FtNd : FtNdType;
SoilMem : SoilMemType;
SoilPosDOR : PositionType; *(position of soil restraints in the globstif matrix)
y, mon, day, dow : Word;
h, mint, s, hund : Word;
ConstantsAccepted,
DOFAccepted,
SoilModelApplied,
NodeOnSoil,
ExtendedModelApplies,
ConsiderAlone,
ShowMeReminerNote : Char;
data,
data1,
data2,
data3,
data4,
data5 : TEXT;
Emodul, (* elastic modulus (Pa) *)
Inr, (* moment of inertia (m^4) *)
L, (* length (m) *)
Area, (* area (m^2) *)
F1 : OneDArrayM;

Appendix A4.5, Unit GLOBALS
count,
NoNodes,
NoMats,
NoSecs,
NoMems,
NoNdRs,
NoPresLd,
NoNdLd,
NoPtLd,
NoUDistLd,
dof, (structure kinematic degrees of freedom)
fd_dof, (counter for k.degree of free displacement }
pd_dof, (counter for k.degree of presc. displacement)
S_J, E_J, (start join / end join)
EHS_dor, (Elastic-Half-Space soil model degree of restrain)
Try : LongInt;
MatPos, (coefficient position in the matrix 1 to 9)
SelectedSoilModel
(0=non; 1=isotropic(ANALIT); 2=crossanisotropic(NUM); 3=isotropic(NUM))
:Integer;
(OutFileStructure is the variable for the user’s main output defined file)
OutFileStructure,
JunkStr : STRING;
JunkStr35 : STRING[35];
JunkChar : CHAR;
NegReac : Boolean;
CoefA, (ANALYTICAL APPROACH ISOTROPIC PARAMETERS)
CoefB,
CoefC,
Rmin, (footing width variable)
ActLength,
CumulDistanc : EXTENDED;
(CROSS-ANISOTROPIC SOIL VARIABLES)
{ Eh,Fv: LongInt; (in attempt to make integer format of these non-int. quantities}
PR, (Poisson’s ratio; special case OF CISO corresponds to “isotropic”)
YM, (KPa) (young modulus; special case OF CISO corresponds to “isotropic”)
Aci,
Bci,
Cci,
Dci,
Fci,
Alfa, AlfSq,
Beta, BetSq,
Gama, GamSq,
Phi,
Rho,
G1, G2, G3, G4,
H1, H2, H3, H4, H10,
I1, I3,
J1, J3, J11,
S1, S3,
T1, T3, T10 : Extended;
BetaSqPos,
BetaSqNeg,
BetaZero : Boolean;
BakNum, ForNum : LONGINT;
Temp,
ElemPostTransMat, [transposed transformation matrix]
ElemTransMat, [transformation of Glob <=> Loc Systems]
ElemL_StiffMat, ElemG_StiffMat : OneDMatrixM;
GlobalStiffMat, CombinSoilStrucStifMat : ^TwoDMatrix;
ElemFxdFce_L, U_ElemFxdFce_L, ElemFxdFce_G,
L_DispElem, G_DispElem, ReacElem : OneDMatrixV6;
EffNodeFce, NodeDefl, NodeReac : OneDMatrixN;

Appendix A4.5, Unit GLOBALS 4 - 17
MatPosD0F, PD_MatPosD0F, FD_MatPosDOF : OneDArrayN;

SoilFlexMat, NetSoilFlexMat, SoilStifMat : 'TwoDMatrixF;

BakFrame, ForFrame : FrameSetUpType;

StiffMatrixDOF, FD_StiffMatrixDOF, Coef_PD_StiffMatrixDOF: "glnpbymp;
NodePceDOF, PD_NodeDOF, PD_NodePce : "glnpbymp;

PROCEDURE InitialiseGlobalVars;

PROCEDURE InitialiseMatrixesMethodArrays;

IMPLEMENTATION

PROCEDURE InitialiseGlobalVars;
VAR
 i: LONGINT;
BEGIN
 y:=0; mont:=0; day:=0; dow:=0; h:=0; mint:=0; s:=0; hund:=0;

 ConstantsAccepted := ' ';
 OutFileStructure := ' ';
 DOFaccepted := ' ';
 SoilModelApplied := ' ';
 SelectedSoilModel := 0;
 ExtendedModelApplies := ' ';
 ConsiderAlone := ' ';
 NodeOnSoil := ' ';
 JunkStr := ' ';
 JunkChar := ' ';
 JunkStr35 := ' ';
 MatPos := 0;
 NegReac := False;
 Rmin := 0.40; (*initial value of the footing width/radius can be changed*)
 ActLength := 0;
 CumulDistanc := 0;

 YM := E_Soil; (KPa Young Modulus)
 PR := NuSoil; (Poisson's ratio)
 CoefA := 1;
 CoefB := 1;
 CoefC := 1;
 Ac1 := 1;
 Bci := 1;
 Cci := 1;
 Dci := 1;
 Fci := 1;
 Alfa := 0;
 AlfSq := 0;
 Beta := 0;
 BetSq := 0;
 Gama := 0;
 GamSq := 0;
 Phi := 0;
 Rho := 0;
 G1 := 0;
 G2 := 0;
 G3 := 0;

 H1 := 0;
 H2 := 0;
 H3 := 0;
 H4 := 0;
 H10 := 0;
 I1 := 0;
 I3 := 0;
 J1 := 0;
 J3 := 0;
 J11 := 0;

Appendix A4.5, Unit GLOBALS
Si := 0;
S3 := 0;
T1 := 0;
T3 := 0;
T10 := 0;
BetaSqPos := True;
BetaSqNeg := False;
BetaZero := False;
count := 0;
NoNodes := 0;
NoMats := 0;
NoSecs := 0;
NoMems := 0;
NoNdRs := 0;
NoPresLd:= 0;
NoNdLd := 0;
NoPtLd := 0;
NoUDistLd:=0;
dof := 0; fd_dof := 0; pd_dof := 0;
S_J := 0; E_J := 0; EHS_dor := 0; Try := 0;
BakNum:=0; ForNum:=0;
FOR i := 1 TO MaxNodes Do Begin
 With Node[i] do begin
 Name := 0; XCoord := 0; YCoord := 0; Descr := ""; end;
 With NdRs[i] do begin
 Name :=0; Xdir :=0; SprX :=0; Ydir:=0; SprY:=0; Zrot:=0; SprZ:=0;
 Descr:=""; end;
 With P_D_Ld[i] do begin
 Name:=0; XDispl:=0; YDispl:=0; ZDispl:=0; XDispl_Loc:=0; YDispl_Loc:=0;
 Descr:=""; end;
 With NdLd[i] do begin
 Pos:=0; Name:=0; XForce:=0; YForce:=0; ZMoment:=0; Descr:=""; end;
 End;

FOR i := 1 TO MaxMembers Do Begin
 With Member[i] do begin
 Name:=0; 5_Node:=0; S_Join:=0; E_Node:=0; E_Join:=0; C_Sec:=0; Mat:=0;
 L:=0; Fi:=0; Descr:=""; end;
 Emodul[i] :=0; Inr[i] :=0; Area[i] :=0; L[i] :=0; Fi[i]:=0;
 End;

FOR i := 1 TO MaxM_T Do
 With Mat[i] do begin
 Name := 0; Elasticity_M:=0; Thermal_M:=0; Descr :=""; end;

FOR i := 1 TO MaxS_T Do
 With Sec[i] do begin
 Name :=0; Area:=0; M_Inertia:=0; Descr:""; end;

FOR i := 1 TO MaxPtLd Do
 With PtLd[i] do begin
 Pos:=0; Mem:=0; XLoc:=0; Fx:=0; Fy:=0; Mz:=0; FX_L:=0; FY_L:=0;
 Descr:=""; end;

FOR i := 1 TO MaxUDLd Do
 With UDistLd[i] do begin
 Mem:=0; Ux:=0; Uy:=0; UX_L:=0; UY_L:=0; Descr:=""; end;

FOR i := 1 TO NoFtNd DO
 With FtNd[i] do begin
 Order :=0; Name :=0; end;

FOR i := 1 TO NoFtNd-1 DO
 With SoilMem[i] do begin
 Name :=0; Sn :=0; Sx :=0; En :=0; Ex :=0; Length :=0; end;

Appendix A4.5, Unit GLOBALS
FOR i := 1 TO BakNum DO
 With BakFrame[i] do begin
 FramNumber := 0;
 LoadFactor := 0; end;
END;

FOR i := 1 TO ForNum DO
 With ForFrame[i] do begin
 FramNumber := 0;
 LoadFactor := 0; end;
END;

PROCEDURE InitialiseMatrixesMethodArrays;
VAR
 j, k, m : LONGINT;
BEGIN
 FOR j := 1 TO MaxMembers DO
 FOR k := 1 TO 6 DO
 FOR m := 1 TO 6 DO BEGIN
 Temp[j,k,m] := 0;
 ElemOposTransMat[j,k,m] := 0;
 ElemTransMat[j,k,m] := 0;
 ElemL_StiffMat[j,k,m] := 0;
 ElemG_StiffMat[j,k,m] := 0;
 END;(*FOR k,m*)
 FOR j := 1 TO 3*MaxNodes DO
 FOR k := 1 TO 3*MaxNodes DO BEGIN
 FD_StiffMatrixD0E[(j,k)] := 0;
 Coef_PD_StiffMatrixDOF[(j,k)] := 0;
 GlobalStiffMat[(j,k)] := 0;
 StiffMatrixD0E[(j,k)] := 0;
 CombSoilStifMat[(j,k)] := 0;
 END;(*FOR j & k*)
 FOR j := 1 TO MaxMembers DO
 FOR k := 1 TO 6 DO BEGIN
 ElemFxdFce_L[(j,k)] := 0;
 U_ElemFxdFce_L[(j,k)] := 0;
 ElemFxdFce_G[(j,k)] := 0;
 L_DispElem[(j,k)] := 0;
 G_DispElem[(j,k)] := 0;
 ReacElem[(j,k)] := 0;
 END;(*FOR j & k*)
 FOR j := 1 TO 3*MaxNodes DO BEGIN
 EffNodeFce[j] := 0;
 NodeFceD0E[j,1] := 0;
 PD_NodeFce[j,1] := 0;
 NodeDefl[j] := 0;
 NodeReac[j] := 0;
 MatPosDOF[j] := 0;
 PD_MatPosDOF[j] := 0;
 FD_MatPosDOF[j] := 0;
 END;(*FOR j*)
 FOR j := 1 TO 3*MaxNodes DO {%}
 with SoilPosDOR[j] do begin
 GlobStif := 0;
 FulPopSoil := 0; end;
 FOR j := 1 TO 3*NoFtNd DO {%}
 FOR k := 1 TO 3*NoFtNd DO BEGIN
 SoilFlexMat[(j,k)] := 0;
 NetSoilFlexMat[(j,k)] := 0;
 SoilStifMat[(j,k)] := 0;
 END;(*FOR j & k*)
END;(*PROCEDURE*)
END.
Program DataStructure;

 uses
 Dos, Objects, Drivers, Memory, Views, Menus, Dialogs, StdDlg, MsgBox, App, Gadgets,
 FViewer, HelpFile, ColorSel, MouseDlg, Validate, AsciiTab
 , Calc, Calendar, RValidate, Editors, DataCol, MListDlg, MForms, Fields
 , FormCmds, Crt;

 const
 cmAbout = 1000;
 cmFOpen = 1001;
 cmChDir = 1002;
 cmMouse = 1003;
 cmColors = 1004;
 cmDOSShell = 1005;
 cmDataOpen = 1006;
 cmDataNew = 1007;
 cmDataExist = 1008;
 cmUpdate = 1009;
 cmUpdateFile = 1010;
 cmUpdateName = 1011;
 cmRenamer = 1012;
 cmAsciiTab = 1013;
 cmCalendar = 1014;
 cmCalculator = 1015;
 cmSaveDesktop = 1016;
 cmRetrieveDesktop = 1017;
 cmPrevious = 1018;
 cmNextEntry = 1019;

 cmDataSaveAs = 201;
 cmAnalyse = 202;
 cmSaveAs = 205;
 cmDataSave = 206;
 cmPrintText = 207;
 cmDataGen = 208;
 cmNodeGeom = 209;
 cmMatProperty = 210;
 cmCrossSectionSpec = 211;
 cmMemOrient = 212;
 cmRestrain = 213;
 cmMemFrDisplc = 214;
 cmNodPointLd = 215;
 cmMemPointLd = 216;
 cmMemUnifLd = 217;
 cmMemTripozLd = 218;

 CommandSetData : TCommandSet = [cmAnalyse, cmDataSaveAs, cmSaveAs, cmDataSave, cmPrintText, cmDataGen, cmNodeGeom, cmMatProperty, cmCrossSectionSpec, cmMemOrient, cmRestrain, cmMemFrDisplc, cmNodPointLd, cmMemPointLd, cmMemUnifLd, cmMemTripozLd];

 var
 Fname : pathstr;
 MyData : TStruct;

 const
 DataChange : Boolean = False;

 type

 {TmyDataViewer}

 PmyDataViewer = ^TmyDataViewer;
 TmyDataViewer = object(TFileViewer)
 constructor Init(var Bounds: TRect; AHScrollBar, AVScrollBar: PScrollBar; var AFileName: PathStr);
 DataTable; Virtual;
 Procedure Draw; Virtual;
 Procedure HandleEvent(var Event:TEvent); Virtual;
 end;

 {TmyDataWindow}

 PmyDataWindow = ^TmyDataWindow;
 TmyDataWindow = object(TFileWindow)
Appendix A4.5, Program DATAENTR
function TMyStaticText.GetPalette : PPalette;
const
CMYStaticText = #1;
PMyStaticText : string[Length(cMyStaticText)] := CMyStaticText;
begint
GetPalette := @PMyStaticText;
end;

(TMyDataViewer)
constructor TMyDataViewer.Init(var Bounds: TRect; AHScrollBar, AVScrollBar: PScrollBar; var AFileName: PathStr);
begint
TScroller.Init(Bounds, AHScrollBar, AVScrollBar);
GrowMode := gfGrowHiX + gfGrowHiY;
FileName := nil;
DataTable;
end;

Procedure TMyDataViewer.DataTable;
var
Line : String;
MaxWidth : Integer;
E : TEvent;
S : String;
I : Integer;
J : Integer;
CountSegs : Integer;
LengthSegments : ArraySeg;

Procedure SegmentList(Var J :Integer; Var Line :String);
Var
S : String;
begin
Str(J, S);
Line := Line + ' ' + S;
Str(LengthSegments[J]:2:3, S);
if J < 10 then Line := Line + ' ' + S
else Line := Line + ' ' + S;
inc(J);
end;

begin
MyData.GetlenSegment(LengthSegments);
I := 1;
isvalid:=true;
FileLines := New(PLineCollection, Init(5,5));
MaxWidth := 0;
while (I < 47) and not LowMemory do
begin
case I of
2 : Line := ' ~ '+MyData.GetTitle;
3 : Line := ' ~ ----------------';
else Line :='';
end;
if Length(Line) > MaxWidth then MaxWidth := Length(Line);
FileLines^ .Insert(NewStr(Line));
Inc(I);
end;

Limit.X := MaxWidth;
end;

Procedure TMyDataViewer.Draw;
Var
B : TDrawBuffer;
I : Integer;
S : String;
P : PString;
begin

Appendix A4.5, Program DATAENTR
for I := 0 to Size.Y - 1 do
begin
 MoveChar(B, ' ', $02 , size.X);
 if Delta.Y + I < FileLines^.Count then
begin
 P := FileLines^.At(Delta.Y + I);
 if P <> nil then S := Copy(P^, Delta.X + 1, Size.X)
else S := ' '; MoveStr(B, S, $0E02)
end;
WriteLine(0, I, Size.X, 1, B);
end;
end;

Procedure TmyDataViewer.HandleEvent(var Event: TEvent);
begin
 TfileViewer.HandleEvent(Event);
 if (Event.what = evBroadcast) and (Event.command = cmUpdate) then
begin
 ClearEvent(event);
 Filelines^.done;
 Drawview;
 end;
end;

{ TmyDataWindow }

Constructor TmyDataWindow.Init(var FName: PathStr);
const
 WinNumber: Integer = 1;
var
 R: TRect;
begin
 Desktop^.GetExtent(R);
 TWindow.Init(R, FName, WinNumber);
 Options := Options or ofTileable;
 Inc(WinNumber);
 GetExtent(R);
 R.Grow(-1, -1);
 Insert(New(TmyDataViewer, Init(R,
 StandardScrollBar(sbHorizontal + sbHandleKeyboard),
 StandardScrollBar(sbVertical + sbHandleKeyboard), FName)));
end;

Procedure TmyDataWindow.Handleevent(var Event: tevent);
var
 control: word;
begin
 if (Event.what=evcommand) then
begin
 case event.command of
 cmclose : begin
 if DataChange then
begin
 Control := MessageBox(' Data has changed - Save changes ?',
 nil,mfwarning+ mfyesButton+mfNoButton);
 if control = cmyes then
message(Desktop^.owner, evcommand, cmdatasave, nil);
 Close;
 ClearEvent(event);
 end;
 end;
 cmquit : begin
 if DataChange then
begin
 zoom;
 Control := MessageBox(' Data has changed - Save changes ?',
 nil,mfwarning+ mfyesButton+mfNoButton);
 if control = cmyes then
message(Desktop^.owner, evcommand, cmdatasave, nil);
 endmodal(cmquit);
 ClearEvent(event);
 end;
 end;
end;
end;
end;
TFileWindow.HandleEvent(Event);
if(Event.what = evBroadcast) then
begin
 case event.command of
 cmDataExist : ClearEvent(event);
 end;
end;
end;

(TmyFileViewer)
Procedure TmyFileViewer.SetState(Astate:word; enable:Boolean);
begin
 TFormViewer.SetState(Astate,enable);
 if Astate and sfactive <>0 then
 if enable then enableCommands([cmSaveAs])
 else disableCommands([cmSaveAs]);
end;

Procedure TmyFileViewer.HandleEvent(var Event: tevent);

Procedure Save(Filename:Pstring);
var
 FileToView: Text;
 I : integer;
 P : PString;
 S : String;
begin
{$I-}
IsValid := True;
if FileName <> nil then DisposeStr(Filename);
FileName := NewStr(FName);
Assign(FileToView, FName);
Rewrite(FileToView);
if IOResult <> 0 then
begin
 MessageBox('Cannot save file '+FName+'.', nil, mfError + mfOkButton);
 IsValid := False;
end
else
begin
 for I := 0 to FileLines^.Count-1 do
 begin
 P := FileLines^.At(I);
 if P <> nil then S := Copy(P^, 1, limit.X)
 else S := " ";
 WriteLn(filetoview,S);
 end;
{$I+}
end;
close(filetoview);
end;

begin
 TFormViewer.HandleEvent(Event);
 if(Event.what = evBroadcast) and (event.command = cmUpdateFile) then
 begin
 Save(Filename);
 ClearEvent(event);
 end;
end;

(TmyFileWindow)
constructor TmyFileWindow.Init(var FileName: PathStr);
const
 WinNumber: Integer = 1;
var
 R: TRect;
begin
 Desktop^.GetExtent(R);
 TFormWindow.Init(R, FileName, WinNumber);
end;

Appendix A4.5, Program DATAENTR
Options := Options or ofTileable;
Inc(WinNumber);
GetExtent(R);
R.Grow(-1, -1);
Insert(New(PmyFileViewer, Init(R,
 StandardScrollBar(sbHorizontal + sbHandleKeyboard),
 StandardScrollBar(sbVertical + sbHandleKeyboard), Filename)));
end;

Procedure TmyFileWindow.HandleEvent(var Event: tevent);
var
 DataExists : PMyDataWindow;
Begin
 if (Event.what = evcommand) and (Event.command = cmquit) then begin
 DataExists := Message(Desktop, evBroadcast, cmDataExist, nil);
 if DataExists <> nil then begin
 DataExists^.Select;
 DataExists^.Zoom;
 DataExists^.HandleEvent(event);
 end;
 end;
 TFileWindow.HandleEvent(Event);
 if (Event.what = evBroadcast) and (Event.command = cmUpdateName) then begin
 Title := Fname;
 Frame^.DrawView;
 ClearEvent(event);
 end;
end;

{TMyStructure}
Constructor TMyStructure.Init:
var
 R : TRect;
 I : Integer;
 FileName : PathStr;
 Event : TEvent;
begin
 TApplication.Init;
 RegisterObjects;
 RegisterViews;
 RegisterMenus;
 RegisterCalendar;
 RegisterAsciiTab;
 RegisterCalc;
 RegisterDialogs;
 RegisterApp;
 RegisterHelpFile;
 RegisterFViewer;
 RegisterDataColl;
 RegisterForms;
 RegisterEditors;
 RegisterFields;
 RegisterType(RStruct);
 RegisterValidate;
 RegisterMyValidators;
 myData.init;
GetExtent(R);
 R.A.X := R.B.X - 9; R.B.Y := R.A.Y + 1;
 Clock := New(PClockView, Init(R));
 Insert(Clock);
GetExtent(R);
 Dec(R.B.X);
 R.A.X := R.B.X - 9; R.A.Y := R.B.Y - 1;
 Heap := New(PHeapView, Init(R));
 Insert(Heap);

(Display About Box)
Event.What := evCommand;

Appendix A4.5, Program DATAENTR

4 - 26
Event.Command := cmAbout;
PutEvent(Event);
DisableCommands([cmSaveas]);
for I := 1 to ParamCount do
begin
FileName := ParamStr(I);
if FileName[Length(FileName)] = '\' then
 FileName := FileName + '*.';
if (Pos('?', FileName) = 0) and (Pos('*', FileName) = 0) then
 ViewFile(FExpand(FileName))
else FileOpen(FileName);
end;
end;

Procedure TMyStructure.FileOpen(WildCard: PathStr);
var
 D : PFileDialog;
 FileName: PathStr;
begin
 D := New(PFileDialog, Init(WildCard, 'Open a File',
 '-N-ame', fdOpenButton + fdHelpButton, 100));
 D^.HelpCtx := hcF0FileOpenDBox;
 if ValidView(D) <> nil then
 begin
 if Desktop^.ExecView(D) <> cmCancel then
 begin
 D^.GetFileName(FileName);
 ViewFile(FileName);
 end;
 Dispose(D, Done);
 end;
end;

Procedure TMyStructure.DataOpen(WildCard: PathStr);
var
 OpenBox : PFileDialog;
 FCStream : TBufStream;
 Control : word;
 StructData : PStruct;
 DataExists : PMyDataWindow;
begin
 DataExists := Message(Desktop,evBroadcast,cmDataExist,nil);
 if DataExists <> nil then
 begin
 DataExists^.Select;
 Message(TOpView,evcommand,cmclose,nil);
 end;
 OpenBox := New(PFileDialog, Init('*.dat', 'Open Data File',
 'Data File Name', fdokbutton + fdOpenButton, 1));
 OpenBox^.HelpCtx := hcF0FileOpenDBox;
 if ValidView(OpenBox) <> nil then
 begin
 if Desktop^.ExecView(OpenBox) <> cmCancel then
 begin
 OpenBox^.GetFilename(Fname);
 FCStream.Init(Fname, stOpenRead, 512);
 StructData := PStruct(FCStream.Get);
 if FCStream.status <> stok then
 MessageBox('File error - File wrong type?',
 nil, mfError + mfOkButton)
 else
 begin
 MyData := StructData^;
 Dispose(StructData);
 ViewData(Fname);
 DataChange := False;
 end;
 end;
 end;
end;

Appendix A4.5, Program DATAENTR
FCStream.done;
end;
Dispose(OpenBox,done);
end;

Procedure TMyStructure.DataSave;

var
 Control : word;
 FCStream : TBufStream;

Begin
 FCStream.Init(Fname,stCreate,512);
 FCStream.Put(@MyData);
 DataChange := False;
 if FCStream.status <> stok then
 begin
 MessageBox('File not saved - read only? Use another filename',
 nil, mfError + mfOkButton);
 DataChange := True;
 end;
 FCStream.Done;
end;

Procedure TMyStructure.DataNew(WildCard : PathStr);

var
 DataExists: PMyDataWindow;
 Control : word;

Begin
 DataExists := Message(Desktop,evBroadcast,cmDataExist,nil);
 if DataExists <> nil then
 begin
 DataExists^.Select;
 Message(TopView,evcommand,cmclose,nil);
 end;
 MyData.Init;
 fName := 'NoName.DAT';
 ViewData(FName);
 DataChange := False;
end;

Procedure TMyStructure.PrintText(WildCard : PathStr);

var
 DataExists : PMyDataWindow;
 Control : word;

Begin
 DataExists := Message(Desktop,evBroadcast,cmDataExist,nil);
 if DataExists <> nil then
 begin
 DataExists^.Select;
 Message(TopView,evcommand,cmclose,nil);
 end;
 MyData.Init;
 fName := 'NoName.DAT';
 ViewData(FName);
 DataChange := False;
end;

Procedure TMyStructure.DataSaveAs;

Var
 SaveBox : PFileDialog;
 FCStream : TBufStream;
 Control : word;
 DataExists : PMyDataWindow;

Begin
 DataExists := Message(Desktop,evBroadcast,cmDataExist,nil);
 if DataExists <> nil then
 begin
 DataExists^.Select;
 Message(TopView,evcommand,cmclose,nil);
 end;
 MyData.Init;
 fName := 'NoName.DAT';
 ViewData(FName);
 DataChange := False;
end;

Appendix A4.5, Program DATAENTR

4 - 28
if Desktop\.ExecView(SaveBox) <> cmCancel then
begin
 SaveBox\.GetFileName(fname);
 FCStream\.init(fname, stCreate, 512);
 FCStream\.Put(@MyData);
 if FCStream\.status <> stok then
 MessageBox(
 'File not saved - read only? Use another filename',
 nil, mfError + mfOkButton)
 else
 begin
 DataChange := False;
 Message (TopView, evcommand, cmclose, nil);
 ViewData(FName);
 FCStream\.Done;
 dispose(SaveBox, done);
 end;
end;
begin
var
 EditData = TEditData;
 R : TRect;
 Control : word;
Begin
 with EditData do
 begin
 Title := MyData\.GetTitle;
 end;
 R\.Assign(15, 3, 52, 15);
 P := New(PDialog, Init(r, 'Edit General Data'));
 P\.HelpCtx := hcDGeneral;
 if lowmemory then
 begin
 OutofMemory;
 Control := cmcancel;
 end
 else
 begin
 if validview (P) <> nil then
 begin
 with P do
 begin
 R\.assign (3, 5, Size\.x-4, 6);
 A := New(pInputLine, Init(R, TitleMaxLen));
 Insert (A);
 R\.assign (3, 2, 30, 3);
 Insert(New(plabel, init(R, 'General Description of Job', A)));
 R\.assign (20, 9, 32, 11);
 Insert(New(Pbutton, Init(r, 'Cancel', cmcancel, bfnormal)));
 R\.assign (5, 9, 17, 11);
 Insert(New(Pbutton, Init(r, '-O-k', cm0k, bfdefault)));
 SetData(EditData);
 end;
 Control := Desktop\.ExecView(P);
 if Control <> cmCancel then
 begin
 P\.GetData(EditData);
 DataChange := True;
 MyData\.SetTitle(EditData\.Title);
 Message(Desktop\.owner, evBroadcast, cmUpDate, nil);
 Dispose(P, done);
 end
 else
 dispose(P, done);
 end;
end;
PROCEDURE TmyStructure.NodeGeom;
var
D: PFileDialog;
FileName: ^PathStr;
ListEditor: PDialog;
begin
D := New(PFileDialog, Init(‘*.BGM Node Geometry’, ‘Open File’,
‘-N-ame’, fdOpenButton, hiOpenListDlg));
if ValidView(D) <> nil then
begin
if Desktop^ExecView(D) <> cmCancel then
begin
New(FileName);
D^GetFileName(FileName);
if not FileExists(FileName) then
begin
MessageBox(‘Cannot find file (%s).’, @FileName, mfError + mfOkButton);
end
else
begin
{ If ListEditor exists, select it; otherwise, open new one *****}
ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
if ListEditor = nil then
Desktop^.Insert(ValidView(New(PListDialog, Init(FileName^))));
else ListEditor^.Select;
end;
Dispose(FileName);
end;
Dispose(D, Done);
end;
 writeln(FName,’ is the name of the main file.’);readln;)
end;
end;

(*PROCEDURE NodeGeom*)

Procedure TmyStructure.MatProperty;
var
D: PFileDialog;
FileName: ^PathStr;
ListEditor: PDialog;
begin
D := New(PFileDialog, Init(‘*.BPM MaterialProperties’, ‘Open File’,
‘-N-ame’, fdOpenButton, hiOpenListDlg));
if ValidView(D) <> nil then
begin
if Desktop^ExecView(D) <> cmCancel then
begin
New(FileName);
D^GetFileName(FileName);
if not FileExists(FileName) then
begin
MessageBox(‘Cannot find file (%s).’, @FileName, mfError + mfOkButton);
end
else
begin
{ If ListEditor exists, select it; otherwise, open new one *****}
ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
if ListEditor = nil then
Desktop^.Insert(ValidView(New(PListDialog, Init(FileName^))));
else ListEditor^.Select;
end;
Dispose(FileName);
end;
Dispose(D, Done);
end;
end;
end;

Procedure TmyStructure.CrosSectSpec;
var
D: PFileDialog;
FileName: ^PathStr;
ListEditor: PDialog;
end;
begin
 D := New(PFileDialog, Init('*.BCS Cross Section Properties', 'Open File', '-N-ame', fdOpenButton, hOpenListDlg));
 if ValidView(D) <> nil then
 begin
 if Desktop^.ExecView(D) <> cmCancel then
 begin
 New(FileName);
 D^.GetFileName(FileName);
 if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfError + mfOkButton)
 else
 begin
 if ListEditor exists, select it; otherwise, open new one *****
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName))));
 else
 ListEditor^.Select;
 end;
 end;
 end;
 Dispose(FileName);
 end;
 Dispose(D, Done);
end;

Procedure TmyStructure.MemOrient;
var
 D: PFileDialog;
 FileName: PathStr;
 ListEditor: PDialog;
begin
 D := New(PFileDialog, Init('*.BMD Member Data', 'Open File', '-N-ame', fdOpenButton, hOpenListDlg));
 if ValidView(D) <> nil then
 begin
 if Desktop^.ExecView(D) <> cmCancel then
 begin
 New(FileName);
 D^.GetFileName(FileName);
 if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfError + mfOkButton)
 else
 begin
 if ListEditor exists, select it; otherwise, open new one *****
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName))));
 else
 ListEditor^.Select;
 end;
 end;
 end;
 Dispose(FileName);
 end;
 Dispose(D, Done);
end;

Procedure TmyStructure.Restraint;
var
 D: PFileDialog;
 FileName: PathStr;
 ListEditor: PDialog;
begin
 D := New(PFileDialog, Init('*.BRS Structure Restraints', 'Open File', '-N-ame', fdOpenButton, hOpenListDlg));
 if ValidView(D) <> nil then
 begin
 if Desktop^.ExecView(D) <> cmCancel then
 begin
 New(FileName);
 D^.GetFileName(FileName);
 if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfError + mfOkButton)
 else
 begin
 if ListEditor exists, select it; otherwise, open new one *****
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName))));
 else
 ListEditor^.Select;
 end;
 end;
 end;
 Dispose(FileName);
 end;
 Dispose(D, Done);
end;
else ListEditor^.Select;
end;
Dispose(FileName);
end;
Dispose(D, Done);
end;
end; (*PROCEDURE Restraint*)

Procedure TmyStructure.MemPrsDispnc;
var
D: PFileDialog;
FileName: "PathStr;
ListEditor: PDialog;
begin
D := New(PFileDialog, Init('*.BPD Prescribed Displacement', 'Open File', '
-Name', fdOpenButton, hlOpenListDlg));
if ValidView(D) <> nil then
begin
if Desktop^.ExecView(D) <> cmCancel then
begin
New(FileName);
D^.GetFileName(FileName);
if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfErr6r + mfOkButton)
else
begin
 if ListEditor exists, select it; otherwise, open new one *****)
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName))))
 else ListEditor^.Select;
end;
Dispose(FileName);
end;
Dispose(D, Done);
end;
end;

Procedure TmyStructure.NodPointLd;
var
D: PFileDialog;
FileName: "PathStr;
ListEditor: PDialog;
begin
D := New(PFileDialog, Init('*.BNL Nodal Loads', 'Open File', '
-Name', fdOpenButton, hlOpenListDlg));
if ValidView(D) <> nil then
begin
if Desktop^.ExecView(D) <> cmCancel then
begin
New(FileName);
D^.GetFileName(FileName);
if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfError + mfOkButton)
else
begin
 (If ListEditor exists, select it; otherwise, open new one *****)
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName))))
 else ListEditor^.Select;
end;
Dispose(FileName);
end;
Dispose(D, Done);
end;
end;

Procedure TmyStructure.MemPointLd;
var
D: PFileDialog;
FileName: "PathStr;
ListEditor: PDialog;
begin
D := New(PFileDialog, Init('*.BPL Member Concentrated', 'Open File', '
-Name', fdOpenButton, hlOpenListDlg));
if ValidView(D) <> nil then begin
 if Desktop^.ExecView(D) <> cmCancel then begin
 New(FileName);
 D^.GetFileName(FileName);
 if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfError + mfOkButton)
 else begin
 { If ListEditor exists, select it; otherwise, open new one *****}
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName))))
 else ListEditor^.Select;
 end;
 Dispose(FileName);
 end;
 Dispose(D, Done);
end;

Procedure TmyStructure.MemUnifLd;
var
 D: PFileDialog;
 FileName: PathStr;
 ListEditor: PDialog;
begin
 D := New(PFileDialog, Init(‘*.BMU Uniformly Distributed’, ‘Open File’,
 ‘-N-ame’, fdOpenButton, hIOpenListDlg));
 if ValidView(D) <> nil then begin
 if Desktop^.ExecView(D) <> cmCancel then begin
 New(FileName);
 D^.GetFileName(FileName);
 if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfError + mfOkButton)
 else begin
 { If ListEditor exists, select it; otherwise, open new one *****}
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName))))
 else ListEditor^.Select;
 end;
 Dispose(FileName);
 end;
 Dispose(D, Done);
 end;
end;

Procedure TmyStructure.MemTripoLd;
var
 D: PFileDialog;
 FileName: PathStr;
 ListEditor: PDialog;
begin
 D := New(PFileDialog, Init(‘*.BMT Trapezoidaly Distributed’, ‘Open File’,
 ‘-N-ame’, fdOpenButton, hIOpenListDlg));
 if ValidView(D) <> nil then begin
 if Desktop^.ExecView(D) <> cmCancel then begin
 New(FileName);
 D^.GetFileName(FileName);
 if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfError + mfOkButton)
 else begin
 { If ListEditor exists, select it; otherwise, open new one *****}
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName))))
 else ListEditor^.Select;
 end;
 Dispose(D, Done);
 end;
 end;
end;

Appendix A4.5. Program DATAENTR
end;
Dispose(FileName);
end;
Dispose(D, Done);
end;

Procedure TMyStructure.GetEvent(var Event: TEvent);
var
 W : PWindow;
 HFile : PHelpFile;
 HelpStrm: PDosStream;
const
 HelpInUse: Boolean = False;
begin
 TApplication.GetEvent(Event);
 case Event.What of
 evCommand:
 if (Event.Command = cmHelp) and not HelpInUse then
 begin
 HelpInUse:= True;
 HelpStrm := New(PDosStream, Init(CalcHelpName, stOpenRead));
 HFile := New(PHelpFile, Init(HelpStrm));
 if HelpStrm".Status <> stOk then begin
 MessageBox('Could not open help file.', nil, mfError + mfOkButton);
 Dispose(HFile, Done);
 end
 else begin
 W := New(PHelpWindow, Init(HFile, GetHelpCtx));
 if ValidView(W) <> nil then begin
 ExecView(W);
 Dispose(W, Done);
 end;
 ClearEvent(Event);
 end;
 HelpInUse := False;
 end;
 evMouseDown:
 if Event.Buttons <> 1 then Event.What := evNothing;
 end;
end;

Function TMyStructure.GetPalette: PPalette;
const
 CNewColor = CAppColor + CHelpColor;
 CNewBlackWhite = CBlackWhite + CHelpBlackWhite;
 CNewMonochrome = CMonochrome + CHelpMonochrome;
 P: array[apColor..apMonochrome] of string[Length(CNewColor)] =
 (CNewColor, CNewBlackWhite, CNewMonochrome);
begin
 GetPalette := @P[AppPalette];
end;

Procedure TMyStructure.HandleEvent(var Event: TEvent);
var
 NewMode: Word;
Procedure OpenMemUnifLd;
var
 D: PFileDialog;
 FileName: ^PathStr;
 ListEditor: PDialog;
begin
 D := New(PFileDialog, Init('*.MUL Uniformly Distributed', 'Open File',
 '-N-ame', fdOpenButton, hlOpenListD1g));
 if ValidView(D) <> nil then begin
 if Desktop^.ExecView(D) <> cmCancel then begin
 New(FileName);
 D^.GetFileName(FileName);
 if not FileExists(FileName) then
 MessageBox('Cannot find file (%s).', @FileName, mfError + mfOkButton)
else
begin
 (If ListEditor exists, select it; otherwise, open new one *****)
 ListEditor := Message(Desktop, evBroadcast, cmEditingFile, FileName);
 if ListEditor = nil then
 Desktop^.Insert(ValidView(New(PListDialog, Init(FileName^))))
 else ListEditor^.Select;
end;
Dispose(FileName);
end;
end;
end;(*of Procedure OpenMemUnifLd*)

Procedure ChangeDir;
var
 D: PChDirDialog;
begin
 D := New(PChDirDialog, Init(cdNormal + cdHelpButton, 101));
 D^.HelpCtx := hcFCChDirDBox;
 if ValidView(D) <> nil then
 begin
 Desktop^.ExecView(D);
 Dispose(D, Done);
 end;
end;
Procedure Tile7;
var
 R: TRect;
begin
 Desktop^.GetExtent(R);
 Desktop^.Tile(R);
end;
Procedure Cascade7;
var
 R: TRect;
begin
 Desktop^.GetExtent(R);
 Desktop^.Cascade(R);
end;
Procedure About;
var
 D: PDialog;
 Control: PView;
 R: TRect;
begin
 R.Assign(0, 0, 65, 20);
 D := New(PDialog, Init(R, 'About'));
 with D do
 begin
 Options := Options or ofCentered;
 R.Assign(1,2,64,5);
 Insert(New(PMyStaticText, Init(R, "Soil And Structure Interaction Analysis Package 00'\n -\n ".'Module DataEntr 00'\n +\n "School Of Engineering'\n +\n "University of Tasmania'\n +\n "Analysis Involves'\n -\n "Planar Elastic Frames founded on Soil modelled by'\n +\n "Isotropic or Cross-Anisotrop"));
 R.Assign(5,15,60,16);
 Insert(New(PMyStaticText, Init(R, "Version 1.0 Copyright (c) 1998'\n +\n "Izadnegahdar'\n +\n "University of Tasmania'\n +\n "Analysis Involves'\n -\n "Planar Elastic Frames founded on Soil modelled by'\n +\n "Isotropic or Cross-Anisotropic Elastic Half-Space'"));
 R.Assign(5,15,60,16);
 Insert(New(PMyStaticText, Init(R, "Appendix A4.5, Program DATAENTR")));
 end;
end;

Appendix A4.5, Program DATAENTR
"C('Press Fl key for Help at any time'))));
R.Assign(25, 17, 35, 19);
Insert(New(PButton, Init(R, '0-K', cm0k, bfDefault)));
end;
if ValidView(D) <> nil then
begin
Desktop'.ExecView(D);
Dispose(D, Done);
end;
end;

Procedure RetrieveDesktop;
VAR
S: PStream;
BEGIN
S := New(PBufStream, Init('AXS.DSK', stOpenRead, 1024));
IF LowMemory THEN OutOfMemory
ELSE IF S'.Status <> stOk THEN
 MessageBox('Could not open desktop file', nil, mfOkButton + mfError)
ELSE
 LoadDesktop(S');
 IF S'.Status <> stOk THEN
 MessageBox('Error reading desktop file', nil, mfOkButton + mfError);
 END;
 Dispose(S, Done);
END; (*PROCEDURE RetrieveDesktop*)

Procedure SaveDesktop;
VAR
S: PStream;
F: File;
BEGIN
S := New(PBufStream, Init('AXS.DSK', stCreate, 1024));
IF not LowMemory and (S'.Status = stOk) THEN
 BEGIN
 StoreDesktop(S');
 IF S'.Status <> stOk THEN
 BEGIN
 MessageBox('Could not create AXS.DSK.', nil, mfOkButton + mfError);
 ($1-)
 Dispose(S, Done);
 Assign(F, 'AXS.DSK');
 Erase(F);
 Exit;
 END;
 END;
 END;
 Dispose(S, Done);
END; (*PROCEDURE SaveDesktop*)

procedure Colors;
var
D: PColorDialog;
BEGIN
D := New(PCColorDialog, Init(''
ColorGroup('Desktop'
 ColorItem('Color', 32, nil),
 ColorGroup('Menus'
 ColorItem('Normal', 2, nil),
 ColorItem('Disabled', 3, nil),
 ColorItem('Shortcut', 4, nil),
 ColorItem('Selected', 5, nil),
 ColorItem('Selected disabled', 6, nil),
 ColorItem('Shortcut selected', 7, nil))),
 ColorGroup('Dialogs'
 ColorItem('Frame/background', 33, nil),
 ColorItem('Frame icons', 34, nil),
 ColorItem('Scroll bar page', 35, nil),
 ColorItem('Scroll bar icons', 36, nil),
 ColorItem('Static text', 37, nil),
 ColorItem('Label normal', 38, nil),
 ColorItem('Label selected', 39, nil),
 ColorItem('Label shortcut', 40, nil))));
Appendix A4.5, Program DATAENTR

D^.HelpCtx := hcOCColorsDBBox;
if ValidView(D) <> nil then
begin
 D^.SetData(Application^.GetPalette);
 if Desktop^.ExecView(D) <> cmCancel then
 begin
 DoneMemory: (Dispose all group buffers)
 ReDraw: (Redraw application with new palette)
 end;
 Dispose(D, Done);
 end;
end;

Procedure Calendar;
VAR
 P: PCalendarWindow;
BEGIN
 P := New(PCalendarWindow, Init);
 P^.HelpCtx := hcOMMouseDBox;
 Desktop^.Insert(ValidView(P));
END;'('PROCEDURE Calendar')

Procedure AsciiTab;
VAR
 P: PAsciiChart;
BEGIN
 P := New(PAsciiChart, Init);
 P^.HelpCtx := hcOMMouseDBox;
 Desktop^.Insert(ValidView(P));
END;'('PROCEDURE AsciiTab')
Procedure Calculator;
VAR
 P: PCalculator;
Appendix A4.5, Program DATAENTR
BEGIN
P := New(PCalculator, Init);
P".HelpCtx := hCOMMouseDBox;
IF ValidView(P) <> nil THEN
 Desktop".Insert(P);
END; (*PROCEDURE Calculator*)

Procedure Mouse;

var
D: PDialog;

begin
D := New(PMouseDialog, Init);
D".HelpCtx := hCOMMouseDBox;
if ValidView(D) <> nil then
 begin
 D".SetData(MouseReverse);
 if Desktop".ExecView(D) <> cmCancel then
 D".GetData(MouseReverse);
 end;
end;

Procedure DosShell7;

begin
 DoneSysError;
 DoneEvents;
 DoneVideo;
 DoneMemory;
 SetMemTop(HeapPtr);
 PrintStr('Type EXIT to return...');
 SwapVectors;
 Exec(GetEnv('COMSPEC'), SwapVectors);
 SetMemTop(HeapEnd);
 InitMemory;
 InitVideo;
 InitEvents;
 InitSysError;
 Redraw;
end;

Procedure Analyse;

Procedure SaveRun;

Var
FileSave : Text;
DataExists : pMyDataWindow;
begin
 DataExists := Message(Desktop, evBroadcast, cmDataExist, nil);
 if DataExists <> nil then DataExists".Select;
 Assign(FileSave, 'Structure.Tmp');
 Rewrite(FileSave);
 if IOResult <> 0 then
 begin
 MessageBox('Cannot save file data to run ', nil, mfError + mfOkButton);
 end
 else
 MyData.SaveData(FileSave);
 Close(FileSave);
end;

Procedure ReNamer;

var
Name : Text;
S : PathStr;

begin
S := FName;

Appendix A4.5, Program DATAENTR 4 - 38
S := copy(S,1,length(S)-4)+'.OUT';
Assign(Name,S);
Reset(Name);
Close(Name);
if IoResult = 0 then Erase(Name);
Assign(Name,'Structure.OUT');
Rename(Name,S);
if IoResult<>0 then FName := 'Structure.OUT'
else FName:=S;
end;

begin
 SaveRun;
 if (MemAvail < 250000)then
 MessageBox('Insufficient memory to solve problem. Close applications.',nil,mfError+mfOkButton)
 else
 begin
 DoneSysError;
 DoneEvents;
 DoneVideo;
 SetMemTop(HeapPtr);
 SwapVectors;
 Exec('C:\command.com','/c sht.bat');
 SwapVectors;
 SetMemTop(HeapEnd);
 InitMemory;
 InitVideo;
 InitEvents;
 InitSysError;
 Redraw;
 Renamer;
 ViewFile(fname);
 Message(topview,evcommand,cmtile,nil);
 end;
 end;
end;

Procedure SaveAs(WildCard: PathStr);
var
 D: PFileDialog;
 FileName: PathStr;
begin
 D := New(PFileDialog, Init(WildCard, 'Save File As', 'Name', fdOkbutton, 100));
 D$.HelpCtx:=hcFSaveAs;
 if ValidView(D) <> nil then
 begin
 if Desktop$.ExecView(D) <> cmCancel then
 begin
 D$.GetFileName(FileName);
 fname:=filename;
 Message(desktop$.owner,evBroadcast,cmUpdateName,nil);
 Message(desktop$.owner,evBroadcast,cmUpdateFile,nil);
 end;
 Dispose(D, Done);
 end;
end;

Procedure Renamer(WildCard: PathStr);
var
 D: PFileDialog;
 FileName : PathStr;
 FReName : PathStr;
 Name : text;
 FirstBox0k : Boolean;
 SecondBox0k: Boolean;
begin
 FirstBox0k :=True;
 SecondBox0k :=True;

Appendix A4.5, Program DATAENTR
D := New(PFileDialog, Init(WildCard, 'Rename File', '-N-ame', fdOkbutton, 100));
if ValidView(D) <> nil then
begin
 if Desktop'.ExecView(D) <> cmCancel then
 D'.GetFileName(FileName)
 else FirstBoxOk := False;
 Dispose(D, Done);
end;
if FirstBoxOk then
begin
 D := New(PFileDialog, Init(WildCard, 'New File Name', '-N-ame', fdOkbutton, 100));
 if ValidView(D) <> nil then
 begin
 if Desktop'.ExecView(D) <> cmCancel then
 D'.GetFileName(FReName)
 else SecondBoxOk := False;
 Dispose(D, Done);
 end;
 if SecondBoxOk then
 begin
 Assign(Name, Filename);
 if Filename <> FReName then Rename(Name, FReName);
 end;
end;
if IOResult <> 0 then
begin
 MessageBox('Cannot rename file '+FileName+'.', nil, mfError + mfOkButton);
end;
end;

PROCEDURE VideoMode;
begin
 NewMode := ScreenMode xor smFont8x8;
 if NewMode and smFont8x8 <> 0 then
 ShadowSize.X := 1
 else ShadowSize.X := 2;
 SetScreenMode(NewMode);
end; (*PROCEDURE VideoMode;*)

begin
 TApplication.HandleEvent(Event);
 case Event.What of
 evCommand:
 begin
 case Event.Command of
 cmFOpen	 : FileOpen('.OUT');
 cmSaveAs	 : SaveAs('*."');
 cmRenamer	 : Renamer('*."');
 cmDataOpen : DataOpen('*.DAT');
 cmDataSave : DataSave;
 cmDataSaveAs : DataSaveAs;
 cmPrintText : PrintText('*.dat');
 cmDataGen : DataGen;
 cmNodeGeom : NodeGeom;
 cmMatProperty : MatProperty;
 cmCrossSectSpec : CrossSectSpec;
 cmMemOrient : MemOrient;
 cmRestrain : Restraint;
 cmMemPrsDisplc : MemPrsDisplc;
 cmNodPointLd : NodPointLd;
 cmMemPointLd : MemPointLd;
 cmMemUnifLd : MemUnifLd;
 cmMemTripozLd : MemTripozLd;
 cmChDir : ChangeDir;
 cmCascade : Cascade7;
 cmFile : Tile7;
 cmAbout : About;
 cmCalendar : Calendar;
 cmAsciTab : AsciTab;
 cmCalculator : Calculator;
 cmSaveDesktop : SaveDesktop;
 cmRetrieveDesktop: RetrieveDesktop;
 cmColors : Colors;
 end;
 end;
end;
procedure TMyStructure.Idle;

var
 DataExists : pmyDataWindow;

function IsTileable(P: PView): Boolean; far;
begin
 IsTileable := P^.Options and ofTileable <> 0;
end;

begin
 TApplication.Idle;
 Clock'.Update;
 Heap'.Update;
 if Desktop'.FirstThat(@IsTileable) <> nil then
 EnableCommands([cmTile, cmCascade])
 else
 DisableCommands([cmTile, cmCascade]);
 DataExists := Message(Desktop, evBroadcast, cmDataExist, nil);
 if DataExists <> nil then
 EnableCommands(CommandSetData)
 else
 DisableCommands(CommandSetData);
end;

procedure TMyStructure.InitMenuBar;

var
 R: TRect;

begin
 GetExtent(R);
 R.B.Y := R.A.Y+1;
 MenuBar := New(PMenuBar, Init(R, NewMenu(
 NewSubMenu('-#15-', hcSystem, NewMenu(
 NewItem('-A-bout...', ' ', kbNoKey, cmAbout, hcSAbout,
 NewLine(
 NewItem('Ascii -t-able', ' ', kbNoKey, cmAsciiTab, hcNoContext,
 NewItem('Ca-l-endar', ' ', kbNoKey, cmCalendar, hcNoContext,
 NewItem('C-alculator', ' ', kbNoKey, cmCalculator, hcNoContext,
 NewItem('V-ideo mode', ' ', kbNoKey, cmVideoMode, hcNoContext,
 nil)))))),
 NewSubMenu('-D-ata', hcData, NewMenu(
 NewItem('-N-ew', ' ', kbNoKey, cmDataNew, hcDNew,
 NewItem('-O-pen', ' ', kbNoKey, cmDataOpen, hcDOpen,
 NewItem('-S-ave', ' ', kbNoKey, cmDataSave, hcDSave,
 NewItem('S-A-ve as...', ' ', kbNoKey, cmDataSaveAs, hcDSaveAs,
 NewItem('-P-rint File', ' ', kbNoKey, cmPrintText, hcNoContext,
 NewItem('-C-hange dir...', ' ', kbNoKey, cmChangeDir, hcChangeDir,
 NewItem('D-OS shell', ' ', kbNoKey, cmDosShell, hcFDosShell,
 NewItem('E-xit', 'Alt-X', kbAltX, cmQuit, hcFExit, nil)))))),
 NewSubMenu('-E-dit', hcEdit, NewMenu(
 NewItem('-G-eneral Title', ' ', kbNoKey, cmDataGen, hcDGeneral,
 NewItem('-N-ode Geometry', ' ', kbNoKey, cmNodeGeom, hcNoContext,
 NewItem('-M-ordinated Prop', ' ', kbNoKey, cmMatProperty, hcNoContext,
 NewItem('C-rossSect Spec', ' ', kbNoKey, cmCrossSectSpec, hcNoContext,
 NewItem('M-ember Data', ' ', kbNoKey, cmMemOrient, hcNoContext,
 NewItem('R-estraints ', ' ', kbNoKey, cmRestraint, hcNoContext,
 nil)))))),
 NewSubMenu('Out-P-ut', hcOutput, NewMenu(
 NewItem('-P-rescribed Displ. PDL', ' ', kbNoKey, cmMemPresDispl, hcNoContext,
 NewItem('-N-odal Load NPL', ' ', kbNoKey, cmNodPointLd, hcNoContext,
 NewItem('M-ember Point Load MPL', ' ', kbNoKey, cmMemPointLd, hcNoContext,
 NewSubMenu('Member -D-istributed Load', hcNoContext, NewMenu(
 NewItem('UniForm Load UML', ' ', kbNoKey, cmMemUnifLd, hcNoContext,
 NewItem('Tripo-z- Load TML', ' ', kbNoKey, cmMemTripozLd, hcNoContext, nil)))))),
 NewSubMenu('Out-P-ut', hcOutput, NewMenu(
 NewItem('-O-pen...', 'F3', kbF3, cmFOpen, hcFOpen,
Appendix A4.5, Program DATAENTR 4 - 41
Procedure TMyStructure.InitStatusLine;
var
 R: TRect;
begin
 GetExtent(R);
 R.A.Y := R.B.Y - 1;
 StatusLine := New(PStatusLine, Init(R,
 NewStatusDef(0, $FFFF,
 NewStatusKey('-F1- Help', kbFl, cmHelp,
 NewStatusKey('-Alt-F3- Close', kbAltF3, cmClose,
 NewStatusKey('-F5- Zoom', kbF5, cmZoom,
 NewStatusKey('-Alt-X- Quit', kbAltx, cmQuit,
 NewStatusKey('"', kbF10, cmMenu,
 NewStatusKey('"', kbCtrlF5, cmResize, nil))))), nil)));
end;

Procedure TMyStructure.OutOfMemory;
begin
 MessageBox('Not enough memory available to complete operation.', nil, mfError + mfOkButton);
end;

Procedure TMyStructure.ViewData(FileName: PathStr);
var
 w:pmyDatawindow;
begin
 W := New(PmyDataWindow, Init(Filename));
 W^.HelpCtx := hcDataWindow;
 if ValidView(W) <> nil then
 begin
 Desktop^.Insert(W);
 end;
end;

Procedure TMyStructure.ViewFile(FileName: PathStr);
var
 w:pmyfilewindow;
begin
 W := New(PmyFileWindow, Init(Filename));
 W^.HelpCtx := hcOutput;
 if ValidView(W) <> nil then
 begin
 Desktop^.Insert(W);
 enableCommands(UcmSaveAs)];
 end;
end;

Procedure TMyStructure.LoadDesktop(VAR S: TStream);
VAR
 P: PView;

Appendix A4.5, Program DATAENTR

4 - 42
Procedure CloseView(P: PView); far;
BEGIN
 Message(P, evCommand, cmClose, nil);
END; (*PROCEDURE*)

BEGIN
 IF Desktop'.Valid(cmClose) THEN
 BEGIN
 Desktop'.ForEach(@CloseView); (* Clear the desktop *)
 repeat
 P := PView(S.Get);
 Desktop'.InsertBefore(ValidView(P), Desktop'.Last);
 until P = nil;
 END;
END; (*PROCEDURE TMyStructure.LoadDesktop*)

Procedure TMyStructure.StoreDesktop(VAR S: TStream);

Procedure WriteView(P: PView); far;
BEGIN
 IF P <> Desktop'.Last THEN S.Put(P);
END; (*PROCEDURE*)

BEGIN
 Desktop'.ForEach(@WriteView);
 S.Put(nil);
END; (*PROCEDURE TMyStructure.StoreDesktop*)

var
 Structure: TMyStructure;

begin
 ClrScr;
 Structure.Init;
 Structure.Run;
 Structure.Done;
end.

Appendix A4.5, Program DATAENTR
Program Analyse;

(* Warning: Before running this PROGRAM, reset the PC for memory allocation *)

(* 2D Frame Analysis *)

(* Version 1.0 *)

(*
*
*
*
*
*
*
*

(* VERY IMPORTANT NOTES: 1) GLOBAL COORDINATES SHOULD BE SELECTED *)

(* SUCH THAT ALL THE STRUCTURE STAYS IN THE FIRST QUARTER OF PLANE. *)

(* 2) MEMBER ASSIGNMENT SHOULD BE SUCH THAT FI STAYS IN THIS RANGE. *)

(*
*
*
*
*
*
*
*

(* -0.5pi <= Fi <= +0.5pi *)

(* This program analyses any type of 2D FRAMED STRUCTURE by elastic *)

(* first-order stiffness matrix method, incorporating with different *)

(* loadings, member connections, restraints, section module. *)

(* All footings are in a same level acting to the structure. *)

(* Assumption: Element transformation matrix is Orthogonal. *)

(* Restriction: Minimum of two nodes to be taken as footings. *)

(* Before running any example, user must make sure of structural *)

(* external stability. *)

(* **)

USES
Crt, Dos, Build, Globals, SoilMode;

(* & data segment includes CONST, TYPE, VAR appeared in the build unit earlier *)

LABEL
100;

PROCEDURE ShowMeReminderNote;

Begin
Writeln('Before any attempt to run this program, ensure the following files');
Writeln('exist in the working directory: Crt,Dos,Build,Globals,SprtData, ');
Writeln('and all the Pascal and the binary forms of the structural input ');
Writeln('data files listed in the Globals.pas also all the files associated');
Writeln('with the Genforms.bat ...');
Writeln('then ensure the format of directory s path is compatible with the');
Writeln('system is being used (i.e. c:\MyDucu-1\... or c:\My Documents\...');
Writeln('press Enter to continue ...');
Readln;
END;

(* & code segment starts here *)

PROCEDURE AlocateMemberDataConstants;

VAR
j : LONGINT; (*member counter*)
BEGIN
FOR j := 1 TO NoMems DO BEGIN
(*Elasticity unit conversion(1e6) from GPa => KPa *)
Emodul[j] := Mat[Member[j].Mat1.Elasticity_M * 1e6;
Inr[j] := Sec[Member[j].C_Sec].M_Inertia;
L[j] := Member[j].L;
Area[j] := Sec[Member[j].C_Sec].Area;
Fi[j] := Member[j].Fi;
END;(* FOR j*)
END; (*PROCEDURE*)

PROCEDURE gaussj(VAR a: glnpbynp; n,np: LONGINT;
VAR b: glnpbym; m,mp: LONGINT);

VAR
big, dum, pivinv: EXTENDED;
i,icol,irow,j,k,l,11: LONGINT;
indxc, indxr, ipiv: glnp;
BEGIN
FOR j := 1 to n DO BEGIN
IF (ipiv[j] <> 1) THEN BEGIN
FOR k := 1 to n DO BEGIN
END;(* FOR k*)
END;(* FOR j*)
END;(* PROCEDURE*)
icol := k
END
END ELSE IF (ipiv[k] > 1) THEN BEGIN
writeln('pause 1 in GAUSSJ - singular matrix');
writeln(data1,'pause 1 in GAUSSJ - singular matrix');Writeln(Chr(7));EndProgram;
readln
END
END
END;
ipiv[icol] := ipiv[icol]+1;
IF (irow <> icol) THEN BEGIN
FOR l := 1 to n DO BEGIN
dum := a[irow,l];
a[irow,l] := a[icol,l];
a[icol,l] := dum
END;
FOR l := 1 to m DO BEGIN
dum := b[irow,l];
b[irow,l] := b[icol,l];
b[icol,l] := dum
END
END;
END;
indxr[i] := irow;
indxc[i] := icol;
IF (a[icol,icol] = 0.0) THEN BEGIN
writeln('pause 2 in GAUSSJ - singular matrix');
writeln(data1,'pause 2 in GAUSSJ - singular matrix');
Writeln(Chr(7));EndProgram; readln
END;
pivinv := 1.0/a[icol,icol];
a[icol,icol] := 1.0;
END;
BEGIN
FOR l := 1 to n DO BEGIN
END;
BEGIN
FOR l := 1 to n DOWNTO 1 DO BEGIN
END
BEGIN
PROCEDURE DetermineElementTransMatrices;
VAR
j, k, m : LONGINT;
BEGIN
FOR j := 1 TO NoMems DO BEGIN
(* transformation matrix: row 1 *)
ElemTransMat[j,1,1] := Cos(Fi[j]);
if ABS(ElemTransMat[j,1,1])=0 then ElemTransMat[j,1,1]:=0;
ElemTransMat[j,1,2] := Sin(Fi[j]);
if ABS(ElemTransMat[j,1,2])=0 then ElemTransMat[j,1,2]:=0;
ElemTransMat[j,1,3] := 0;
ElemTransMat[j,1,4] := 0;
ElemTransMat[j,1,5] := 0;
ElemTransMat[j,1,6] := 0;
Appendix A4.5, Program ANALYSIS
(* transformation matrix: row 2 *)
ElemTransMat[j,2,1] := -Sin(Fi[j]);
if ABS(ElemTransMat[j,2,1])=0 then ElemTransMat[j,2,1]:=0;
ElemTransMat[j,2,2] := Cos(Fi[j]);
if ABS(ElemTransMat[j,2,2])=0 then ElemTransMat[j,2,2]:=0;
ElemTransMat[j,2,3] := 0;
ElemTransMat[j,2,4] := 0;
ElemTransMat[j,2,5] := 0;
ElemTransMat[j,2,6] := 0;

(* transformation matrix: row 3 *)
ElemTransMat[j,3,1] := 0;
ElemTransMat[j,3,2] := 0;
ElemTransMat[j,3,3] := 1;
ElemTransMat[j,3,4] := 0;
ElemTransMat[j,3,5] := 0;
ElemTransMat[j,3,6] := 0;

(* transformation matrix: row 4 *)
ElemTransMat[j,4,1] := 0;
ElemTransMat[j,4,2] := 0;
ElemTransMat[j,4,3] := 0;
ElemTransMat[j,4,4] := Cos(Fi[j]);
if ABS(ElemTransMat[j,4,4])=0 then ElemTransMat[j,4,4]:=0;
ElemTransMat[j,4,5] := Sin(Fi[j]);
if ABS(ElemTransMat[j,4,5])=0 then ElemTransMat[j,4,5]:=0;
ElemTransMat[j,4,6] := 0;

(* transformation matrix: row 5 *)
ElemTransMat[j,5,1] := 0;
ElemTransMat[j,5,2] := 0;
ElemTransMat[j,5,3] := 0;
ElemTransMat[j,5,4] := -Sin(Fi[j]);
if ABS(ElemTransMat[j,5,4])=0 then ElemTransMat[j,5,4]:=0;
ElemTransMat[j,5,5] := Cos(Fi[j]);
if ABS(ElemTransMat[j,5,5])=0 then ElemTransMat[j,5,5]:=0;
ElemTransMat[j,5,6] := 0;

(* transformation matrix: row 6 *)
ElemTransMat[j,6,1] := 0;
ElemTransMat[j,6,2] := 0;
ElemTransMat[j,6,3] := 0;
ElemTransMat[j,6,4] := 0;
ElemTransMat[j,6,5] := 0;
ElemTransMat[j,6,6] := 1;
END;(*FOR j*)
FOR j := 1 TO NoMems DO BEGIN
 writeln(datal);
 writeln(datal,'Transformation matrix for member number :', j:3);
 writeln(datal);
 FOR k := 1 TO 6 DO BEGIN
 FOR m := 1 TO 6 DO
 write(datal,ElemTransMat[j,k,m]:8:3,char(9));
 writeln(datal);
 END;
 writeln(datal);
END;(*FOR j*)
END;(*PROCEDURE*)

PROCEDURE DetermineLocalElementStiffnessMatrices;
(*to determine the local element stiffness matrix*)
VAR
 j, k, m, FACT : LONGINT;
 EA_L, EI_L3 : EXTENDED;
BEGIN
 EA_L:=0; EI_L3:=0;
 FOR j := 1 TO NoMems DO BEGIN
 Fact := 0;
 S_J := Member[j].S_Join;
 E_J := Member[j].E_Join;
 EA_L := Emodul[j]*Area[j]/L[j]; (*KPa*)
 EI_L3 := Emodul[j]*Inr[j]/(D[j]*Lij1*L1j1); (*RPa*)
 (* stiffness matrix: row 1 *)
 ElemL_StiffMat[j,1,1] := EA_L;
 ElemL_StiffMat[j,1,2] := 0;
 ElemL_StiffMat[j,1,3] := 0;
 (* stiffness matrix: row 2 *)
 ElemL_StiffMat[j,2,1] := -Sin(Fi[j]);
 if ABS(ElemL_StiffMat[j,2,1])=0 then ElemL_StiffMat[j,2,1]:=0;
 ElemL_StiffMat[j,2,2] := Cos(Fi[j]);
 if ABS(ElemL_StiffMat[j,2,2])=0 then ElemL_StiffMat[j,2,2]:=0;
 ElemL_StiffMat[j,2,3] := 0;
 ElemL_StiffMat[j,2,4] := 0;
 ElemL_StiffMat[j,2,5] := 0;
 ElemL_StiffMat[j,2,6] := 0;
 (* stiffness matrix: row 3 *)
 ElemL_StiffMat[j,3,1] := 0;
 ElemL_StiffMat[j,3,2] := 0;
 ElemL_StiffMat[j,3,3] := 1;
 ElemL_StiffMat[j,3,4] := 0;
 ElemL_StiffMat[j,3,5] := 0;
 ElemL_StiffMat[j,3,6] := 0;
 (* stiffness matrix: row 4 *)
 ElemL_StiffMat[j,4,1] := 0;
 ElemL_StiffMat[j,4,2] := 0;
 ElemL_StiffMat[j,4,3] := 0;
 ElemL_StiffMat[j,4,4] := Cos(Fi[j]);
 if ABS(ElemL_StiffMat[j,4,4])=0 then ElemL_StiffMat[j,4,4]:=0;
 ElemL_StiffMat[j,4,5] := Sin(Fi[j]);
 if ABS(ElemL_StiffMat[j,4,5])=0 then ElemL_StiffMat[j,4,5]:=0;
 ElemL_StiffMat[j,4,6] := 0;
 (* stiffness matrix: row 5 *)
 ElemL_StiffMat[j,5,1] := 0;
 ElemL_StiffMat[j,5,2] := 0;
 ElemL_StiffMat[j,5,3] := 0;
 ElemL_StiffMat[j,5,4] := -Sin(Fi[j]);
 if ABS(ElemL_StiffMat[j,5,4])=0 then ElemL_StiffMat[j,5,4]:=0;
 ElemL_StiffMat[j,5,5] := Cos(Fi[j]);
 if ABS(ElemL_StiffMat[j,5,5])=0 then ElemL_StiffMat[j,5,5]:=0;
 ElemL_StiffMat[j,5,6] := 0;
 (* stiffness matrix: row 6 *)
 ElemL_StiffMat[j,6,1] := 0;
 ElemL_StiffMat[j,6,2] := 0;
 ElemL_StiffMat[j,6,3] := 0;
 ElemL_StiffMat[j,6,4] := 0;
 ElemL_StiffMat[j,6,5] := 0;
 ElemL_StiffMat[j,6,6] := 1;
END;(*FOR j*)
END;(*PROCEDURE*)

Appendix A4.5, Program ANALYSIS
ElemL_StiffMat[j,1,4] := -EA_L;
ElemL_StiffMat[j,1,5] := 0;
ElemL_StiffMat[j,1,6] := 0;

(* stiffness matrix: row 2 *)
ElemL_StiffMat[j,2,1] := 0;
If (S_J=0) and (E_J=1) then FACT := 3 else
If (S_J=1) and (E_J=0) then FACT := 3 else
If (S_J=0) and (E_J=0) then FACT := 12;
ElemL_StiffMat[j,2,2] := FACT*EI_L3;
If (S_J=0) and (E_J=1) then FACT := 3 else
If (S_J=1) and (E_J=0) then FACT := 0 else
If (S_J=0) and (E_J=0) then FACT := 6;
ElemL_StiffMat[j,2,3] := FACT*EI_L3*L[j];
ElemL_StiffMat[j,2,4] := 0;
If (S_J=0) and (E_J=1) then FACT := -3 else
If (S_J=1) and (E_J=0) then FACT := -3 else
If (S_J=0) and (E_J=0) then FACT := -12;
ElemL_StiffMat[j,2,5] := FACT*EI_L3;
If (S_J=0) and (E_J=1) then FACT := 0 else
If (S_J=1) and (E_J=0) then FACT := 3 else
If (S_J=0) and (E_J=0) then FACT := 6;
ElemL_StiffMat[j,2,6] := FACT*EI_L3*L[j];

(* stiffness matrix: row 3 *)
ElemL_StiffMat[j,3,1] := 0;
If (S_J=0) and (E_J=1) then FACT := 3 else
If (S_J=1) and (E_J=0) then FACT := 0 else
If (S_J=0) and (E_J=0) then FACT := 6;
ElemL_StiffMat[j,3,2] := FACT*EI_L3*L[j];
ElemL_StiffMat[j,3,3] := 0;
If (S_J=0) and (E_J=1) then FACT := -3 else
If (S_J=1) and (E_J=0) then FACT := 0 else
If (S_J=0) and (E_J=0) then FACT := -12;
ElemL_StiffMat[j,3,4] := FACT*EI_L3*L[j];
ElemL_StiffMat[j,3,5] := 0;
If (S_J=0) and (E_J=1) then FACT := -3 else
If (S_J=1) and (E_J=0) then FACT := 0 else
If (S_J=0) and (E_J=0) then FACT := -6;
ElemL_StiffMat[j,3,6] := FACT*EI_L3*L[j];

(* stiffness matrix: row 4 *)
ElemL_StiffMat[j,4,1] := -EA_L;
ElemL_StiffMat[j,4,2] := 0;
ElemL_StiffMat[j,4,3] := 0;
ElemL_StiffMat[j,4,4] := EA_L;
ElemL_StiffMat[j,4,5] := 0;
ElemL_StiffMat[j,4,6] := 0;

(* stiffness matrix: row 5 *)
ElemL_StiffMat[j,5,1] := 0;
If (S_J=0) and (E_J=1) then FACT := -3 else
If (S_J=1) and (E_J=0) then FACT := -3 else
If (S_J=0) and (E_J=0) then FACT := -12;
ElemL_StiffMat[j,5,2] := FACT*EI_L3;
If (S_J=0) and (E_J=1) then FACT := -3 else
If (S_J=1) and (E_J=0) then FACT := 0 else
If (S_J=0) and (E_J=0) then FACT := -6;
ElemL_StiffMat[j,5,3] := FACT*EI_L3*L[j];
ElemL_StiffMat[j,5,4] := 0;
If (S_J=0) and (E_J=1) then FACT := 3 else
If (S_J=1) and (E_J=0) then FACT := 3 else
If (S_J=0) and (E_J=0) then FACT := 12;
ElemL_StiffMat[j,5,5] := FACT*EI_L3;
If (S_J=0) and (E_J=1) then FACT := 0 else
If (S_J=1) and (E_J=0) then FACT := -3 else
If (S_J=0) and (E_J=0) then FACT := -6;
ElemL_StiffMat[j,5,6] := FACT*EI_L3*L[j];

(* stiffness matrix: row 6 *)
ElemL_StiffMat[j,6,1] := 0;
If (S_J=0) and (E_J=1) then FACT := 0 else
If (S_J=1) and (E_J=0) then FACT := 0 else
If (S_J=0) and (E_J=0) then FACT := 6;

Appendix A4.5, Program ANALYSIS 4 - 47
Element Local Stiffness matrix for member number: ', j:3);
writeln(datal);
FOR k := 1 TO 6 DO BEGIN
 FOR m := 1 TO 6 DO BEGIN (*KPa*)
 write(datal,ElemL_StiffMat[j,k,m]:8:3,char(9));
END;(*FOR k*)
writeln(datal);
END;(*FOR j*)
END;
(*PROCEDURE*)

PROCEDURE DetermineElemG_StiffMat;
VAR
 j, (** member counter*)
 k, (** row counter premultiplier *)
 m, (** row counter postmultiplier *)
 n : LONGINT; (** col counter premultiplier & row counter postmultiplier *)
BEGIN
(* rem:Temp[k,m] = ElemL_StiffMat[k,n] x ElemTransMat[n,m) for j members. *)
FOR j :=1 to NoMems DO BEGIN
 FOR k :=1 TO 6 DO (*row counter premultiplier *)
 FOR m :=1 TO 6 DO
 FOR n :=1 TO 6 DO begin
 Temp[j,k,m] := ElemL_StiffMat[j,k,n]*ElemTransMat[j,n,m] + Temp[j,k,m];
end;
END; (*for n *)
END; (*for j *)
writeln(datal);
writeln(datal);
FOR j := 1 TO NoMems DO BEGIN
writeln(datal);
writeln(datal,'Element TEMP matrix for member number :', j:3);
writeln(datal);
FOR k := 1 TO 6 DO BEGIN
 FOR m := 1 TO 6 DO BEGIN
 write(datal,TEMP[j,k,m]:8:3,char(9));
END;(*FOR k*)
writeln(datal);
END;(*FOR j*)
writeln(datal);

(* Transpose ElemTransMat[n,m] for j members due to being orthogonal *)
FOR j :=1 TO NoMems DO BEGIN
 FOR k :=1 TO 6 DO
 FOR m :=1 TO 6 DO
 IF k<>m THEN begin
 ElemTposTransMat[j,k,m] := - ElemTransMat[j,k,m];
 if ABS(ElemTposTransMat[j,k,m]) = 0 then
 ElemTposTransMat[j,k,m] := 0;
 end ELSE
 ElemTposTransMat[j,k,m] := ElemTransMat[j,k,m];
END;(* for j1NoMems*)
writeln(datal);

Appendix A4.5, Program ANALYSIS 4 - 48
writeln(datal);
FOR j := 1 TO NoMems DO BEGIN
 writeln(datal);
 writeln(datal,'Element Transpose Transformation matrix for member number : ', j:3);
 writeln(datal);
 FOR k := 1 TO 6 DO BEGIN
 FOR m := 1 TO 6 DO BEGIN
 writeln(datal,ElemTposTransMat[j,k,m]:8:3,char(9));
 end;
 end;
 writeln(datal);
END;
writeln(datal);

writeln(datal);
FOR j := 1 TO NoMems DO BEGIN
 writeln(datal);
 writeln(datal,'Element Global Stiff matrix for member number : ', j:3);
 writeln(datal);
 FOR k := 1 TO 6 DO BEGIN
 FOR m := 1 TO 6 DO
 FOR n := 1 TO 6 DO begin
 ElemG_StiffMat[j,k,m] :=
 ElemG_StiffMat[j,k,m] + ElemTposTransMat[j,k,n] * Temp[j,n,m];
 end;
 end;
 writeln(datal);
END;
ElemG_StiffMat[j,k,m];
END; (*FOR m46 *)
END; (*FOR k46 *)
END; (*FOR j*)
END;

Writeln(datal);
Writeln(datal);
Writeln(datal,' Structure Global Stiffness Matrix with NO-SPRING RESTRAINTs ');
Writeln(datal);
FOR k := 1 TO 3*NoNodes DO BEGIN
 FOR m := 1 TO 3*NoNodes DO begin (*KPa*)
 Write(datal,Globa1StifMat^[k,m]:8:3,char(9));
 end; (*FOR m13*NN*)
 Writeln(datal);
 Writeln(datal);
END; (*FOR k13*NN *)
Writeln(datal);

k := 0;
FOR j := 1 TO NoNdRs DO BEGIN
 k:= NdRs[j].name; (*Restricted Node is identified*)
 IF (NdRs[j].Xdir = 2) THEN BEGIN
 GlobalStifMat^[3*k-2,3*k-2] (*KPa*) :=
 NdRs[j].SprX(*KPa*) + GlobalStifMat^[3*k-2,3*k-2]; (*KPa*)
 writeln(datal,'X Restrain at node:',k:3,' columnn:',(3*k-2):3,
 char(32),NdRs[j].SprX:20:5);
 END; (*IF X*)
 IF (NdRs[j].Ydir = 2) THEN BEGIN
 GlobalStifMat^[3*k-1,3*k-1] :=
 NdRs[j].SprY + GlobalStifMat^[3*k-1,3*k-1];
 writeln(datal,'Y Restrain at node:',k:3,' columnn:',(3*k-1):3,
 char(32),NdRs[j].SprY:20:5);
 END; (*IF Y*)
 IF (NdRs[j].Zrot = 2) THEN BEGIN
 GlobalStifMat^[3*k,3*k] :=
 NdRs[j].SprZ + GlobalStifMat^[3*k,3*k];
 writeln(datal,'Z Restrain at node:',k:3,' columnn:',(3*k):3,
 char(32),NdRs[j].SprZ:20:5);
 END; (*IF Z*)
 END; (*FOR j1NN*)
Writeln(datal);
Writeln(datal);
Writeln(datal,'Global SuperStructure Stiffness Matrix SPRING RESTRAINTs INCLUDED ');
Writeln(datal);
FOR k := 1 TO 3*NoNodes DO BEGIN
 FOR m := 1 TO 3*NoNodes DO begin (*KPa*)
 Write(datal,GlobalStifMat"[k,m]:12:6,char(9));
 end; (*FOR m13*NN*)
 Writeln(datal);
 Writeln(datal);
END; (*FOR k13*NN*)
Writeln(datal);

PROCEDURE DetermineSoilStiffnessMatrix;
PROCEDURE InvertMatrix1(NSFlexMat:TwoDMatrixF;var SStifmat: TwoDMatrixF;
SizOfSqrMat:LongInt);
(*Program Inverse SoilFlexMat (originally from Fortran version inversAmat.txt;*)
(*This procedure is calculating the soil stiffness matrix from inversion *)
(*of the soil flexibility matrix then named as soilstifmatrix*)
Label 10;
Var
 i, j, K9, k9, N, N9, p, q: Longint;
 D, DI: EXTENDED;
begin
 i:=0; j:=0; K9:=0; k9:=0; N:=0; N9:=0; D:=0; DI:=0;
 N := EHS_dor; (*Size of EHS degrees of Restrain(non-zero) square matrix*)
 N9 := N-1;
 FOR i := 1 TO N Do begin

Appendix A4.5, Program ANALYSIS
DI := NSFlexMat[i,1];
If (DI=0) Then begin
WriteLn(datal,'Singular Matrix in soil flexi inversion');
WriteLn(Chr(7));ReadLn; EndProgram; Halt; End; (*if (DI=0)*)
For j:=1 TO N9 Do begin
J9 := j+1;
NSFlexMat[i,j] := NSFlexMat[i,J9] / DI;
end; (*j!n9*)
NSFlexMat[i,N] := 1 / DI;
For j:= 1 TO N Do begin
If (j =i) Then GoTo 10;
D := NSFlexMat[j,1];
For k :=1 TO N9 Do begin
k9 := k +1;
NSFlexMat[j,k] := NSFlexMat[j,k9] - NSFlexMat[i,k] * D;
end; (*fork1N9*)
NSFlexMat[j,N] := -NSFlexMat[i,N] * D;
10: end; (*forj!N*)
end; (*fori!N*)
(*result of inversion, has been stored in the same variable "SoilFlexMat"
and then copied in "SoilStifMat"*)
SStifMat:= NSFlexMat;
END;
(*procedure inve...1*)

PROCEDURE PrintSoilStifMat1(var datal:TEXT);
var
p, q :Longint;
begin
WriteLn(datal,' Soil Stiffness Matrix (all blocks covered) :');
WriteLn(datal);
FOR p := 1 TO EHS_dor DO BEGIN
FOR q := 1 TO EHS_dor DO BEGIN
Write(datal,SoilStifMat^[p,q]:10:6,chr(9));
END; (*FOR i!ln*)
WriteLn(datal);
WriteLn(datal);
End; (*FOR j!ln*)
END; (*procedure prin...1*)

PROCEDURE InvertMatrix2 (x:TwoDMatrixF; var InvX:TwoDMatrixF; dor:LongInt);
var
i, j : LongInt;
begin (*inversion of a diagonal matrix*)
for i:= 1 to dor do
for j:= 1 to dor do
if (i=j) then begin
InvX[i,j]:= 1/x[i,j];
end;
END;
PROCEDURE PrintSoilStifMat2(var datal:TEXT);
var
p, q :Longint;
begin
WriteLn(datal,' Soil Stiffness Matrix (Diagonal blocks are considered):');
WriteLn(datal);
FOR p := 1 TO EHS_dor DO BEGIN
FOR q := 1 TO EHS_dor DO BEGIN
Write(datal,SoilStifMat^[p,q]:10:6,chr(9));
END; (*FOR i!ln*)
WriteLn(datal);
WriteLn(datal);
End; (*FOR j!ln*)
end; (*procedure prin...2*)
BEGIN
IF (ConsiderAlone in NO) then begin
InvertMatrix1(NetSoilFlexMat^, SoilStifMat^,EHS_dor);
PrintSoilStifMat1(datal);
End
ELSE BEGIN
InvertMatrix2 (NetSoilFlexMat^, SoilStifMat^,EHS_dor);
PrintSoilStifMat2(datal);
End;
END; (*procedure*)

PROCEDURE DetermineCombinedMatrices;

Appendix A4.5, Program ANALYSIS
VAR
i, j, m, n : Longint;
(* this global var: "CombSoilStrucStifMat" is onward used for calculation *)
BEGIN
For i := 1 TO 3*NoNodes DO
For j := 1 TO 3*NoNodes DO
 CombinSoilStrucStifMat^[i,j] := GlobalStifMat^[i,j];
If SelectedSoilModel<> 0 then
 For i := 1 TO EHS_dor DO Begin
 m := SoilPosDOR^[i].GlobStif;
 For j := 1 TO EHS_dor DO Begin
 n := SoilPosDOR^[j].GlobStif;
 CombinSoilStrucStifMat^[m,n] :=
 SoilStifMat^[i,j] + CombinSoilStrucStifMat^[m,n];
 End; (* for j!lEHS_dor *)
 End; (* for i!lEHS_dor *)
Writeln(stdout, ' Combined Soil Structure Stiffness Matrix : ');
FOR i := 1 TO 3*NoNodes DO BEGIN
 FOR j := 1 TO 3*NoNodes DO BEGIN
 Write(stdout, CombinSoilStrucStifMat^[i,j]:12:6,chr(9));
 END; (*FOR i!ln *)
 Writeln(stdout);
END; (*FOR j!ln*)
END;
(*procedure*)
PROCEDURE DetermineLocalFixedEndForces;
VAR
j, k, m : LONGINT;
BEGIN
(* transfer the loads Global => Local, then do the calculation for the fixed end forces, finally transfer the FEF vector into the global system.*)
(* Note: ONLY FORCE & MOMENT values are in Global sys (ie: X & Y); but XLoc is in local sys (ie: x' & y') *)
(* [Cos fi Sin fi] X (FX) (Fx' *)
 [-Sin fi Cos fi] Y (FY) (Fy' *)
(* calculate the FEF's in the local system *)
IF (NoPtLd >0) AND (PtLd[1].mem >0) THEN BEGIN
 For D:= 1 TO NoPtLd DO BEGIN
 m := PtLd^[j].mem;
 PtLd^[j].Fx_L := ElemTransMat[m,1,1]*PtLd^[j].Fx +
 ElemTransMat[m,1,2]*PtLd^[j].Fy + PtLd^[j].Fx_L;
 PtLd^[j].Fx_L :=
 ElemTransMat[m,2,1]*PtLd^[j].Fx +
 ElemTransMat[m,2,2]*PtLd^[j].Fy + PtLd^[j].Fx_L;
 END;
END;
FOR j:= 1 TO NoPtLd DO BEGIN
 m := PtLd^[j].mem;
 S_J := Member^[m].S_Join;
 E_J := Member^[m].E_Join;
 (* axial force at left hand end *)
 ElempxdFce_L^[m,1] := -PtLd^[j].Fx_L*(1-PtLd^[j].XLoc/L^[m]) +
 ElempxdFce_L^[m,1];
 (* shear force at left hand end *)
 If (S_J=0 and (E_J=1) then
 ElempxdFce_L^[m,2] := (-PtLd^[j].Fy_L/2)*(1-PtLd^[j].XLoc/L^[m])*
 (3-sqr(1-PtLd^[j].XLoc/L^[m])) +
 (3*PtLd^[j].Mz/2/L^[m])*(PtLd^[j].XLoc/L^[m])*
 (2-PtLd^[j].XLoc/L^[m]) +
 ElempxdFce_L^[m,2];
 else
 ElempxdFce_L^[m,2] := (-PtLd^[j].Fy_L/2)*sqr(1-PtLd^[j].XLoc/L^[m])*
 (2*PtLd^[j].XLoc/L^[m]) +
 (3*PtLd^[j].Mz/2/L^[m])*(1-PtLd^[j].XLoc/L^[m])*
 (1-PtLd^[j].XLoc/L^[m]) +
 ElempxdFce_L^[m,2];
 (* *)
END;
else
If (S_J=0) and (E_J=0) then
ElemFxdFce_L[m,2] := -PtLd[j].Fy_L*sqr(1-PtLd[j].XLoc/L[m]) * \[3-2*(1-PtLd[j].XLoc/L[m]) + 6*PtLd[j].Mz*(PtLd[j].XLoc/L[m]) * (1-PtLd[j].XLoc/L[m])/L[m] + ElemFxdFce_L[m,2] \]
else
If (S_J=1) and (E_J=1) then
ElemFxdFce_L[m,2] := -PtLd[j].Fy_L*(1-PtLd[j].XLoc/L[m]) + PtLd[j].Mz/L[m] + ElemFxdFce_L[m,2];
end

(* moment at left hand end *)
If (S_J=0) and (E_J=1) then
ElemFxdFce_L[m,3] := -PtLd[j].Fy_L*L[m]*(PtLd[j].XLoc/L[m]) * (1-PtLd[j].XLoc/L[m])*(2-PtLd[j].XLoc/L[m])/2 + PtLd[j].Mz*(1-3*sqr(1-PtLd[j].XLoc/L[m]))/2 + ElemFxdFce_L[m,3]
else
If (S_J=1) and (E_J=0) then
ElemFxdFce_L[m,3] := ElemFxdFce_L[m,3]
else
If (S_J=0) and (E_J=0) then
ElemFxdFce_L[m,3] := -PtLd[j].Fy_L*L[m]*(PtLd[j].XLoc/L[m]) * (3-PtLd[j].XLoc/L[m])/2 + 3*PtLd[j].Mz*(PtLd[j].XLoc/L[m]) * (2-3*(1-PtLd[j].XLoc/L[m]))/2/L[m] + ElemFxdFce_L[m,3]
else
If (S_J=1) and (E_J=1) then
ElemFxdFce_L[m,3] := ElemFxdFce_L[m,3];
end

(* axial force at right hand end *)
ElemFxdFce_L[m,4] := -PtLd[j].Fx_L*(PtLd[j].XLoc/L[m]) + ElemFxdFce_L[m,4];

(* shear force at right hand end *)
If (S_J=0) and (E_J=1) then
ElemFxdFce_L[m,5] := -PtLd[j].Fy_L*sqr(PtLd[j].XLoc/L[m]) * (3-sqr(PtLd[j].XLoc/L[m]))/2 + (-3*PtLd[j].Mz)*(1-PtLd[j].XLoc/L[m])*(1+PtLd[j].XLoc/L[m])/2/L[m] + ElemFxdFce_L[m,5]
else
If (S_J=1) and (E_J=0) then
ElemFxdFce_L[m,5] := (PtLd[j].Fy_L*L[m]*(1-PtLd[j].XLoc/L[m]) * (1-PtLd[j].XLoc/L[m])*(1+PtLd[j].XLoc/L[m])/2 + PtLd[j].Mz*(1-3*sqr(PtLd[j].XLoc/L[m]))/2 + ElemFxdFce_L[m,5]
else
If (S_J=0) and (E_J=0) then
begin
ElemFxdFce_L[m,5] := PtLd[j].Fy_L*L[m]*(1-PtLd[j].XLoc/L[m]) * (1-PtLd[j].XLoc/L[m])*(1+PtLd[j].XLoc/L[m])/2 + PtLd[j].Mz*(1-3*sqr(PtLd[j].XLoc/L[m]))/2 + ElemFxdFce_L[m,5] + Appendix A4.5, Program ANALYSIS 4 - 53
sqr(PtLd[j].XLoc/L[m]) + PtLd[j].Mz*(PtLd[j].XLoc/L[m])*
(2-3*(PtLd[j].XLoc/L[m])) +
ElemFxdFce_L[m,6]
end
else
 If (S_J=1)and (E_J=1) then
 ElemFxdFce_L[m,6] := ElemFxdFce_L[m,6];
 END; (*FOR*)
Writeln(datal);
Writeln(datal);
Writeln(datal,'Element Fixed End Forces in Local System by Point Loads only :');
Writeln(datal,'F"x@s':11,char(32),'F"y@s':11,char(32),'Mz@s':11,
 char(32),
 'F"x@e':11,char(32),'F"y@e':11,char(32),'Mz@e':11);
Writeln(datal);
Writeln(datal,' Fixed end forces for members:'));
 FOR m := 1 TO NoMems DO BEGIN
 Writeln(datal,'Member:',m:3);
 FOR k:= 1 TO 6 DO BEGIN
 Write(datal,ElemFxdFce_L[m,k]:11:4,char(32));
 END; (*FOR k16*)
 Writeln(datal);
 END; (*FOR j1NoMem*)
Writeln(datal);
END; (* IF NoPtLd>0*)
(* Uniformly Distributed Loads *)
IF (NoUDistLd >0) AND (UDistLd[1].mem >0) THEN BEGIN
 m :=0;S_J:=0;E_J:=0;
 For j:= 1 TO NoUDistLd DO BEGIN
 m := UDistLd[j].mem;
 if Fi[m]>0 then begin 	 (*for Fi in the first quarter*)
 UDistLd[j].Ux_L := Sin(Fi[m])*Cos(Fi[m])*
 (UDistLd[j].UX-UDistLd[j].UY) +
 UDistLd[j].UX_L;
 UDistLd[j].Uy_L := -sqr(Sin(Fi[m]))*UDistLd[j].UX +
 sqr(Cos(Fi[m]))*UDistLd[j].UY +
 UDistLd[j].Uy_L;
 end else
 if Fi[m]<0 then begin 	 (*for Fi in the fourth quarter*)
 UDistLd[j].Ux_L := Sin(Fi[m])*Cos(Fi[m])*
 (-UDistLd[j].UX+UDistLd[j].UY) +
 UDistLd[j].UX_L;
 UDistLd[j].Uy_L := sqr(Sin(Fi[m]))*UDistLd[j].UX +
 sqr(Cos(Fi[m]))*UDistLd[j].UY +
 UDistLd[j].Uy_L;
 end else
 begin 	 (*for Fi=0 a horizontal member*)
 UDistLd[j].Ux_L := ElemTransMat[m,1,1]*UDistLd[j].UX +
 ElemTransMat[m,1,2]*UDistLd[j].UY +
 UDistLd[j].UX_L;
 UDistLd[j].Uy_L := ElemTransMat[m,2,1]*UDistLd[j].UX +
 ElemTransMat[m,2,2]*UDistLd[j].UY +
 UDistLd[j].Uy_L;
 end;
 END;
 FOR j := 1 TO NoUDistLd DO BEGIN
 m := UDistLd[j].mem;
 S_J := Member[m].S_Join;
 E_J := Member[m].E_Join;
 (* axial force at left hand end *)
 U_ElemFxdFce_L[m,1] := -UDistLd[j].UX_L*L[m]/2 +
 U_ElemFxdFce_L[m,1];
 (* shear force at left hand end *)
 If (S_J=0)and (E_J=1) then
 U_ElemFxdFce_L[m,2] := -5*UDistLd[j].UY_L*L[m]/8+
 U_ElemFxdFce_L[m,2]
 else
 If (S_J=1)and (E_J=0) then
 U_ElemFxdFce_L[m,2] := -3*UDistLd[j].UY_L*L[m]/8 +
 U_ElemFxdFce_L[m,2];
 END; (* FOR j1NoMem*)
END;
Writeln(datal);
```
else
If (S_J=0) and (E_J=0) OR ((S_J=1) and (E_J=1)) then
U_ElemFxdFce_L[m,2] := -UDistLd[j].Uy_L*L[m]/2 +
U_ElemFxdFce_L[m,2];

(* moment at left hand end *)
If (S_J=0) and (E_J=1) then
U_ElemFxdFce_L[m,3] := -UDistLd[j].Uy_L*sqr(L[m])/8 +
U_ElemFxdFce_L[m,3]
else
If (S_J=1) and (E_J=0) then
U_ElemFxdFce_L[m,3] := U_ElemFxdFce_L[m,3]
else
If (S_J=0) and (E_J=0) then
U_ElemFxdFce_L[m,3] := -UDistLd[j].Uy_L*sqr(L[m])/12 +
U_ElemFxdFce_L[m,3]
else
If (S_J=1) and (E_J=1) then
U_ElemFxdFce_L[m,3] := U_ElemFxdFce_L[m,3];

(* axial force at right hand end *)
U_ElemFxdFce_L[m,4] := -UDistLd[j].Ux_L*L[m]/2 +
U_ElemFxdFce_L[m,4];

(* shear force at right hand end *)
If (S_J=0) and (E_J=1) then
U_ElemFxdFce_L[m,5] := -3*UDistLd[j].Uy_L*L[m]/6 +
U_ElemFxdFce_L[m,5]
else
If (S_J=1) and (E_J=0) then
U_ElemFxdFce_L[m,5] := -5*UDistLd[j].Uy_L*L[m]/8 +
U_ElemFxdFce_L[m,5]
else
If ((S_J=0) and (E_J=0)) OR ((S_J=1) and (E_J=1)) then
U_ElemFxdFce_L[m,5] := -UDistLd[j].Uy_L*L[m]/2 +
U_ElemFxdFce_L[m,5];

(* moment at right hand end *)
If (S_J=0) and (E_J=1) then
U_ElemFxdFce_L[m,6] := U_ElemFxdFce_L[m,6]
else
If (S_J=1) and (E_J=0) then
U_ElemFxdFce_L[m,6] := UDistLd[j].Uy_L*sqr(L[m])/8 +
U_ElemFxdFce_L[m,6]
else
If (S_J=0) and (E_J=0) then
U_ElemFxdFce_L[m,6] := UDistLd[j].Uy_L*sqr(L[m])/12 +
U_ElemFxdFce_L[m,6]
else
If (S_J=1) and (E_J=1) then
U_ElemFxdFce_L[m,6] := U_ElemFxdFce_L[m,6];

END; (*FOR j*)
WriteLn(datal);
WriteLn(datal,'Element Fixed End Forces in Local System by Uniform Loads only :');
WriteLn(datal,'Fnx@s':11,char(32),'F"y@s':11,char(32),
'Mz@s':11,char(32),'Fnx@e':11,char(32),
'F"y@e':11,char(32),
'Mz@e':11);
WriteLn(datal,'fixed end forces for members ');
FOR j := 1 TO NoMems DO BEGIN
WriteLn(datal,'Member:',j:3);
FOR k:= 1 TO 6 DO BEGIN
write(datal,U_ElemFxdFce_L[j,k]:11:4, chr(32));
END; (*FOR k16*)
WriteLn(datal);
END; (*FOR j1NoMems*)
WriteLn(datal);

(* calculates the total Fixed end forces due to Point and uniform loads *)
(* using the same parameter ElemFxdFce_L[j,k] which earlier was used *)
(* only for point loads, now is used for the total fixed end forces. *)
FOR j := 1 TO NoMems DO
FOR k:= 1 TO 6 DO BEGIN
ElemFxdFce_L[j,k] := U_ElemFxdFce_L[j,k] + ElemFxdFce_L[j,k];
```

PROCEDURE DetermineGlobalFixedEndForces;
VAR
 (* transferring the FEF's form Local to Glob system *)
 m, j, k : LONGINT;
BEGIN
 (* At this stage the ElemFxdFce_L[j,k,m] carries the total ElementFixedEnd *)
 (* Forces on 'j' members due to entire different types of loading on *)
 (* structure.*)
 (* in local coordinates. *)
 FOR m := 1 TO NoMems DO Begin
 FOR j := 1 TO 6 DO
 FOR k := 1 TO 6 DO begin
 ElemFxdFce_G[m,j] := ElemTposTransMat[m,j,k]*ElemFxdFce_L[m,k] +
 ElemFxdFce_G[m,j];
 END;
 END;
 END;
 Writeln(datal);
 Writeln(datal);
 Writeln(datal,'Element Fixed End Forces in Global System by all loads:');
 Writeln(datal,'Fx@s':11,char(32),'Fy@s':11,char(32),'Mz@s':11,
 char(32),'Fx@e':11,char(32),'Fy@e':11,char(32),'Mz@e':11);
 Writeln(datal);
 Writeln(datal,' Fixed End Forces for members:');
 FOR j := 1 TO NoMems DO BEGIN
 Writeln(datal,' Member: ',j:3);
 FOR k:= 1 TO 6 DO BEGIN
 write(datal,ElemFxdFce_G[j,k]:11:4, chr(32));
 END; (*FOR k16*)
 Writeln(datal);
 END; (*FOR j1NoMems*)
 Writeln(datal);
END; (*PROCEDURE*)

PROCEDURE DetermineEffectiveNodalForces;
VAR
 S, (*start node*)
 E, (*end node*)
 j, k, m, n: LONGINT;
BEGIN (* modified for non-consecutive nodes setting *)
 m :=0; n=x=0; S:=0; E:=0; (*initialising temporary parameters*)
 FOR j := 1 TO NoMems DO BEGIN (*induced by member loads*)
 S:= Member[j].S_Node;
 E:= Member[j].E_Node;
 FOR k := 1 TO 3 DO BEGIN
 EffNodeFce[3*(S-1)+k] := -ElemFxdFce_G[j,k] + EffNodeFce[3*(S-1)+k];
 END; (*FOR k3*)
 FOR k := 4 TO 6 DO BEGIN
 EffNodeFce[3*(E-1)+(k-3)] :=
 -ElemFxdFce_G[j,k] + EffNodeFce[3*(E-1)+(k-3)];
 END; (*FOR k6*)
 END; (*for j1Nomems *)
 FOR j := 1 TO NoNdLd DO BEGIN (*induced by node loads*)
 N:= NdLd[j].name;
 EffNodeFce[3*(N-1)+1] := NdLd[j].XForce + EffNodeFce[3*(N-1)+1];
 END;
EffNodeFce[3*(N-1)+2] := NdLd[j].YForce + EffNodeFce[3*(N-1)+2];
EffNodeFce[3*(N-1)+3] := NdLd[j].ZMoment+ EffNodeFce[3*(N-1)+3];
END; (*FOR j=NoNdLd *)
Write(datal,' Structure Effective Nodal Forces (RHS) {P} - {P”} : ');
Write(datal,' Node’, Chr(9), ’Force’ :10);
n := -1;
FOR j := 1 TO 3*NoNodes DO BEGIN
Inc(n);
m := n Div 3 + 1;
write(datal,m:4, Chr(9), EffNodeFce[j]:12:5);
END; (*FOR j=3*NoNodes*)
write(datal);
write(datal);
END; (*PROCEDURE ‘*‘)

PROCEDURE DetermineDegreesOfFreedom;
VAR
n, j, jj, kl, m : LONGINT;

BEGIN
(* dof 	 counter for degree of freedom *)
(* fd_dof : counter for degree of free displacement *)
(* pd_dof: counter for degree of presc. displacement *)
kl := 0; (* counter for node position *)
n := 0;
FOR j := 1 TO NoNdRs DO BEGIN
Inc(dof);
MatPosDOF[dof] := kl;
Write(datal,' Matrix Position DOF, kl = ' :27, k1:3);
IF NoPresLd <> 0 THEN BEGIN
For jj:=1 TO NoPresLd DO
IF (P_D_Ld[jj].name = N) THEN BEGIN
Inc(pd_dof);
PD_MatPosDOF[pd_dof] := kl;
Write(datal, ’Presc. displ. in Xdir (m) ’ = P_D_Ld[jj].Xdisp1:6:3);
END ELSE BEGIN (*IF PD does not belong to this dof *)
Inc(Fd_dof);
FD_MatPosDOF[fd_dof] := kl;
END;
ELSE BEGIN (* IF NoPresLd<>N *)
Inc(Fd_dof);
FD_MatPosDOF[fd_dof] := kl;
END;
END ELSE BEGIN (*IF Xdir1*)
Inc(dof);
MatPosDOF[dof] := kl;
Inc(Fd_dof);
FD_MatPosDOF[fd_dof] := kl;
Write(datal,' Matrix Position DOF, kl = ' :27, k1:3);
END; (*IF Xdir2*)
Write(datal);
kl := (n-1)*3 +2;
IF (NdRs[j].Ydir = 1) THEN BEGIN
Inc(dof);
MatPosDOF[dof] := kl;
Write(datal,' Matrix Position DOF, kl = ' :27, k1:3);
IF NoPresLd <> 0 THEN BEGIN
For jj:=1 TO NoPresLd DO
IF (P_D_Ld[jj].name = N) THEN BEGIN
Inc(pd_dof);
PD_MatPosDOF[pd_dof] := kl;
Write(datal, ’Presc. displ. in Ydir (m) ’ = P_D_Ld[jj].Ydisp1:6:3);
END ELSE BEGIN (*IF PD does not belong to this dof *)
Inc(Fd_dof);
FD_MatPosDOF[fd_dof] := kl;
END;
ELSE BEGIN (* IF NoPresLd<>N *)
Inc(Fd_dof);
FD_MatPosDOF[fd_dof] := kl;
END;
END ELSE BEGIN (*IF Xdir1*)
Inc(dof);
MatPosDOF[dof] := kl;
Inc(Fd_dof);
FD_MatPosDOF[fd_dof] := kl;
Write(datal,' Matrix Position DOF, kl = ' :27, k1:3);
END; (*IF Xdir2*)
Write(datal);
END;
END;
END;

Appendix A4.5, Program ANALYSIS
END ELSE
IF (P_D_Ld[jj].YDispl = 0) THEN BEGIN
Inc(Fd_dof);
FD_MatPosDOF[fd_dof]:= kl;
END;
END ELSE BEGIN /* IF NoPresLd<>N */
Inc(Fd_dof);
FD_MatPosDOF[fd_dof]:= kl;
END;
END ELSEBEGIN /* IF NoPresLd<>0 */
Inc(Fd_dof);
FD_MatPosDOF[fd_dof]:= kl;
END;
END ELSEBEGIN /* IF Ydir1 */
IF (NdRs[j].Ydir = 2) THEN BEGIN
Inc(dof);
MatPosDOF[dof] := k1;
Inc(Fd_dof);
FD_MatPosDOF[fd_dof]:= kl;
Write(datal,'Matrix Position DOF, k1 =':27, k1:3);
END; /* IF Ydir2 */
Write(datal);
k1 := (n-1)*3 +3;
IF (NdRs[j].Zrot = 1) THEN BEGIN
Inc(dof);
MatPosDOF[dof] := k1;
Write(datal,'Matrix Position DOE', kl =':27,k1:3);
IF NoPresLd<>0 THEN BEGIN
For jj:=1 TO NoPresLd DO
IF (P_D_Ld[jj].name = N) THEN BEGIN
IF (P_D_Ld[jj].ZDispl <> 0) THEN BEGIN
Inc(pd_dof);
PD_MatPosDOF[pd_dof]:= kl;
PD_NodeDOF^[pd_dof,1]:= P_D_Ld[jj].ZDispl;
Write(datal,Chr(9),'Presc. displ. in Zdir(rad) =',P_D_Ld[jj].Zdisp1:6:3);
END ELSE
IF (P_D_Ld[jj].ZDispl = 0)THEN BEGIN
Inc(Fd_dof);
FD_MatPosDOF[fd_dof]:= kl;
END;
END ELSE BEGIN /*IF NoPresLd<>N */
Inc(Fd_dof);
FD_MatPosDOF[fd_dof]:= kl;
END;
END ELSE BEGIN /* IF Zrot1 */
IF (NdRs[j].Zrot = 2) THEN BEGIN
Inc(dof);
MatPosDOF[dof] := k1;
Inc(Fd_dof);
FD_MatPosDOF[fd_dof]:= kl;
Write(datal,'Matrix Position DOF, k1 =':27, k1:3);
END; /* IF Zrot2 */
Write(datal); Write(datal); Write(datal);
END; /* FOR j1NoNodes */
writeln(datal, ' Total Degrees of freedom =',dof:3);
writeln(datal, ' NOTE : NON-FIXED nodes are listed below.');
For j := 1 TO 3*NoNodes DO
IF (MatPosDOF[j] > 0) THEN BEGIN
Write(datal,'dof=':5,j:3,
'Position in the (GSM) Global Stiffness Matrix =':25,MatPosDOF[j]:3);
END; /*FOR j */
Write(datal);
Write(datal); Write(datal); Write(datal); Write(datal);
PROCEDURE AssembleDOFStiffnessMatrices;
VAR
j, k, m, n : LONGINT;
BEGIN
(* NodalPrescDisplacement *)
(* DOF StifMat * DOFvector - Nodal Force vector = Reaction in DOF *)
(* BEGIN (* confirmation for correct data setting an enough entry *)
(temporary blockage

WriteI('To include the Nodal Prescribed Displacement, particular Degree(s),
' of Freedom should earlier have been considered as "FREE(s)";
' in correspondence to RESTRAINT section, otherwise, they are not,
' accepted as P_Displacements.');

Writeln('If there is any Nodal Prescribed Displacement Load, has ',
' the concerned Degree(s) of Freedom been accepted?');
Writeln('Answer [y] for yes and [n] for no...');
Readln(DOFaccepted);
if (DOFaccepted IN No) then begin
Writeln('Program is interrupted here. Define DOF(s) in the RESTRAINT',' Section, then run the program again.);
Readln; GOTO 100;
end;
END;(* question *)

(* determine Complete dof stiffness matrix by *)
(* Picking up the related members from GSMatrix *)
IF (dof >0) then BEGIN
FOR j := 1 TO dof DO BEGIN
 FOR k := 1 TO dof DO BEGIN
 StiffMatrixDOF'(j,k):= CombinSoilStrucStifMat'(MatPosDOF[j],MatPosDOF[k]);
 END; (*FOR k*)
END; (*FOR j*)
Writeln(datal,' Putting DOF matrix/vector in order...');
Writeln(datal,' Complete DOF Stiffness Matrix :');
Writeln(datal);
FOR j := 1 TO dof DO begin
 FOR k := 1 TO dof DO BEGIN
 Write(datal,StiffMatrixDOF'(j,k):12:3);
 END; (*FOR klDof*)
 Writeln(datal);
end; (*FOR j1dof*)
END; (* IF dof>0 *)

(* determine fd_dof stiffness matrix concern NON-P_DISPLACEMENTS *)
IF fd_dof >0 then BEGIN
FOR j := 1 TO fd_dof DO BEGIN
 FOR k := 1 TO fd_dof DO BEGIN
 FD_StiffMatrixDOF'(j,k):= CombinSoilStrucStifMat'(FD_MatPosDOF[j],FD_MatPosDOF[k]);
 END; (*FOR k*)
END; (*FOR j*)
Writeln(datal,' Putting FD_DOF matrix/vector in order...');
Writeln(datal,' FD_DOF Stiffness Matrix :');
Writeln(datal);
FOR j := 1 TO fd_dof DO begin
 FOR k := 1 TO fd_dof DO BEGIN
 Write(datal,FD_StiffMatrixDOF'(j,k):12:3);
 END; (*FOR klfd_dof*)
 Writeln(datal);
end; (*FOR j1fd_dof*)
END; (* IF fd_dof>0 *)

(* determine Coef_pd_dof stiffmatrix is COEF. FOR NODE PRESC.DISPLACEMENTS *)
IF pd_dof >0 then BEGIN
FOR j := 1 TO pd_dof DO BEGIN
 FOR k := 1 TO pd_dof DO BEGIN
 Coef_PDLStiffMatrixDOF'(j,k):= CombinSoilStrucStifMat'(FD_MatPosDOF[j],PD_MatPosDOF[k]);
 END; (*FOR k*)
END; (*FOR j*)
Writeln(datal,' Putting COEF_DOF matrix in order...');
Writeln(datal,' COEF_DOF Stiffness Matrix :');
Writeln(datal);
END; (* IF pd_dof>0 *)

Appendix A4.5, Program ANALYSIS

4 - 59
FOR j := 1 TO fd_dof DO Begin
 FOR k := 1 TO pd_dof DO BEGIN
 Write(datal,Coef_PD_StiffMatrixDOF\[j,k\]:12:3);
 END; (*FOR kldof*)
 Writeln(datal);
 END; (*FOR j1dof*)
 Writeln(datal);
END; (* if pd_dof0

FOR k := 1 TO fd_dof DO
 FOR m := 1 TO 1 DO
 FOR n := 1 TO pd_dof DO BEGIN
 PD_NodeFce^\[k,m\] := Coef_PD_StiffMatrixDOF^\[c,n\] * PD_NodeDOF^\[n,m\] +
 PD_NodeFce^\[k,m\];
 END; (*FOR n*)
 Writeln(datal,'Node Force vector made by Pres. Displ.');
 FOR j := 1 TO fd_dof DO BEGIN
 Writeln(datal,'dof'pos in GSM=',FD_MatPosDOF\[j\]:3,PD_NodeFce^\[j,1\]:12:3);
 END; (*FOR j*)
 Writeln(datal);
END; (*PROCEDURE*)

PROCEDURE DetermineDispDOF;
VAR
 j, n, m : LONGINT;
BEGIN
 (*main form of of A*X=B; where A is coef for variable; X is Var, B is constant*)
 (*1st parameter A(ie:FD_StiffMatrixDOF) is a matrix of actual size N*M stored i*)
 (*physical size of NP*NP(LHS); 2nd parameterB(ie:NodeFceDOF")of actual size l*M")
 (*'stored in input matrix of N*M containing(RHS) vector stored in an array of")
 (*'NP*MP.In output, first para is replaced by its matrix inverse and second par*)
 (*'is replaced by the corresponding set of solution vector.*)
 Writeln(datal,' RHS (correspond to NON_ZERO DOF) resulted from Loads and
 PDisplacement{b4 cals:');
 FOR j := 1 TO fd_dof DO begin
 IF (MatPosDOF\[j\] <> 0) THEN
 Writeln(datal,j:4,Chr(9),NodeFceDOF^\[j,1\]:12:5);
 END; (*FOR j*)
 (*##4#############################*)
 Gaussj(FD_StiffMatrixDOF",fd_dof,3*MaxNodes,NodeFceDOF",1,3*MaxModes);
 (*##############################M0##*)
 Writeln(datal,'Matrix is being solved ...');
 Writeln(datal);
 FOR j := 1 TO 3*NoNodes DO
 IF (MatPosDOF\[j\]<>0) THEN BEGIN
 NodeDefl\[FD_MatPosDOF\[j\]\]:= NodeFceDOF^\[j,1\];
 NodeDefl\[PD_MatPosDOF\[j\]\]:= PD_NodeDOF^\[j,1\];
 END; (*IF*)
 Writeln(datal,'Whole Struc Nodal Deflections resulted from Loads and
 PDisplacement(after cals:');
 Writeln(datal4,'Whole Struc Nodal Deflections:');
 n:=1;
 FOR j := 1 TO 3*NoNodes DO BEGIN
 Inc(n);
 m := n Div 3+1;
 Writeln(datal,m:4,Chr(9),NodeDefl\[j\]:12:5);
 Writeln(datal4,m:4,Chr(9),NodeDefl\[j\]:12:5);

Appendix A4.5, Program ANALYSIS 4 - 60
PROCEDURE DetermineReactions;
VAR
j, k, m, n, t : LONGINT;
BEGIN
FOR j := 1 TO 3*NoNodes DO BEGIN
 FOR k := 1 TO 3*NoNodes DO BEGIN
 NodeReac[j]:=GlobalStifMat^(j,k)*NodeDefl[k]+NodeReac[j];
 END;
 NodeReac[j]:=-EffNodeFce[j]+NodeReac[j];
END;
Writeln(data1,'REACTION AND DEFLECTION AT EACH SUPPORT NODE, in Global system');
Writeln(data1,'Horizontal Reaction Fx(kN), Vertical Reaction Fy(kN)',
 'Moment Reaction Mz(kN.m).');
k:=0; t:=0;
Writeln(data3,'Reaction & Deflection @ support in Global system');
Writeln(data1,'Node',Char(9),' Spring ',Char(32),' NodeG_Deflection',
 Char(32),' NodeReaction');
Writeln(data3,'Node',Char(9),'	 Spring',Char(9),
 ' G_Defl',' 	 G_React');
FOR j := 1 TO NoNodes DO BEGIN
 Inc(k);
 IF (NdRs[j].Xdir=2) or (NdRs[j].Xdir=0) THEN BEGIN
 NodeReac[k]:=NdRs[j].SprX*NodeDefl[k]+NodeReac[k];
 Writeln(data1,j:4,'x',Char(32),NdRs[j].SprX:10:5,Char(32),
 NodeDefl[k]:15:5,Char(32),NodeReac[k]:15:5):
 Writeln(data3,j:2,'x',Char(9),NdRs[j].SprX:10:5,Char(9),
 NodeDefl[k]:10:5,Char(9),NodeReac[k]:10:5);
 END;
 Inc(k);
 IF (NdRs[j].Ydir = 2) or (NdRs[j].Ydir=0) THEN BEGIN
 NodeReac[k]:=NdRs[j].SprY*NodeDefl[k]+NodeReac[k];
 Writeln(data1,j:4,'y',Char(32),NdRs[j].SprY:10:5,Char(32),
 NodeDefl[k]:15:5,Char(32),NodeReac[k]:15:5);
 Writeln(data3,j:2,'y',Char(9),NdRs[j].SprY:10:5,Char(9),
 NodeDefl[k]:10:5,Char(9),NodeReac[k]:10:5);
 END;
 Inc(k);
 IF (NdRs[j].Zrot = 2) or (NdRs[j].Zrot=0) THEN BEGIN
 NodeReac[k]:=NdRs[j].SprZ*NodeDefl[k]+NodeReac[k];
 Writeln(data1,j:4,'z',Char(32),NdRs[j].SprZ:10:5,Char(32),
 NodeDefl[k]:15:5,Char(32),NodeReac[k]:15:5);
 Writeln(data3,j:2,'z',Char(9),NdRs[j].SprZ:10:5,Char(9),
 NodeDefl[k]:10:5,Char(9),NodeReac[k]:10:5);
 END;
END; (*FOR j=1!NoNodes*)
END;
PROCEDURE DetermineG_ElementDeflections;
VAR
S, E, j, k, m : LONGINT;
BEGIN
S:=0; E:=0; (*initialising temporary parameters*)
FOR j := 1 TO NoMems DO BEGIN
 S:= Member[j].S_Node;
 E:= Member[j].E_Node;
 FOR k := 1 TO 3 DO BEGIN
 G_DispElem[j,k] := NodeDefl[3*(S-1)+k];
 END;
 END;
END; (*PROCEDURE*)

Appendix A4.5, Program ANALYSIS 4 - 61
END; (*FOR k13*)

FOR k := 4 TO 6 DO BEGIN
 G_DispElem[j,k] := NodeDefl[3*(E-1)+{k-3}];
END; (*FOR k46*)
END; (*FOR j1NoMems*)

WriteLn(data1,'Nodal Global Deflection Vector for Elements:');
FOR j := 1 TO NoMems DO BEGIN
 WriteLn(data1,'Element: ',j:3);
 FOR k :=1 TO 6 DO begin
 Write(data1,G_DispElem[j,k]:10:5);
 End;
 WriteLn(data1);
END; (*FOR j1NoMems*)
WriteLn(data1);
WriteLn(data1);

PROCEDURE DetermineL_ElementDeflections;
VAR
 j, k, m : LONGINT;
BEGIN
 FOR j := 1 TO NoMems DO
 FOR k := 1 TO 6 DO
 FOR m := 1 TO 6 DO BEGIN
 L_DispElem[j,k] := ElemTransMat[j,k,m] * G_DispElem[j,m] + L_DispElem[j,k];
 END; (* FOR mkj *)
 END; (*FOR j1NoMems*)
WriteLn(data1,'Nodal Local Deflection Vector for Elements:');
FOR j := 1 TO NoMems DO BEGIN
 WriteLn(data1,'Element: ',j:3);
 FOR k :=1 TO 6 DO begin
 Write(data1,L_DispElem[j,k]:10:5);
 End;
 WriteLn(data1);
END; (*FOR j1NoMems*)
WriteLn(data1);
WriteLn(data1);

PROCEDURE DetermineElementInternalForces;
VAR
 j, k, m : LONGINT;
BEGIN
 FOR j := 1 TO NoMems DO
 FOR k := 1 TO 6 DO BEGIN
 FOR m := 1 TO 6 DO BEGIN
 ReacElem[j,k] := ElemL_StiffMat[j,k,m] * L_DispElem[j,m] + ReacElem[j,k];
 END; (*FOR m16*)
 ReacElem[j,k] := ReacElem[j,k] + ElemFxdFce_L[j,k];
 END; (*FOR k16*)
 END; (*FOR j1NoMems*)
WriteLn(data1,'Internal forces for elements(In local system) ');
WriteLn(data3,'Internal forces for elements(In local system) ');
FOR j := 1 TO NoMems DO BEGIN
 WriteLn(data1,'Element: ',j:3);
 WriteLn(data3,'Elm: ',j:3,chr(9));
 FOR k :=1 TO 6 DO begin
 Write(data1,ReacElem[j,k]:10:5,chr(9));
 Write(data3,ReacElem[j,k]:10:5,chr(9));
 End;
 WriteLn(data1);
 WriteLn(data3);
END; (*FOR*)
END; (*PROCEDURE*)

 (* MAIN PROGRAM *)

BEGIN
NewData;

Appendix A4.5, Program ANALYSIS

4 - 62
clrscr;
{
 ShowMeReminderNote;
}
InitialiseGlobalVars;
InitialiseMatricesMethodArrays;
WriteIn('Type in the user main output file name.
 * Preferred format <FileName>.';
Readln(OutFileStructure);
ASSIGN(data1,'c:\MyDocu-1\3tp\A_work\AllOuts\'+ OutFileStructure);
ASSIGN(data1,'c:\My Documents\3tp\A_work\AllOuts\'+ OutFileStructure);
check for if the format of PATH is applicable
ASSIGN(data1,OutFullCompar);
ASSIGN(data4,NodalG_DeflCompar);
PutHeading1(data1);
AppendFile(data3,OutFullCompar);
AppendFile(data4,NodalG_DeflCompar);
LoadDataFromInputFiles(Member,NoPresLd,NoNdLd,NoPtLd,NoUDistLd);
DecideSoilModel;
If (SelectedSoilModel=1) or (SelectedSoilModel=2) then
 Load3rd_DDataFromInputFiles
else if (SelectedSoilModel=0) then
 NoSoilMessage;
AlocateMemberDataConstants;
DetermineElementTransMatrices;
DetermineLocalElementStiffnessMatrices;
DetermineElemG_StiffMat;
DetermineGlobalStiffnessMatrix;
Try :=1;
If SelectedSoilModel<> 0 Then begin
 DetermineSoilFlexibilityMatrix;
 DetermineSoilStiffnessMatrix; end;
DetermineCombinedMatrices;
DetermineLocalFixedEndForces;
DetermineGlobalFixedEndForces;
DetermineEffectiveNodalForces;
DetermineDegreesOfFreedom;
AssembleDOFStiffnessMatrices;
DetermineDispDOF;
DetermineReactions;
DetermineQ_ElementDeflections;
DetermineL_ElementDeflections;
DetermineElementInternalForces;
StampFile(data1);
WriteIn;
WriteIn(data1,' THE END ');
DrawALine(data3,98);
DrawALine(data4,68);
WriteIn('Thank you for using this program.');
EndProgram;
END. (*PROGRAM*)

(technical notes:
1- (%) this sign is the modification for soil case)
(during the testing it is recommended to use $S+ stack directive, but then
to be removed.
2- The source data file for 3D-extension should exist in this directory and any
limitation for the number of frames should be make prior to running this
program.)
UNIT BUILD;

{$D+,S-,N+} (*L+ for further links*)

INTERFACE

USES
 Crt, Dos, Globals;

PROCEDURE NewData;
PROCEDURE DisposeDynamicVars;
PROCEDURE LoadDataFromInputFiles
 (Var Member: MemberType;
 Var NoPresLd,NoNdLd,NoPtLd,NoUDistLd: LongInt);
PROCEDURE DecideSoilModel;
PROCEDURE Load3rd_DDataFromInputFiles;
FUNCTION LeadingZero(w : Word) : String;
PROCEDURE StampFile(var F:text);
PROCEDURE PutHeading1(var F:text);
PROCEDURE PutHeading2(var F:text; S:string);
PROCEDURE PutUpdateHeading(var F:text);
PROCEDURE AppendFile(var F:text; S:string);
PROCEDURE DrawALine(var F:text; j:Integer);
PROCEDURE EndProgram;

IMPLEMENTATION

PROCEDURE NewData;
BEGIN
 New(GlobalStifMat);
 New(CombinSoilStrucStifMat);
 New(SoilFlexMat);
 New(NetSoilFlexMat);
 New(SoilStifMat);
 New(StiffMatrixDOF);
 New(FD_StiffMatrixDOF);
 New(Coef_PD_StiffMatrixDOF);
 New(NodeFceDOF);
 New(PD_NodeDOF);
 New(PD_NodeFce);
END;(*PROCEDURE*)

PROCEDURE DisposeDynamicVars;
BEGIN
 Dispose(GlobalStifMat);
 Dispose(CombinSoilStrucStifMat);
 Dispose(SoilFlexMat);
 Dispose(NetSoilFlexMat);
 Dispose(SoilStifMat);
 Dispose(StiffMatrixDOF);
 Dispose(FD_StiffMatrixDOF);
 Dispose(Coef_PD_StiffMatrixDOF);
 Dispose(NodeFceDOF);
 Dispose(PD_NodeDOF);
 Dispose(PD_NodeFce);
END;(*PROCEDURE*)

Function LeadingZero(w : Word) : String;
VAR
 s : String;
BEGIN
 Str(w:0,s);
 IF Length(s) = 1 THEN
 s := '0' + s;
 LeadingZero := s;
END;

PROCEDURE StampFile(var F:text);
BEGIN
 GetDate(y,mont,day,d0w);
 GetTime(h,mint,s,hund);
 Write(F,'Day & Date: ', days[dow],', ', day:0, '/',mont:0, '' , y:0);
 Writeln(F,'. Time: ',LeadingZero(h),':',LeadingZero(mint));
END;

Appendix A4.5, Unit BUILD 4 - 64
PROCEDURE PutHeading1(var F:text);
Begin
Rewrite(F);
StampFile(F);
Writeln(datal,'Pascal FONT is NEW COURIER, any windows Output is needed to use ARIAL FONT for linage purpose.');
Writeln(datal,'Output File Name: ',OutFileStructure);
Writeln(datal,'Supporting Units: Dos, Crt, Build, Globals, SoilMode.');
Writeln(datal,'This file is a complete listing of the structure data and output.');
Writeln(datal,'(* VERY IMPORTANT NOTE: GLOBAL COORDINATES SHOULD BE SELECTED SUCH *');
Writeln(datal,' THAT ALL THE STRUCTURE STAYS IN THE FIRST QUARTER. *');
END;

PROCEDURE PutHeading2(var F:text; S:string);
Begin
Rewrite(F);
Writeln(F,'Name of this file: ',S);
StampFile(F);
Writeln(F,' This file is a comparative results of different runs of analysis.');
Writeln(F,' A summary of multiple 0/put file: ',OutFileStructure, ' ;
	3D-I/put file: ',SpaceData,'-');
Writeln(F);
END;

PROCEDURE PutUpdateHeading(var F:text);
Begin
Writeln(F,'Data obtained from main 0/put file: ',OutFileStructure);
Write(F,' Last Updated on '); StampFile(F);
END;

PROCEDURE AppendFile(var F: text; S:string);
Begin
Append(F); If IOResult <>0 Then PutHeading2(F,S);
Writeln(F);
DrawALine(F,50);
PutUpdateHeading(F);
END;

PROCEDURE LoadDataFromInputFiles
(Var Member: MemberType;
Var NoPresLd,NoNdLd,NoPtLd,NoUDistLd: LongInt);

PROCEDURE GetNodeGeometry;
PROCEDURE ValidateItems;
VAR
k: LONGINT;
BEGIN
if NoNodes > 1 then Begin
 for k:= 1 to NoNodes do
 if Node[k].Name<>k then begin
 Writeln('Error in Sequence of Node Numbering');
 Close(datal); Writeln(Chr(7)); Readln;
 EndProgram; HALT;
 end;
 for k:= 1 to NoNodes-1 do begin
 if (Node[k].Xcoord=Node[k+1].Xcoord) then
 if (Node[k].Ycoord=Node[k+1].Ycoord) then begin
 Writeln('Error: At least two Nodes are overlapping.');
 Close(datal); Writeln(Chr(7)); Readln;
 EndProgram; HALT;
 end;
 end;
END;

VAR
l, j : LONGINT;

Appendix A4.5, Unit BUILD
BEGIN
ASSIGN(data, InputFileNodeGeom);
RESET(data);
Readln(data, JunkStr); Writeln(data, JunkStr);
Readln(data, JunkStr); Writeln(data, JunkStr);
Readln(data, NoNodes); Writeln(data, NoNodes:3);
if NoNodes = 1 then begin
Write(data, 'Structure does not have enough node.');
Write(data, 'Structure does not have enough node.',
 'Program is interrupted at this point.',
 'retrieve the main data entry and restart.');
Close(data); Writeln(chr(7)); Readln;
EndProgram; HALT;
end;
if (NoNodes > MaxNodes) then begin
Write(data, 'Number of Nodes is greater than MaxNodes.',
 'Program is interrupted at this point.',
 'INCREASE MaxNodes in the CONST block',
 'recompile the program and run it again.');
Close(data); Writeln(chr(7)); Readln;
EndProgram; HALT;
end;
Readln(data, JunkStr); Writeln(data, JunkStr);
Readln(data, JunkStr); Writeln(data, JunkStr);
for i := 1 to NoNodes do
with Node[i] do begin
Readln(data, name, JunkChar, Xcoord, JunkChar, Ycoord, JunkChar, Descr);
Write(data, name:4, chr(9), Xcoord:12:3, chr(9), Ycoord:12:3, chr(9));
for j := 1 to 54 do write(data, Descr[j]);
if (Descr[2] <> '') then Writeln(data, '')
else Writeln(data);
end;
if not EOF(data) then begin
Write(data, 'The input data file *.TGM contains more than initial declared',
 'items it needs to be checked before succeeding',
 'the program.');
Close(data); Writeln(chr(7)); Readln;
EndProgram; HALT;
end;
ValidateItems;
CLOSE (data)
Writeln(data);
Writeln(data);
END;

PROCEDURE GetMatProperty;
PROCEDURE ValidateItems;
VAR
 k: LONGINT;
BEGIN
if (NoMats = 1) and (Mat[1]. name = 0) then begin
Write(data, 'Error: No material type entered.');
Close(data); Writeln(chr(7)); Readln;
EndProgram; HALT;
end;
if NoMats > 1 then Begin
for k := 1 to NoMats do
if Mat[k].Name<>k then begin
Write(data, 'Error in Sequence of Material Numbering');
Close(data); Writeln(chr(7)); Readln;
EndProgram; HALT;
end;
for k := 1 to NoMats-1 do begin
if (Mat[k].Elasticity_M=Mat[k+1].Elasticity_M) then begin
Write(data, 'Error: At least two Mat props are overlapping.');
Close(data); Writeln(chr(7)); Readln;
EndProgram; HALT;
end;
if Thermal)
end;

Appendix A4.5, Unit BUILD 4-66
End;(if)

END;(validation)

VAR
 i, j : LONGINT;
BEGIN
 ASSIGN(data,InputFileMatProp);
 RESET(data);
 Readln(data,JunkStr); Writeln(data,JunkStr);
 Readln(data,JunkStr); Writeln(data,JunkStr);
 Readln(data,NoMats); Writeln(data,NoMats:3);
 if (NoMats > MaxM_T) then begin
 Writeln('Size of the structure is bigger than expected',
 'program will be interrupted at this point',
 'please INCREASE THE MaxM_T in the CONST block',
 'recompile the program then run it.');
 Close(data); Writeln(Chr(7)); Readln;
 EndProgram; HALT;
 end;
 Readln(data,JunkStr); Writeln(data,JunkStr);
 Readln(data,JunkStr); Writeln(data,JunkStr);
 for i:= 1 to NoMats do
 with Mat[i] do begin
 Readln(data,name,JunkChar,Elasticity_M,JunkChar, Thermal_M,
 JunkChar,Descr);
 Write(data,name:3,Chr(9),Elasticity_M:10:8,Chr(9),Thermal_M:8:5,
 Chr(9));
 (unit conversion(*le6) from GPa => KPa will be done before calculations)
 for j :=1 TO 63 DO write(data,Descr[j]);
 if (Descr[2] <> '') then Writeln(data,'''
 else Writeln(data);
 end;
 end;
 if not EOF(data) then begin
 Writeln('The input data file *.TPM contains more than initial declared',
 'items it needs to be checked before succeeding ',
 'the program.');
 Close(data); Writeln(Chr(7)); Readln;
 EndProgram; HALT;
 end;
 ValidateItems;
 CLOSE(data);
 Writeln(data);
 Writeln(data);
 END;
(*procedure*)
PROCEDURE GetSecProperty;
PROCEDURE ValidateItems;
VAR
 k : LONGINT;
BEGIN
 if (NoSecs =1) and (Sec[1].name=0) then begin
 Writeln('Error: No Cross Section type entered.);
 Close(data); Writeln(Chr(7)); Readln;
 EndProgram; HALT;
 end;
 if NoSecs > 1 then Begin
 for k:= 1 to NoSecs do
 if (Sec[k].Name<>k) then begin
 Writeln('Error in Sequence of C_Section Numbering');
 Close(data); Writeln(Chr(7)); Readln;
 EndProgram; HALT;
 end;
 for k := 1 to NoSecs-1 do
 if (Sec[k].Area=Sec[k+1].Area) then
 if (Sec[k].M_Inertia=Sec[k+1].M_Inertia) then
 if Sec[k].Width=Sec[k+1].Width then begin
 Writeln('Error: At least two Section props are overlapping.');
 Close(data); Writeln(Chr(7)); Readln;
 EndProgram; HALT;
 end;
 end;
 End;(if NoSecs1)
 End;
VAR
 i, j : LONGINT;
begin
 ASSIGN(data, InputFileSecProp);
 RESET(data);
 Readln(data, JunkStr); Writeln(data, JunkStr);
 Readln(data, JunkStr); Writeln(data, JunkStr);
 Readln(data, NoSecs); Writeln(data, NoSecs:3);
 if (NoSecs > MaxS_T) then begin
 Writeln('Size of the structure is bigger than expected,';
 'program will be interrupted at this point,';
 'please INCREASE THE MAXCES_TYPE in the CONST block',;
 'recompile the program then run it. ');
 Writeln(Chr(7));
 Close(data); Writeln(Chr(7)); Readln;
 HALT;
 end;
 Readln(data, JunkStr); Writeln(data, JunkStr);
 Readln(data, JunkStr); Writeln(data, JunkStr);
 for i := 1 to NoSecs do
 with Sec[i] do begin
 Readln(data, name, JunkChar, Area, JunkChar, M_Inertia,
 JunkChar, Width, JunkChar, Descr);
 Write(data, name:3, Chr(9), Area:10:5, Chr(9), M_Inertia:10:6,
 Chr(9), Width:8:3, JunkChar);
 for j := 1 TO 62 DO write(data, Descr[j]);
 if (Descr[2] <> '') then Writeln(data, ' ')
 else Writeln(data);
 end;
 if not EOF(data) then begin
 Writeln('Input data file *.TCS contains more than initial declared',
 'items it needs to be checked before succeeding',
 'the program.');
 Close(data); Writeln(Chr(7)); Readln;
 ValidateItems;
 CLOSE(data);
 Writeln(data);
 Writeln(data);
 end;
end;

Appendix A4.5, Unit BUILD
VAR
 j, k : LONGINT;
 Fi_min : extended;
BEGIN
 1
 ASSIGN(data, InputFileMemberData);
 RESET(data);
 Readln(data, JunkStr); Writeln(data1, JunkStr);
 Readln(data, JunkStr); Writeln(data1, JunkStr);
 Readln(data, NoMems); Writeln(data1, NoMems:3);
 Readln(data, JunkStr); Writeln(data1, JunkStr);
 if (NoMems > MaxMembers) then begin
 Writeln('Size of the structure is bigger than expected',
 'program will be interrupted at this point, ' ,
 'please INCREASE THE MAXMEMBERS in the CONST block',
 ', recompile the program then run it.');
 Writeln(Chr(7));
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
 end;
 Readln(data, JunkStr);
 Insert(' 	 ', JunkStr, 1);
 Insert(' 	 [CCW] 	 ', JunkStr, 13);
 Writeln(data1, JunkStr);
 JunkStr35 := JunkStr;
 Writeln(data3, JunkStr35);
 Readln(data, JunkStr);
 Insert('Length[m]', JunkStr, 8); Insert('Fi[rad] ', JunkStr, 18);
 Writeln(data1, JunkStr);
 JunkStr35 := JunkStr;
 Writeln(data3, JunkStr35);
(2) For j := 1 to NoMems do With Member[j] do Begin
 Readln(data, name, JunkChar, S_Node, JunkChar, E_Node, JunkChar,
 S_Join, JunkChar, E_Join, JunkChar,
 C_Sec, JunkChar, Mat, JunkChar, Descr);
 L := SQRT(SQR(Node[E_Node].XCoord-Node[S_Node].XCoord) +
 SQR(Node[E_Node].YCoord-Node[S_Node].YCoord));
 if (L = 0) then begin
 writeln('Error in Member data, Due to Zero Element Lenght');
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
 end
 else begin (L<>0 lays in Y direction, Fi= +&- 0.5Pi)
 if (Node[E_Node].XCoord-Node[S_Node].XCoord)= 0 then begin
 Fi := 0.5*Pi
 else Fi := -0.5*Pi;
 end
 else begin (for general case: L<>0 does not lay in Y direction, Pic> +/-.5Pi)
 Fi := Arctan((Node[E_Node].YCoord-Node[S_Node].YCoord) /
 (Node[E_Node].XCoord-Node[S_Node].YCoord));
 end;
 end;
 Write(data1, Name:5, Chr(32), L:8:3, Chr(9), Fi:8:5, Chr(32),
 S_Node:3, Chr(9), E_Node:3, Chr(9),
 S_Join:1, Chr(32), E_Join:4, Chr(9),
 C_Sec:7, Chr(9), Mat:8, Chr(9));
 Writeln(data3, Name:5, Chr(32), L:8:3, Chr(9), Fi:8:5, Chr(32), S_Node:3,
 E_Node:3, Chr(9), E_Node:3);
for k :=1 TO 56 DO write(data1, Descr[k]);
if (Descr[2] <> '') then
 Writeln(data1, ''');
else
 Writeln(data1);
(2) End:(for-with)
PROCEDURE GetRestraint;
PROCEDURE ValidateItems;

VAR
 C_M, (member counter are common in the external nodes)
 C_M_H,(member counter are common in the external nodes, hinged)
 k, m, ml, N, r : LONGINT;
 ItemNotValid : Boolean;
begin
 C_M:=0; C_M_H:=0; ml:=0; N:=0;
 ItemNotValid := False;
 if (NoNdRs =1) and (NdRs[1].name=0) then ItemNotValid := True;
 if (ItemNotValid=True) then begin
 Writeln('Notice: No Node Restrain entered. ');
 Writeln('Notice: lack of restrain caused instability and need to',
 ' halt the program');
 Close(datal); Writeln(Chr(7));Readln;
 EndProgram; Halt;
 end;

 ItemNotValid := True;
 for k:= 1 to NoNdRs do
 if (NdRs[k].name<>0) then ItemNotValid := False;
 if (ItemNotValid=True) then begin
 Writeln(datal,'Notice: Restraint Data to anonymous Node is entered. ');
 Writeln('Notice: Anonymous Node is Restrained. Program is Halt.'); Close(datal); Writeln(Chr(7));Readln;
 EndProgram; Halt;
 end;

 ItemNotValid := True;
 k:= 1;
 While ((k<NoNdRs) and (ItemNotValid=True)) do begin
 if (NdRs[k].Xdir<>1) then ItemNotValid := False;
 k:= k+1;
 end;
 if (ItemNotValid=True) then begin
 Writeln(datal,'Error: Instability in structure in X direction.');
 Writeln('Notice: Program is interrupted (Instability in X).');
 Close(datal); Writeln(Chr(7));Readln;
 EndProgram; Halt;
 end;

 ItemNotValid := True;
 k:= 1;
 While ((k<NoNdRs) and (ItemNotValid=True)) do begin
 if (NdRs[k].Ydir<>1) then ItemNotValid := False;
 k := k+1;
 end;
 if (ItemNotValid=True) then begin
 Writeln(datal,'Error: Instability in structure in Y direction.');
 Writeln('Notice: Program is interrupted (Instability in Y).');
 Close(datal); Writeln(Chr(7));Readln;
 EndProgram; Halt;
end;
ItemNotValid := True;
k := 1;
While ((k<NoNdRs) and (ItemNotValid=True)) do
begin
if((NDRs[k].Zrot<>1) OR
(NDRs[k].Ydir<>1) or (NDRs[k].Xdir<>1)) then
ItemNotValid := False;
k := k+1;
end;
if (ItemNotValid=True) then begin
WriteLn(datal,'Error: Instability in structure in Z direction.');
WriteLn('Notice: Program is interrupted (Instability in Z).');
Close(datal); WriteLn(Chr(7)); Readln;
EndProgram; Halt;
end;
{temporary eliminated
for k:= 1 to NoNdRs do
if ((NDRs[k].Xdir=2) and (NDRs[k].SprX=0)) or
(NDRs[k].Ydir=2) and (NDRs[k].SprY=0)) or
(NDRs[k].Zrot=2) and (NDRs[k].SprZ=0)) then begin
WriteLn('Warning: A Semi Restrained Node with No External Spring Coefficient in
X, Y or Z direction exists.');
WriteLn('Is there any elastic soil model applied to node ",NdRs[k].name,"?');
Repeat
Write('Type [y] for yes or [n] for no. ');
Readln(SoilModelApplied);
If(SoilModelApplied in NO) then begin
WriteLn('Error: Instability at this node for Structure. Data is not
correct.',
'Program is interrupted. Review the
(Node Restrains Data)''
WriteLn(Chr(7));Close(datal); Readln; EndProgram; Halt;
end
Until ((SoilModelApplied in Yes) or (SoilModelApplied in NO));
end;
for r:=1 to NoNdRs do
if (NDRs[r].Zrot =1) then begin 	(determine the node’s Zdir FREEDOM)
N := NDRs[r].name;
for m:=1 to NoMems do
if (Member[m].S_Node=N) then begin (being a member in common at start node)
Inc(C_M); ml :=m;
if (Member[m].S_Join=1) then begin (having member a hinged start node)
Inc(C_M_H); end; end
else if (Member[m].E_Node=N) then begin (being a member in common at end node)
Inc(C_M); ml :=m;
if (Member[m].E_Join=1) then begin (having member a hinged end node)
Inc(C_M_H); end; end;
if (C_M_H >= C_M) then begin
WriteLn('Trouble is in Node :,N:3);
WriteLn('In this structure, there is a node hinge_connected to members
which has caused a FREE ROTATION node and causes structure instability.
Program is interrupted here, correct the data and run the program
again.');
Close(datal); WriteLn(Chr(7)); Readln; EndProgram; Halt;
end;
{ for rNoNdRs }
end; (* for rNoNdRs *)
if (NoNdRs<>NoNodes) then begin
WriteLn('The number of Nodal Restrains does not match with the number of Nodes.');
WriteLn('Program is interrupted here, correct the data and run the program again.');
Appendix A4.5, Unit BUILD 4 - 71
VAR
 j, k : LONGINT;
begin
 IF (NoNdRs <> NoNodes) then begin
 Writeln(‘Nodes number does not match the Nodes Restraints.’,
 ‘There is a restrain at a non-registered node.’,
 ‘Check with the structure data input :’,
 ‘a) Node Entry, b) Restrain Entry.’,
 ‘program will be interrupted at this point.’);
 Writeln(Chr(7));
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
end;

 for j:= 1 to NoNdRs do
 with NdRs[j] do begin
 Readln(data,JunkStr);
 Readln(data,JunkStr);
 Readln(data,JunkStr);
 Readln(data,NoNdRs); Writeln(data1,NoNdRs:3);
 if (NoNdRs <> NoNodes) then begin
 Writeln(‘Nodes number does not match the Nodes Restraints.’,
 ‘There is a restrain at a non-registered node.’,
 ‘Check with the structure data input :’,
 ‘a) Node Entry, b) Restrain Entry.’,
 ‘program will be interrupted at this point.’);
 Writeln(Chr(7));
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
 end;
 Readln(data,JunkStr);
 Readln(data,JunkStr);
 for k :=1 TO 1 DO write(data1,Descr[k]);
 if (Descr[2] <> ””) then Writeln(data1,’””
 else Writeln(data1,””);
 end;

 k:=0; 	 {Footing Nodes Data base is filled out.}
 writeln(‘In GetRestraint user’s comment interface is temporary blocked.’);readln;
 FOR j :=1 TO NoNdRs DO
 Begin
 Writeln(‘Is Node’,NdRs[j].name:3,’ a footing node ?’);
 Repeat
 Write(‘Type [y] for yes and [n] for no. ‘);
 Readln(NodeOnSoil);
 Until ((NodeOnSoil in Yes)or (NodeOnSoil in No));
 End; 	 {for i!lNoNdRs)
 IF (k <> NoFtNd) THEN
 BEGIN
 Writeln(‘Number of the nodes in contact with soil(supports) is not verified.’);
 Writeln(‘Program is in halt. Amend the data and run the program again.’);
 Readln; Close(data1);EndProgram; Halt;
 end; {validation}

Appendix A4.5, Unit BUILD 4 - 72
ValidateItems;
CLOSE(data);
Writeln(data1);
END; (*procedure*)

PROCEDURE GetPrescDisplLd;

PROCEDURE ValidateItems(Var NoPresLd:LongInt);
VAR
m, n: LONGINT;
begin
if (NoPresLd =1) and (P_D_Ld[1].name=1) then begin
 Writeln('JUST A REMINDER: ' 'No Prescribed Displacement entered'.');
 NoPresLd :=0;
 Write('Hit ENTER to continue. '); Readln;
end;
if (NoPresLd > 1) then
for n:= 1 to NoPresLd do
if (P_D_Ld[n].Name =0) then begin
 Writeln('Notice: Non-Valid Prescribed Displ. Load entered.');
 Close(data1); Writeln(Chr(7)); Readln ;
 EndProgram; Halt;
end;
if NoPresLd > 1 then
for n:= 1 to NoPresLd-1 do
if (P_D_Ld[n].Name = P_D_Ld[n+1].Name) then begin
 Writeln('Error: At least two Prescribed Displ. Loads are on one',
 ' Node. ');
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
end;
if (NoPresLd > 1) then
for n:= 1 to NoPresLd do
with P_D_Ld[n] do
if (Name <>0) and (XDisp1=0) and (YDisp1=0) and (ZDisp1=0) then begin
 Writeln('Notice: Non-Valid Prescribed Displ. Load entered.');
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
end;
if (NoNdRs<>NoNodes) then begin
 Writeln('The number of restrains does not match with the number of nodes,'',
 ' for each node there should be an individual restrain. Program is',
 ' interrupted here. Run the program after the correction.');
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
end;
for m:=1 to NoPresLd do begin
 if (P_D_Ld[m].XDispl<>0) then (* Node under P_D_load in Xdirection *)
 if (NdRs[P_D_Ld[m].name].XDir <>1) then begin
 Writeln('DOF does not have a correct corresponding Restrain mode. Xdir should be
FREE.(1) ',
 'Program is interrupted. Run the program after correction.');
 Close(data1); Writeln(Chr(7)); Readln; EndProgram; Halt;
 end;
 if (P_D_Ld[m].YDisp1<>0) then (* Node under P_D_load in Ydirection *)
 if (NdRs[P_D_Ld[m].name].YDir <>1) then begin
 Writeln('DOF does not have a correct corresponding Restrain mode. Ydir should be
FREE.(1) ',
 'Program is interrupted. Run the program after correction.');
 Close(data1); Writeln(Chr(7)); Readln; EndProgram; Halt;
 end;
 if (P_D_Ld[m].ZDisp1<>0) then (* Node under P_D_load in Zdirection *)
 if (NdRs[P_D_Ld[m].name].Zrot <>1) then begin
 Writeln('DOF does not have a correct corresponding Restrain mode. Zrot should be
FREE.(1) ',
 'Program is interrupted. Run the program after correction.');
 Close(data1); Writeln(Chr(7)); Readln; EndProgram; Halt;
 end;
end;

Appendix A4.5, Unit BUILD

4 - 73
VAR j, k : LONGINT;
begin
ASSIGN(data, InputFilePresLoad);
RESET(data);
Readln(data, JunkStr); Writeln(dataal, JunkStr);
Readln(data, NoPresLd); Writeln(dataal, 'Before evaluation:', NoPresLd:3);
if (NoPresLd > MaxNodes) then begin
 Writeln('Number of Prescribed loads is greater than expected.',
 'There is a Prescribed load at a non-registered node.',
 'Check with the load data input.',
 'a) Node Entry, b) Prescribed Load Entry.',
 'Program will be interrupted at this point. ');
 Writeln(Chr(7));
 Close(dataal); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
end;
Readln(data, JunkStr); Writeln(dataal, JunkStr);
Readln(data, JunkStr); Writeln(dataal, JunkStr);
for j := 1 to NoPresLd do with P_D_Ld[j] do begin
 Readln(data, Name, JunkChar, XDisp1, JunkChar, YDisp1, JunkChar,
 ZDisp1, JunkChar, Descr);
 Write(dataal, Name:4, Chr(9), XDisp1:6:3, Chr(9), YDisp1:8:3, Chr(32),
 ZDisp1:10:4, Chr(9));
 for k := 1 to 1 do write(dataal, Descr[k]);
 if (Descr[2] <> '') then Writeln(dataal, '')
 else Writeln(dataal);
end;
if not EOF(data) then begin
 Writeln('The input data file *.TPD contains more than initial
 declared items. Check before succeed');
 Close(dataal); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
end;
ValidateItems(NoPresLd);
Writeln(dataal, 'NoPresLd Load approved = ', NoPresLd);
CLOSE(data);
Writeln(dataal);
Writeln(dataal);
END; (*procedure*)

PROCEDURE GetNodalLd;
PROCEDURE ValidateItems;
VAR m : LONGINT;
begin
 if (NoNdLd = 1) and (NdLd[1].Name = 0) then begin
 Writeln('JUST A REMINDER: "No Node Load entered."');
 NoNdLd := 0;
 Write('Hit ENTER to continue. '); Readln;
 end;
 for m := 1 to NoNdLd-1 do
 if NdLd[m].Name = NdLd[m+1].Name then begin
 Writeln('Error:At least two Node Loads are applied to one Node.');
 Writeln(Chr(7)); Readln;
 Close(dataal); EndProgram; Halt;
 end;
 end;

end; (*validation*)

VAR j, k : LONGINT;
begin
ASSIGN(data, InputFileNodeLoad);
RESET(data);
Readln(data, JunkStr); Writeln(dataal, JunkStr);

Readln(data,JunkStr); Writeln(data1,JunkStr);
Readln(data,NoNdLd); Writeln(data1,'Before evaluation:',NoNdLd:3);

if (NoNdLd > MaxNodes) then begin
 Writeln('Number of Node-loads is greater than expected.',
 ' There is a Nodal Load at a non-registered node.',
 ' Check with the structure data input:
 a) Node Entry, b) Node Load Entry.
 Program will be interrupted at this point.');
 Writeln(Chr(7)); Readln;
 Close(data1); EndProgram; Halt;
end;

Readln(data,JunkStr);
Insert(' Load ',JunkStr,1);
Writeln(data1,JunkStr);
Readln(data,JunkStr);
Insert('Number ',JunkStr,1);
Writeln(data1,JunkStr);

for j:= 1 to NoNdLd do
with NdLd[j] do begin
 Readln(data,Name,JunkChar,XForce,JunkChar,YForce,JunkChar,ZMoment,
 JunkChar,Descr);
 Write(data1,:4,Chr(9),Name:4,Chr(9),XForce:9:3,Chr(9),YForce:9:3,
 Chr(9),ZMoment:9:3,JunkChar);
 for k :=1 TO 1 DO write(data1,Descr[k]);
 if (Descr[2] <> '') then Writeln(data1,'''')
 else Writeln(data1);
end;

if not EOF(data) then begin
 Writeln('The input data file *.TNL contains more than initial declared',
 ' items. Check before succeed');
 Writeln(Chr(7)); Readln;
 Close(data1); EndProgram; Halt;
end;

ValidateItems;
Writeln(data1,'NodalLd approved : ',NoNdLd);
CLOSE(data);
Writeln(data1);
Writeln(data1);

END;

(*procedure*)
PROCEDURE GetMPointLd;
PROCEDURE ValidateItems;
VAR
 m : LONGINT;
begin
 if (NoPtLd =1) and (PtLd[1].mem=0) then begin
 Writeln('JUST A REMINDER: "No Member Point Load entered."');
 Writeln(data1,' Notice: No Member Point Load entered.');
 NoPtLd := 0;
 Readln;
 end;
 if (NoPtLd > 1) then begin
 for m:= 1 to NoPtLd do
 if (PtLd[m].mem =0) then begin
 Writeln('Notice: Non-Valid Member Point Load entered.');
 Close(data1); Writeln(Chr(7)); Readln ;
 EndProgram; Halt;
 end;
 if NoPtLd > 1 then (existing an acceptable entry)
 for m:= 1 to NoPtLd-1 do
 if PtLd[m].Mem=PtLd[m+1].Mem then begin
 Writeln('Error: At least two Point Loads applied to a member',
 ' at the same point. Program is interrupted.');
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
 end;

APPENDIX A4.5, Unit BUILD 4 - 75
VAR
 j, k : LONGINT;
begin
 ASSIGN(data, InputFileLd);
 RESET(data);
 Readln(data, JunkStr); Writeln(data, JunkStr);
 Readln(data, JunkStr); Writeln(data, JunkStr);
 Readln(data, NoPtLd); Writeln(data, 'Before evaluation:', NoPtLd:3);
 if (NoPtLd > MaxPtLd) then begin
 Writeln('Size of the structure is bigger than expected', ',
 program will be interrupted at this point, ',
 'please INCREASE THE MAXPTLD in the CONST block',
 ', recompile the program then run it.');
 Writeln(Chr(7));
 Close(data); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
end;
 Readln(data, JunkStr); Writeln(data, JunkStr);
 Readln(data, JunkStr); Writeln(data, JunkStr);
 for j := 1 to NoPtLd do
 with PtLd[j] do begin
 Readln(data, Pos, JunkChar, Mem, JunkChar, XLoc, JunkChar,
 Fx, JunkChar, Fy, JunkChar, Mz, JunkChar, Descr);
 Write(data, Pos:4, Chr(32), Mem:8, Chr(32), XLoc:9:3, Chr(32),
 Fx:9:3, Chr(32), Fy:12:3, Chr(32), Mz:13:3, Chr(9));
 for k := 1 TO 1 DO write(data, Descr[k]);
 if (Descr[2] <> '') then Writeln(data, '...
 else Writeln(data);
 end;
 if not EOF(data) then begin
 Writeln('The input data file *.TPL contains more than initial
 declared items. Check before succeed');
 Close(data); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
 end;
 ValidateItems;
 Writeln(data, 'NoPtLd approved = ', NoPtLd);
 CLOSE(data);
 Writeln(data);
 Writeln(data);
end;

PROCEDURE GetMUnifDLd;
PROCEDURE ValidateItems;
VAR
 m : LONGINT;
begin
 if (NoUDistLd = 1) and (UDistLd[1].mem=0) then begin
 Writeln('JUST A REMINDER: "No Member Uniform Load entered."');
 Write('Hit ENTER to continue. '); Readln;
 NoUDistLd := 0;
 end;
 if (NoUDistLd > 1) then
 for m:= 1 to NoUDistLd do
 if UDistLd[m].Mem=UDistLd[m+1,Mem then begin
 Writeln('Notice: Non-Valid Member for Uniform Load entry.');
 Close(data); Writeln(Chr(7)); Readln;
 end;
 EndProgram; Halt;
end;
 if NoUDistLd > 1 then
 for m:= 1 to NoUDistLd do
 if UDistLd[m].Mem=UDistLd[m+1,Mem then begin
 Writeln('Error: At least two Identical Distributed Loads applied',
 ' to a member.');
 Writeln(Chr(7)); Readln;
 Close(data); EndProgram; Halt;
end;
VAR
 j, k : LONGINT;
begin
 ASSIGN(data, InputFileMUnifLd);
 RESET(data);
 Readln(data, JunkStr); Writeln(data, 'Before evaluation:', NoUDistLd:3);
 if (NoUDistLd > MaxUDLd) then begin
 Writeln('Size of the structure is bigger than expected',
 ', program will be interrupted at this point, ',
 'please INCREASE THE MAXUDLD in the CONST block',
 ', recompile the program then run it.);
 Close(data1); Writeln(Chr(7)); Readln;
 EndProgram; Halt;
 end;
 ValidateItems;
 Writeln(data1, 'NoUDistLd approved = ', NoUDistLd);
 CLOSE(data);
 Writeln(data1);
 Writeln(data1);
END;

PROCEDURE UpdateStructureSize;({procedure})
BEGIN
 Writeln('Following data has been suggested-');
 Writeln('Number of Nodes in contact with soil = ', NoFtNd:3);
 Writeln('Analytical Method, ISOTROPIC SOIL:');
 Writeln('Elastic Mod. (kPa)= ', E_Soil:6, '; Poisson’ s ratio= ', NuSoil:5:3);
 Writeln;
 Writeln('Numerical Method, CROSS-ANISOTROPIC SOIL:');
 Writeln('Eh=', Eh:6, '; Eh=', Eh:6, '; Poisson’ s ratios: Vh=', Vh:5:3);
 Writeln;
 Writeln('Numerical Method, ISOTROPIC SOIL:');
 Writeln('Young Modul(kPa)= ', YM:6:0, '; Poisson ratio PR= ', PR:5:3);
 Repeat
 Write('If the above constants are correct press [y] to proceed, or [n] to quit. ');
 Readln(ConstantsAccepted);
 IF (ConstantsAccepted IN No) THEN BEGIN
 Write('Program halted. Amend the constants (Build unit, CONST) then resume the exec. ');
 Readln; Close(data1); Close(data3); Close(data4); EndProgram; Halt;
 end;{questionl}
 Until ((ConstantsAccepted IN No) or (ConstantsAccepted IN Yes));
END;

BEGIN
 GetNodeGeometry;
 GetMatProperty;
 GetSecProperty;
 GetMemberData;
 GetRestraint;
 GetPrescDisplLd;
 GetNodalLd;
 GetMPointLd;
 GetMUnifDLd;
 UpdateStructureSize;
END;
PROCEDURE DecideSoilModel;
BEGIN
Write('Select soil model from the following three options:');
Repeat
Write('Type: (0) no soil model applies; (1) Isotropic; (2) Cross-anisotropic; ');
Readln(SelectedSoilModel);
If (SelectedSoilModel <>0) and (SelectedSoilModel <>1) and
(SelectedSoilModel <>2) then
Write('The selected option is INVALID. Type only: 0, 1 or 2 for your
selection...');
Until (SelectedSoilModel =0) or (SelectedSoilModel =1) or
(SelectedSoilModel =2);
Write('Selected Soil Model= ');
Write(data1,'Selected Soil Model= ');
Write(data3,'Selected Soil Model= ');
Write(data4,'Selected Soil Model= ');
If SelectedSoilmodel= 0 then begin
Write(' No Soil Model applies.
Write(data1,' No Soil Model applies.');
Write(data3,' No Soil Model applies.';
Write(data4,' No Soil Model applies.';
end
Else If SelectedSoilModel= 1 then begin
Write(' Isotropic Half Space.
Write(data1,' Isotropic Half Space.';
Write(data3,' Isotropic Half Space.';
Write(data4,' Isotropic Half Space.';
end
Else If SelectedSoilModel= 2 then begin
Write(' Cross-anisotropic Half Space.';
Write(data1,' Cross-anisotropic Half Space.';
Write(data3,' Cross-anisotropic Half Space.';
Write(data4,' Cross-anisotropic Half Space.';
end;
END;

PROCEDURE Load3rd_DDataFromInputFiles;
PROCEDURE ApplyExtension;
VAR
j : LONGINT;
BEGIN
ASSIGN(data2,SpaceData);
RESET(data2);
Readln(data2,JunkStr);
Insert('section of ',JunkStr);6);
Write(data1,JunkStr);
Write(data3,JunkStr);
Readln(data2);{blank line (line 2)in the source file}
Readln(data2,JunkStr);
Write(data1,JunkStr);
Write(data3,JunkStr);
Readln(data2,BakNum);
Write(data1,BakNum:3);Write(data3,BakNum:3);
Readln(data2,JunkStr);Writeln(datal,JunkStr); Writeln(data3,JunkStr);
Readln(data2,JunkStr);
Write(data1,JunkStr);
Write(data3,JunkStr);
If BakNum>0 Then begin
For j:=1 to BakNum do
With BakFrame[j] do begin
Readln(data2,FramNumber,JunkChar,RelDistanc,JunkChar,LoadFactor);
Write(data1,FramNumber:3,Chr(9),RelDistanc:15:3,Chr(9),LoadFactor:13:3);
Write(data3,FramNumber:3,Chr(9),RelDistanc:15:3,Chr(9),LoadFactor:13:3);
end;
end;
Readln(data2);Writeln(data1);Writeln(data3);{broken spacer spacerline)
Readln(data2,JunkStr);Write(data1,JunkStr);
Readln(data2,ForNum);Write(data1,ForNum:3);Write(data3,ForNum:3);
Readln(data2,JunkStr);Write(data1,JunkStr);
Readln(data2,JunkStr);Write(data1,JunkStr);
Readln(data2,JunkStr);Write(data1,JunkStr);

Appendix A4.5, Unit BUILD

4 - 78
If ForNum>0 Then begin
 For j:=1 to ForNum do
 With ForFrame[j] do begin
 Readln(data2,FramNumber,JunkChar,RelDistanc,JunkChar,LoadFactor);
 Writeln(datal,FramNumber:3,Chr(9),RelDistanc:15:3,Chr(9),LoadFactor:13:3);
 Writeln(data3,FramNumber:3,Chr(9),RelDistanc:15:3,Chr(9),LoadFactor:13:3);
 end;
 end;
 Readln(data2,JunkStr);
 Writeln(datal,JunkStr); Writeln(data3,JunkStr);
 Writeln(datal); Writeln(data3);
 Close(data2);
end; {procedure ApplyExtension}

Begin
 Writeln('Is calculation Restricted to Diagonal Model(no interaction between soil nodes)?');
 Repeat
 Write('Type [y] for yes or [n] for no. 	 ');
 Readln(ConsiderAlone);
 Until (ConsiderAlone in NO) or (ConsiderAlone in YES);

 If (ConsiderAlone in NO) then begin
 Writeln('3D-Model applies?');
 Repeat
 Write('Type [y] for yes or [n] for no. 	 ');
 Readln(ExtendedModelApplies);
 Until (ExtendedModelApplies in NO) or (ExtendedModelApplies in YES);
 If (ExtendedModelApplies in YES) then
 ApplyExtension;
 end else ExtendedModelApplies:='N';

Begin
 Writeln(datal, 'Number of nodes in contact with soil : ',NoFtNd:3,',';
 Writeln(datal, 'Diagonal-alone approach accepted ? ',ConsiderAlone,chr(9),
 3D_Model: ',ExtendedModelApplies);
 Writeln(datal);
 Writeln(data3, 'Number of nodes in contact with soil : ',NoFtNd:3,',';
 Writeln(data3, 'Diagonal-alone approach accepted ? ',ConsiderAlone,chr(9),
 3D_Model: ',ExtendedModelApplies);
 Writeln(data4, 'Number of nodes in contact with soil : ',NoFtNd:3,',';
 Writeln(data4, 'Diagonal-alone approach accepted ? ',ConsiderAlone,chr(9),
 3D_Model: ',ExtendedModelApplies);
End;
END; {PROCEDURE Load3rd_D}

PROCEDURE DrawALine(var F:text; j:Integer);
var i: Integer;
Begin
 For i:=1 TO j Do
 Write(F,'-');
 Writeln(F);
End;

PROCEDURE EndProgram;
(* ($1-) enable this compiler directive, avoids RT error at closing time if
the file is not open *)
Begin
 ($I-) (* due to cases*)
 CLOSE(datal);
 CLOSE(data3);
 CLOSE(data4);
 CLOSE(data5);
 ($I+)
 DisposeDynamicVars;
 Writeln('****** THE END OF EXECUTION ******');
 Writeln('User’'s main output file: ',OutFileStructure);
 Readln;
 End;
END. (unit build)
UNIT SoilMode;

{SN+} (*D+,N+ Do activate these when are necessary *)

INTERFACE

USES

Crt, Dos, Globals, Build, SoilCoef;

VAR (* local to soil flexibility matrices *)

i, m, mm,

j, n, nn,

k0, k :LONGINT;

PROCEDURE NoSoilMessage;

PROCEDURE DetermineSoilFlexibilityMatrix;

IMPLEMENTATION

PROCEDURE NoSoilMessage;

Begin

Writeln('Soil is not encountered in the analysis. Program ended.');
Writeln(data1,'Soil is not encountered in the analysis. Program ended.');
Writeln(data3,'Soil is not encountered in the analysis. Program ended.');
Readln;
EndProgram; Halt;

END;

PROCEDURE DetermineSoilFlexibilityMatrix;

label

DoBosCerMethod,

DoGerHarWarMethod;

PROCEDURE BFSpace (BFnum:LongInt; BFframe:FrameSetUpType;

MatPos:integer; ActLength:Extended);

var

BFi, BFj : LongInt;

Interaction,(*effect of other nodes from the same frame or space frames*)

ClearDistanc (*shortest distance between force point and displ. point*)

: Extended;

begin

If BFnum >0 Then

For BF1 :=1 to BFnum Do begin

CumulDistanc :=0;

ClearDistanc :=0;

For BFj :=1 to BFi do

CumulDistanc := CumulDistanc + BFframe[BFj].RelDistanc;

ClearDistanc := SQRT(SQR(CumulDistanc)+SQR(ActLength));

Case MatPos of

1: Interaction:= CoefF11(ClearDistanc);

2: begin if (m=n) and (mm=1) and (nn=2) then Interaction:= 0

else Interaction:= CoefF12(ClearDistanc); end;

3: Interaction:= CoefF13(ClearDistanc);

4: begin if (m=n) and (mm=2) and (nn=1) then Interaction:= 0

else Interaction:= CoefF21(ClearDistanc); end;

5: Interaction:= CoefF22(ClearDistanc);

6: begin if (m=n) and (mm=2) and (nn=3) then Interaction:= 0

else Interaction:= CoefF23(ClearDistanc); end;

7: Interaction:= CoefF31(ClearDistanc);

8: begin if (m=n) and (mm=3) and (nn=2) then Interaction:= 0

else Interaction:= CoefF32(ClearDistanc); end;

9: Interaction:= CoefF33(ClearDistanc);

end;

SoilFlexMat^[i,j] := SoilFlexMat^[i,j] +

BFframe[BF1].LoadFactor * Interaction;

end;

END; (*Function BFSpace*)

BEGIN (* PROCEDURE DetermineSoilFlexibilityMatrix *)

(*In this procedure, firstly, based on the Nodes in touch with soil, and the
following options, the General Soil Flexibility Matrix is built.
a) ConsiderdiagonalsAloneMod,
b) Only Original Frame,
c) Considering 3Dextension (fully populated),

Appendix A4.5, Unit SOILMODE

4 - 80
Then only the applicable coefs of the matrix are selected.
EHS or degree (EHS degrees of Restrain) are taken for further calculations.

\[i:=0; j:=0; m:=0; nn:=0; n:=0; nn:=0; k:=0; k:=0; \]

(*analytic approach soil parameter evaluations*)

DoBosCemMethod: (* WARNING: label; Do not delete.*)
If (SelectedSoilModel=1) then begin
 (*isotropic*)
 WriteLn('Analytic Mtd) ISOTROPIC SOIL is selected.');
 WriteLn('Elastic Mod. (kPa)=', 'E_Soil:6', '; Poisson''s ratio = ', 'NuSoil:5:3');
 WriteLn('data1,' Elastic Mod. (kPa)=', 'E_Soil:6', '; Poisson''s ratio = ', 'NuSoil:5:3');
 WriteLn('data3,' Elastic Mod. (kPa)=', 'E_Soil:6', '; Poisson''s ratio = ', 'NuSoil:5:3');
 WriteLn('data4,' Elastic Mod. (kPa)=', 'E_Soil:6', '; Poisson''s ratio = ', 'NuSoil:5:3');
 Readln;
 CoefA:= (1 - NuSoil*NuSoil) / (Pi*E_Soil); (*kPa*)
 CoefB:= (1-NuSoil)*(1-2*NuSoil) / (2*Pi*E_Soil);(*kPa*)
 CoefC:= (1-NuSoil) / (Pi*E_Soil);
 WriteLn('data1,' CoefA=’, CoefA,’; CoefB=’, CoefB,’; CoefC=’, CoefC);
end;

(*numeric approach soil parameter evaluations*)
('Eh, Vhv, Vvh, Vh and Fv are given as soil elastic constants*)
else if SelectedSoilModel=2 then begin
 (*cross-anisotropic*)
 [Eh:= Int(Ehr); Fv:=Int(Fvr); in attempt to create integer form of these non-int.
 quantities);
 WriteLn('Numeric Mtd) CROSS-ANISOTROPIC SOIL:');
 WriteLn('Elastic Mod. (kPa), Eh,, Eh:6,; Ev,, Ev:6,; Fv,, Fv:6,; Poisson''s
 ratios: Vvh,, Vvh:5:3,
 Vhv,, Vhv:5:3,
 Vhv,, Vhv:5:3,
 Vhv,, Vhv:5:3,
 Vvh,, Vvh:5:3,
 Vhv,, Vhv:5:3,
 Vvh,, Vvh:5:3,
 Vhv,, Vhv:5:3,
 Readln;
 Ac1 := Eh*(1-Vvh*Vvh)/(1-Vh-2*Vhv*Vvh);
 Bc1 := Eh*(Vhv+Vvh)/(1-Vh-2*Vhv*Vvh);
 Cc1 := Eh*Vvh/(1-Vh-2*Vhv*Vvh);
 Dc1 := Eh*Vvh*(1-Vh)/Vhv/(1-Vh-2*Vhv*Vvh);
 Fc1 := Fv;
 if (Ac1<0) or (Dc1<0) or (Fci<0) or (Ac1*Ac1-Bc1*Bc1) or
 (Dc1*(Ac1+Bc1)<2*Cc1*Cc1) or (Ac1*Dc1<2*Cc1*Cc1)
 or (1-Vh-2*Vhv*Vvh<0) or (Eh<0) or (Ev<0) or (Fv<0) or (1-Vh<0) then begin
 WriteLn('At least one of the strain energy conditions is not satisfied',
 'at S-379; Program is halted');
 Readln; ExitProgram; Halt; end;
end;

If (SelectedSoilModel=2) then begin
 Bfifsq := (Ac1*Dc1-Cc1*Cc1-Cc1*Dc1+Fci+Fc1)/SQRT(Ac1*Dc1)/2*Fc1*Dc1;
 If (Bfifsq<0) then begin
 WriteLn('Error: Elastic constants of this soil does not satisfy require',
 'ment of positive strain energy.'); readln; EndProgram; Halt; end;
else begin
 Alpha := SQRT(Bfifsq); end;

 Gamasq := (Ac1-Bc1)/Fci;
 If (Gammasq<0) then begin
 WriteLn('Error: Elastic constants of this soil does not satisfy require',
 'ment of positive strain energy.'); readln; EndProgram; Halt; end;
else begin
 Gamma := SQRT(Gamasq); end;

 BetSqs := (Ac1*Dc1-Cc1*Cc1-Cc1*Dc1-Fci-Fc1)/SQRT(Ac1*Dc1)/2*Fc1*Dc1;
 writeln('Alpha=', Alpha, ', Beta=', Beta, ', Gamma=', Gamma, 'readln;
 If (Alpha=1-1.4) and (Beta=1+1.4) and (ABS(BetaSqs)=1-1.4) then
 (*considered alpha=1 & beta=0*)

Appendix A4.5. Unit SOILMODE 4 - 81
BEGIN
Writeln('Notice: Soil properties confirm isotropic condition.');
Writeln(data1,'Notice: Soil properties confirm isotropic condition.');
Writeln(data3,'Notice: Soil properties confirm isotropic condition.');
Writeln(data4,'Notice: Soil properties confirm isotropic condition.');
Repeat
Writeln('Select one of the following approaches: ');
Write('Type "1": analytic, or "3": numeric. ');read;
Readln(SelectedSoilModel);
if (SelectedSoilModel=3) then
 Begin
 (*isotropic & numeric technique*
 Writeln('The NUMERICAL approach is proceeded.');
 Writeln(data1,'The NUMERICAL approach is proceeded.');
 Writeln(data3,'The NUMERICAL approach is proceeded.');
 Writeln(data4,'The NUMERICAL approach is proceeded.');
 GoTo DoGerHarWarMethod;
 End
else if (SelectedSoilModel=1) then
 Begin
 Writeln('The ANALYTICAL approach is proceeded.');
 Writeln(data1,'The ANALYTICAL approach is proceeded.');
 Writeln(data3,'The ANALYTICAL approach is proceeded.');
 Writeln(data4,'The ANALYTICAL approach is proceeded.');
 Readln;
 GoTo DoBosCerMethod; end;
until (SelectedSoilModel=1) or (SelectedSoilModel=3);
END; (*alfa=1 beta=0 decision making*)
(*Variable "SelectedSoilModel" could have been changed in last block*)
ELSE If (SelectedSoilModel=2) and ((Alfa<1-1E-4) or (Alfa>1+1E-4)) then
BEGIN (* considered alfa<>1 *)
if (BetSq>1E-4) then begin
(*case one= BetaSq significant positive*)
Beta := SQRT(BetSq);
BetaSqPos := True;
BetaSqNeg := False;
BetaZero := False;
Writeln('General CISO case I; alfa<>1 & betaSq>0. ');
Writeln(data1,'General CISO case I; alfa<>1 & betaSq>0. ');
end
else if (BetSq<-1E-4) then begin
(*case two= BetaSq significant negative*)
Beta := SQRT(-BetSq);
BetaSqPos := False;
BetaSqNeg := True;
BetaZero := False;
Writeln('General CISO case II; alfa<>1 & betaSq<0. ');
Writeln(data1,'General CISO case II; alfa<>1 & betaSq<0. ');
end
else (*if (BetSq>-1E-3) and (BetSq<1E-3) then*) begin
(*case three= beta zero*)
Beta := 0;
BetaZero := True;
BetaSqPos := False;
BetaSqNeg := False;
Writeln('General CISO case III; alfa<>1 & betaSq=0. ');
Writeln(data1,'General CISO case III; alfa<>1 & betaSq=0. ');
end
END; (* if SelectedSoilModel=2*)
(* soil parameter evaluations for numerical method*)
DoGerHarWarMethod: (* WARNING: label; Do not delete.*)
IF (SelectedSoilModel=2) or (SelectedSoilModel=3) then
BEGIN
IF (SelectedSoilModel=3) then begin
if PR<0.5 then
 PR := 0.499;
Aci := YM*(1-PR)/((1+PR)*(1-2*PR));
Bci := YM*PR/((1+PR)*(1-2*PR));
Cci := Bci;

Appendix A4.5, Unit SOILMODE
Dci := Aci;
Pci := YM/(1+PR);
Alfa := 1.0;
Beta := 0.0;
Gama := 1.0;
Si := 2*(1-SQR(PR))/YM;
S3 := (1+PR)*(1-2*PR)/YM;
Ti := (1+PR)*(1-2*PR)/YM;
T3 := 2*(1-SQR(PR))/YM;
T10:= 2*(1+PR)/YM;
end (*if selec..=3*)
ELSE BEGIN (*the below parameters are determined for soilmode=2*)

IF (BetaZero <> True) then begin

Rho := Alfa+Beta;
Phi := Alfa-Beta;
G1 := (2*Cci+Fci)*Rho*Phi*(1/Fci)*(1/(Rho-Phi))*(1/(Cci+Dci*SQR(Phi)));
G2 := (2*Cci+Fci)*Rho*Phi*(1/Fci)*(1/(Rho-Phi))*(1/(Cci+Dci*SQR(Rho)));
G3 := Rho*(2*Dci*SQR(Phi)-Fci)*(1/Fci)*(1/(Rho-Phi))*(1/(Cci+Dci*SQR(Phi)));
G4 := Phi*(2*Dci*SQR(Rho)-Fci)*(1/Fci)*(1/(Rho-Phi))*(1/(Cci+Dci*SQR(Rho)));
H1 := (2*Cci+Fci)*Phi*(1/Fci)*(1/(Rho-Phi))*(1/(Cci+Dci*SQR(Phi)));
H2 := (2*Cci+Fci)*Rho*(1/Fci)*(1/(Rho-Phi))*(1/(Cci+Dci*SQR(Rho)));
H3 := (2*Dci*SQR(Phi)-Fci)*(1/Fci)*(1/(Rho-Phi))*(1/(Cci+Dci*SQR(Phi)));
H4 := (2*Dci*SQR(Rho)-Fci)*(1/Fci)*(1/(Rho-Phi))*(1/(Cci+Dci*SQR(Rho)));
H10 := 2*(1/Fci)*(1/Gama);
J1 := 2*Alfa*SQR(T(Aci*Dci)*(1/(Aci*Dci-SQR(Cci))));
J13 := 1/(SQR(T(Aci*Dci)+Cci));
J3 := -2*Alfa*Dci*(1/(Aci+Dci*SQR(Phi)));
J11 := 2*(1/Fci)*(1/Gama);
end ELSE BEGIN (*where BetaZero is True*)

S1 := (2*Cci+Fci)*2*Dci*AlfSq*Alfa*(1/Fci)*(1/SQR(Cci+Dci*AlfSq));
T1 := (2*Cci+Fci)*(Dci*AlfSq-Cci)*(1/Fci)*(1/SQR(Cci+Dci*AlfSq));
T3 := (2*Cci+Fci)*2*Dci*Alfa*(1/Fci)*(1/SQR(Cci+Dci*AlfSq));
T10 := 2*(1/Fci)*(1/Gama);
END; (*if BetaZero is True*)
END; (*else where selec..=2*)

(*THE MAIN BODY OF THE FLEXIBILITY CALCULATION STARTS HERE*)

If (NoFtNd > NoNdRs) then begin

WriteLn('Footing Nodes number does not match the Nodes Restrains. ',
'Check with the structure data input. ',
'Program will be interrupted at this point. ');

WriteLn(Chr(7)); WriteLn(Chr(7)); Readln;
EndProgram; Halt;
end;

If (SelectedSoilModel=1) then begin

Appendix A4.5, Unit SOILMODE 4-83
Writeln('Soil is isotropic; Analytic Mtd; Elastic Parameters: Nu=',NuSoil:5:3,', Young Modulus=',E_Soil:7);
Writeln(data1,'Soil is isotropic; Analytic Mtd; Elastic Parameters: Nu=',NuSoil:5:3,', Young Mod[kPa]=',E_Soil:7);
Writeln(data3,'Soil is isotropic; Analytic Mtd; Elastic Parameters: Nu=',NuSoil:5:3,', Young Mod[kPa]=',E_Soil:7);
Writeln(data4,'Soil is isotropic; Analytic Mtd; Elastic Parameters: Nu=',NuSoil:5:3,', Young Mod[kPa]=',E_Soil:7);
end
Else If (SelectedSoilModel=2) then begin
Writeln('Soil is cross-anisotropic; Numeric; Parameters: Eh=',Eh:7,', Ev=',Ev:7,', Fv=',Fv:7,', Vvh=',Vvh:5:3,', Vh=',Vh:5:3,', Vhv=',Vhv:5:3);
Writeln(data1,'Soil is cross-anisotropic; Numeric; [kPa]; Parameters: Eh=',Eh:7,', Ev=',Ev:7,', Fv=',Fv:7,', Vvh=',Vvh:5:3,', Vh=',Vh:5:3,', Vhv=',Vhv:5:3);
Writeln(data3,'Soil is cross-anisotropic; Numeric; [kPa]; Parameters: Eh=',Eh:7,', Ev=',Ev:7,', Fv=',Fv:7,', Vvh=',Vvh:5:3,', Vh=',Vh:5:3,', Vhv=',Vhv:5:3);
Writeln(data4,'Soil is cross-anisotropic; Numeric; [kPa]; Parameters: Eh=',Eh:7,', Ev=',Ev:7,', Fv=',Fv:7,', Vvh=',Vvh:5:3,', Vh=',Vh:5:3,', Vhv=',Vhv:5:3);
end
Else If (SelectedSoilModel=3) then begin
Writeln('Soil is isotropic; Numeric; Parameters: PR=',PR:5:3,', YM[kPa]=',YM:7:0);
Writeln(data1,'Soil is isotropic; Numeric; PR=',PR:5:3,', YM[kPa]=',YM:7:0);
Writeln(data3,'Soil is isotropic; Numeric; PR=',PR:5:3,', YM[kPa]=',YM:7:0);
Writeln(data4,'Soil is isotropic; Numeric; PR=',PR:5:3,', YM[kPa]=',YM:7:0);
end;
(*calculating the number of bays (or soil members*)

***** to be reviewed
Writeln(data1,'Fictitious Soil Members are as follows:');
Writeln(data1,'FS_name',' S_Node',' E_Node',' L[m] ');
Writeln(data3,'Fictitious Soil Members are as follows:');
Writeln(data3,'FS_name',' S_Node',' E_Node',' L[m] ');
FOR j:= 1 TO NoFtNd-1 DO
WITH SoilMem[j] DO
begin
Sx := Node[FtNd[j].Name].XCoord;
Ex := Node[FtNd[j+1).Name).XCoord;
Length := Ex - Sx;
Writeln(data1,j:4,FtNd[j].Name:8,Char(32),FtNd[j+1].Name:6,Char(32),Length:10:3);
end;
Writeln(data1);
Writeln(data3);

("MINIMUM DISTANCE IS THE MAXIMUM SIZE OF EACH FOOTING.*
("THAT IS THE SIDE LENGTH FOR SQUARE case, AND RADIUS FOR CIRCULAR FOOTINGS.*
("THE EVALUATION OF Rmin should be CORRECTED.*)
***** WARNING *****
[*
Rmin := SoilMem[1].Length;
FOR j := 2 TO NoFtNd-1 DO
IF (Rmin >= SoilMem[j].Length) THEN Rmin := SoilMem[j].Length;
(* based on the theory assumption made for defl. at point of load*)
(*calculating the flexibility coef's*)

(*IMPORTANT NOTE: By choosing the boundry of '3*NoftNd' I am filling up the soil flexi matrix by the nodes that are only in footing no hole is left in the matrix, however, the maximum size of matrix would still be 'MaxNodes' for a fully nodes supported (ie: beam structure).*)

Writeln(data1,'Minimum dimension for footing, Rmin=',Rmin:5);
FOR i := 1 TO 3*NoFtNd DO BEGIN (*block get-together 2*)
(*make the Rmin effect due to the soil memlenght...*)
BEGIN (*3*)
END;
FOR j := 1 TO 3*NoFtNd DO BEGIN (*3*)
(*make the Rmin effect due to the soil memlenght...*)
END;
END;

Appendix A4.5, Unit SOILMODE
ELSE IF (mm=3) and (nn=1) THEN MatPos:= 7
ELSE IF (mm=3) and (nn=2) THEN MatPos:= 8
ELSE IF (mm=3) and (nn=3) THEN MatPos:= 9;

(*non-diagonal coef's of diagonal nodes remain zero as initialised*)

IF (m=n) THEN BEGIN
 (*diagonal blocks*)
 IF (MatPos=1) THEN Begin
 (*D11*)
 SoilFlexMat^[i,j] := CoefD11(Rmin); (*original frame cases 1&3*)
 If (ConsiderAlone in NO) and (ExtendedModelApplies in YES) then
 begin (*case 2*)
 BFSpace (BakNum, BakFrame, MatPos, ActLength);
 BFSpace (ForNum, ForFrame, MatPos, ActLength);
 end;
 End
 (*D11*)
 ELSE IF (MatPos=2) THEN Begin
 (*D12*)
 SoilFlexMat^[i,j] := CoefD12(Rmin);
 If (ConsiderAlone in NO) and (ExtendedModelApplies in YES) then
 begin (*for parallel frames*)
 BFSpace (BakNum, BakFrame, MatPos, ActLength);
 BFSpace (ForNum, ForFrame, MatPos, ActLength);
 end;
 End
 (*D12*)
 ELSE IF (MatPos=3) THEN Begin
 (*D13*)
 SoilFlexMat^[i,j] := CoefD13(Rmin);
 If (ConsiderAlone in NO) and (ExtendedModelApplies in YES) then
 begin (*for parallel frames*)
 BFSpace (BakNum, BakFrame, MatPos, ActLength);
 BFSpace (ForNum, ForFrame, MatPos, ActLength);
 end;
 End
 (*D13*)
 ELSE IF (MatPos=4) THEN Begin
 (*D21*)
 SoilFlexMat^[i,j] := CoefD21(Rmin);
 If (ConsiderAlone in NO) and (ExtendedModelApplies in YES) then
 begin (*For parallel frames*)
 BFSpace (BakNum, BakFrame, MatPos, ActLength);
 BFSpace (ForNum, ForFrame, MatPos, ActLength);
 end;
 End
 (*D21*)
 ELSE IF (MatPos=5) THEN Begin
 (*D22*)
 SoilFlexMat^[i,j] := CoefD22(Rmin); (*for original frame*)
 If (ConsiderAlone in NO) and (ExtendedModelApplies in YES) then
 begin BFSpace (BakNum, BakFrame, MatPos, ActLength);
 BFSpace (ForNum, ForFrame, MatPos, ActLength);
 end;
 End
 (*D22*)
 ELSE IF (MatPos=6) THEN Begin
 (*D23*)
 SoilFlexMat^[i,j] := CoefD23(Rmin);
 If (ConsiderAlone in NO) and (ExtendedModelApplies in YES) then
 begin BFSpace (BakNum, BakFrame, MatPos, ActLength);
 BFSpace (ForNum, ForFrame, MatPos, ActLength);
 end;
 End
 (*D23*)
 ELSE IF (MatPos=7) THEN Begin
 (*D31*)
 SoilFlexMat^[i,j] := CoefD31(Rmin);
 If (ConsiderAlone in NO) and (ExtendedModelApplies in YES) then
 begin BFSpace (BakNum, BakFrame, MatPos, ActLength);
 BFSpace (ForNum, ForFrame, MatPos, ActLength);
 end;
 End
 (*D31*)
 ELSE IF (MatPos=8) THEN Begin
 (*D32*)
 SoilFlexMat^[i,j] := CoefD32(Rmin);
 If (ConsiderAlone in NO) and (ExtendedModelApplies in YES) then
 begin BFSpace (BakNum, BakFrame, MatPos, ActLength);
 BFSpace (ForNum, ForFrame, MatPos, ActLength);
 end;
 End
 (*D32*)
 End
End

Appendix A4.5, Unit SOILMODE

4 - 85
ELSE IF (MatPos=9) THEN Begin (*D33*)
SoilFlexMat[1,j] := CoefD33(Rnin); (*for original frame*)
If (ExtendedModelApplies in YES) and (ConsiderAlone in NO) then begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End; (*D33*)
END (*IF m=n*)
ELSE IF (n>m) and (ConsiderAlone in NO) THEN BEGIN
(*non-diagonal Nodes considered 4*)
FOR k:= m+1 TO n DO
ActLength := ActLength + SoilMem[k].Length;
IF (MatPos=1) THEN Begin (*F11*)
SoilFlexMat[1,j] := CoefF11(ActLength); (*F11 for original frame*)
If (ExtendedModelApplies in YES) then begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End (*F11*)
ELSE IF (MatPos=2) THEN Begin (*F12*)
SoilFlexMat[1,j] := CoefF12(ActLength); (*F12 for original frame*)
If (ExtendedModelApplies in YES) then begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End (*F12*)
ELSE IF (MatPos=3) THEN Begin
SoilFlexMat[1,j] := CoefF13(ActLength); (*F13 for original frame*)
If (ExtendedModelApplies in YES) then begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End (*F13*)
ELSE IF (MatPos=4) THEN Begin (*F21*)
SoilFlexMat[1,j] := CoefF21(ActLength); (*F21 for original frame*)
If (ExtendedModelApplies in YES) then begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End (*F21*)
ELSE IF (MatPos=5) THEN Begin (*F22*)
SoilFlexMat[1,j] := CoefF22(ActLength); (*F22 for original frame*)
If (ExtendedModelApplies in YES) then begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End (*F22*)
ELSE IF (MatPos=6) THEN Begin (*F23*)
SoilFlexMat[1,j] := CoefF23(ActLength); (*F23 for original frame*)
If (ExtendedModelApplies in YES) then begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End (*F23*)
ELSE IF (MatPos=7) THEN Begin (*F31*)
SoilFlexMat[1,j] := CoefF31(ActLength); (*F31 for original frame*)
If (ExtendedModelApplies in YES) then begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
END (*IF m=n*)
Appendix A4.5, Unit SOILMODE
ELSE IF (MatPos=8) THEN Begin
SoilFlexMat^[i,j] := CoefF32(ActLength); (*F32 for original frame*)
IF (ExtendedModelApplies in YES) then
begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End; (*F32*)
ELSE IF (MatPos=9) THEN Begin
SoilFlexMat^[i,j] := CoefF33(ActLength); (*F33 For original frame*)
IF (ExtendedModelApplies in YES) then
begin
BFSpace (BakNum, BakFrame, MatPos, ActLength);
BFSpace (ForNum, ForFrame, MatPos, ActLength);
end; (*if yes*)
End; (*F33*)
ActLength:= 0;
END; (*IF (m<n)**)
END; (*FOR j!1-3*NoFtNd 	 3*)
END; (*FOR i!1-3*NoFtNd 	 block get-to-gether 	 2*)

(* the top section of the flexi matrix before refilling the bottom half *)
Writeln(datal);
Writeln(datal,'S-811; Note that the non-diagonal nodes are also included.');
Writeln(datal,'Top section of the Fully Populated Soil Flexibility, before',
' refilling the bottom half.);

FOR i := 1 TO 3*NoFtNd DO BEGIN
FOR j := 1 TO 3*NoFtNd DO BEGIN
Write(datal,SoilFlexMat^[i,j]:12:8,chr(9));
END; (*FOR j!13NoFtNd*)
Writeln(datal);
Writeln(datal);
END; (*FOR ilNoFtNd*)
Writeln(datal);

(*rem: filling the second (bottom) half of the flexi matrix *)
FOR i := 1 TO 3*NoFtNd DO
FOR j := 1 TO 3*NoFtNd DO BEGIN
IF (i>j) THEN
SoilFlexMat^[i,j]:=SoilFlexMat"[j,i];
END;
Write(datal,SoilFlexMat^[i,j]:12:8,chr(9));
END; (*FOR j!l3NoFtNd*)
Writeln(datal);
Writeln(datal);
Writeln(datal);
Writeln(datal,'Note that the non-diagonal nodes are also included.');
Writeln(datal,'Fully Populated (GENERAL) Soil Flexibility Coef’s Matrix:');

FOR i := 1 TO 3*NoFtNd DO BEGIN
FOR j := 1 TO 3*NoFtNd DO BEGIN
Write(datal,SoilFlexMat^[i,j]:12:8,chr(9));
END; (*FOR j!13NoFtNd*)
Writeln(datal);
Writeln(datal);
Writeln(datal);
Writeln(datal);

(* Task is to identify the ELASTIC HALF SPACE ’Degrees Of Restrain ’EHS-DOR''(APPLICABLE)
from the whole populated GENERAL flex matrix *')
N :=0; EHS_dor:=0; k0:=0; k:= 0; (*REINITIALIZATION the variables*)

FOR j:=1 to NoFtNd DO Begin
N := FtNd[j].name;
k := (j -1)*3 +1; (*K IS-COLUMN & ROW COUNTER of fully pop soil matrix*)
k0:= (N -1)*3 +1; (*KO IS COLUMN & ROW COUNTER of glob structure matrix*)
if ((NdRs[N].xdir =2) and (NdRs[N].sprX=0)) then begin
Inc(EHS_dor);
(*register acceptable position of EHS in XDir*)
SoilPosDOR[EHS_dor].FulPopSoil:= k;
(*register acceptable position of EHS; XDir Glob struct matrix*)
SoilPosDOR[EHS_dor].GlobStif:= k0;
end;
k := (j -1)*3 +2; (*Inc(k);*)
k0:= (N -1)*3 +2; (*Inc(k0);*)

Appendix A4.5, Unit SOILMODE 4 - 87
if ((NdRs[N].Ydir = 2) and (NdRs[N].SprY = 0)) then begin
 Inc(EHS_dor);
 SoilPosDOR[EHS_dor].FulPopSoil := k;
 (*register acceptable position of EHS in YDir*)
 SoilPosDOR[EHS_dor].GlobStif := k0;
 (*register acceptable position of EHS; YDir Glob struct matrix*)
end;

Inc(k); (*Inc(k);*)
k0 := (N - 1) * 3 + 3; (*Inc(k0);*)

if ((NdRs[N].Zrot = 2) and (NdRs[N].SprZ = 0)) then begin
 Inc(EHS_dor);
 SoilPosDOR[EHS_dor].FulPopSoil := k;
 (*register acceptable position of EHS in ZDir*)
 SoilPosDOR[EHS_dor].GlobStif := k0;
 (*register acceptable position of EHS; ZDir Glob struct matrix*)
end;

k := (j - 1) * 3 + 3; (*Inc(k);*)
k0 := (N - 1) * 3 + 3; (*Inc(k0);*)

For i := 1 to EHS_dor do begin
 For j := 1 to EHS_dor do begin
 NetSoilFlexMat^[i,j] :=
 SoilFlexMat^[SoilPosDOR[i].FulPopSoil, SoilPosDOR[j].FulPopSoil];
 end;
end;

Writeln(datal, '(Net) Soil Flexibility Coef's for the RESTRAINED NODES (main frame):');
FOR i := 1 TO EHS_dor DO BEGIN
 FOR j := 1 TO EHS_dor DO BEGIN
 Write(datal, NetSoilFlexMat^[i,j]:12:8, chr(9));
 end;
end;
Writeln(datal);
Writeln(datal);
Writeln(datal);
END; (*PROCEDURE FlexiMatrixIsotropicSoil*)
END. (*unit build*)

Appendix A4.5, Unit SOILMODE
Appendix A5
A5.1

Tables associated with Graphs 5.1-5.18
Output of structural analysis associated with isotropic soil
(sub-cases 1 & 2 from Table 5.1)
Bending Moment (M_{32} and M_{34}) vs Isotropic soil Modulus of Elasticity (E_h)

(See Table 5.1a) $v=0.25$

<table>
<thead>
<tr>
<th>item</th>
<th>E soil</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>13.8708</td>
<td>13.8171</td>
<td>12.1923</td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>18.2303</td>
<td>18.2473</td>
<td>17.1872</td>
</tr>
<tr>
<td>3-lso</td>
<td>15</td>
<td>20.2241</td>
<td>20.2531</td>
<td>19.4632</td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>21.3693</td>
<td>21.3996</td>
<td>20.7698</td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>22.6349</td>
<td>22.6619</td>
<td>22.2136</td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>23.3191</td>
<td>23.3423</td>
<td>22.9942</td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>23.7478</td>
<td>23.7679</td>
<td>23.4834</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>24.2556</td>
<td>24.2712</td>
<td>24.0629</td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>24.8058</td>
<td>24.8158</td>
<td>24.6910</td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>24.9640</td>
<td>24.9722</td>
<td>24.8716</td>
</tr>
</tbody>
</table>

Table A5.1 Bending moment m_{32} vs Isotropic soil modulus of elasticity E_h for $v=0.25$

<table>
<thead>
<tr>
<th>item</th>
<th>E soil</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>-20.0225</td>
<td>-19.8812</td>
<td>-18.9020</td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>-26.0066</td>
<td>-25.9861</td>
<td>-25.2084</td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>-30.4588</td>
<td>-30.4774</td>
<td>-29.9682</td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>-32.2790</td>
<td>-32.3009</td>
<td>-31.9264</td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>-33.2683</td>
<td>-33.2888</td>
<td>-32.9933</td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>-33.8898</td>
<td>-33.9083</td>
<td>-33.6645</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>-34.6275</td>
<td>-34.6426</td>
<td>-34.4621</td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>-35.4288</td>
<td>-35.4389</td>
<td>-35.3295</td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>-35.65952</td>
<td>-35.66788</td>
<td>-35.57937</td>
</tr>
</tbody>
</table>

Table A5.2 Bending moment m_{32} vs Isotropic soil modulus of elasticity E_h for $v=0.25$

<table>
<thead>
<tr>
<th>item</th>
<th>E soil</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>33.9010</td>
<td>33.2873</td>
<td>33.0020</td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>33.1011</td>
<td>32.7724</td>
<td>32.6155</td>
</tr>
<tr>
<td>3-lso</td>
<td>15</td>
<td>32.8389</td>
<td>32.6142</td>
<td>32.5049</td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>32.7101</td>
<td>32.5396</td>
<td>32.4555</td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>32.5839</td>
<td>32.4687</td>
<td>32.4110</td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>32.5219</td>
<td>32.4349</td>
<td>32.3910</td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>32.4851</td>
<td>32.4152</td>
<td>32.3798</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>32.4435</td>
<td>32.3934</td>
<td>32.3678</td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>32.4007</td>
<td>32.3713</td>
<td>32.3562</td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>32.3888</td>
<td>32.3653</td>
<td>32.3531</td>
</tr>
</tbody>
</table>

Table A5.3 Bending moment m_{34} vs Isotropic soil modulus of elasticity E_h for $v=0.25$

Data for Graphs 5.1, 5.2 & 5.3

Appendix A5.1
Nodal Displacements ($\Delta z_i, \Delta y_i, \Phi z_i$) vs Isotropic soil Modulus of Elasticity (E_i)

(see Table 5.1a) $v = 0.25$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_i</th>
<th>MPa</th>
<th>kN.m</th>
<th>kN.m</th>
<th>kN.m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Iso</td>
<td>5</td>
<td>0.0025</td>
<td>0.0033</td>
<td>0.0068</td>
<td></td>
</tr>
<tr>
<td>2-Iso</td>
<td>10</td>
<td>0.0013</td>
<td>0.0017</td>
<td>0.0035</td>
<td></td>
</tr>
<tr>
<td>3-Iso</td>
<td>15</td>
<td>0.0009</td>
<td>0.0012</td>
<td>0.0024</td>
<td></td>
</tr>
<tr>
<td>4-Iso</td>
<td>20</td>
<td>0.0007</td>
<td>0.0009</td>
<td>0.0018</td>
<td></td>
</tr>
<tr>
<td>5-Iso</td>
<td>30</td>
<td>0.0005</td>
<td>0.0006</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>6-Iso</td>
<td>40</td>
<td>0.0004</td>
<td>0.0005</td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>7-Iso</td>
<td>50</td>
<td>0.0003</td>
<td>0.0004</td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>8-Iso</td>
<td>70</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>9-Iso</td>
<td>120</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>10-Iso</td>
<td>150</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0003</td>
<td></td>
</tr>
</tbody>
</table>

Table A5.4: Nodal displacement (Δx_i) vs Isotropic soil modulus of elasticity E_i, for $v=0.25$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_i</th>
<th>MPa</th>
<th>kN.m</th>
<th>kN.m</th>
<th>kN.m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Iso</td>
<td>5</td>
<td>-0.00404</td>
<td>-0.00515</td>
<td>-0.00872</td>
<td></td>
</tr>
<tr>
<td>2-Iso</td>
<td>10</td>
<td>-0.00163</td>
<td>-0.00221</td>
<td>-0.00397</td>
<td></td>
</tr>
<tr>
<td>3-Iso</td>
<td>15</td>
<td>-0.00097</td>
<td>-0.00136</td>
<td>-0.00253</td>
<td></td>
</tr>
<tr>
<td>4-Iso</td>
<td>20</td>
<td>-0.00067</td>
<td>-0.00097</td>
<td>-0.00184</td>
<td></td>
</tr>
<tr>
<td>5-Iso</td>
<td>30</td>
<td>-0.00041</td>
<td>-0.00061</td>
<td>-0.00119</td>
<td></td>
</tr>
<tr>
<td>6-Iso</td>
<td>40</td>
<td>-0.00029</td>
<td>-0.00045</td>
<td>-0.00088</td>
<td></td>
</tr>
<tr>
<td>7-Iso</td>
<td>50</td>
<td>-0.00023</td>
<td>-0.00035</td>
<td>-0.00069</td>
<td></td>
</tr>
<tr>
<td>8-Iso</td>
<td>70</td>
<td>-0.00016</td>
<td>-0.00024</td>
<td>-0.00049</td>
<td></td>
</tr>
<tr>
<td>9-Iso</td>
<td>120</td>
<td>-0.00009</td>
<td>-0.00014</td>
<td>-0.00028</td>
<td></td>
</tr>
<tr>
<td>10-Iso</td>
<td>150</td>
<td>-0.00007</td>
<td>-0.00011</td>
<td>-0.00022</td>
<td></td>
</tr>
</tbody>
</table>

Table A5.5: Nodal displacement (Δy_i) vs Isotropic soil modulus of elasticity E_i, for $v=0.25$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_i</th>
<th>MPa</th>
<th>rad</th>
<th>rad</th>
<th>rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Iso</td>
<td>5</td>
<td>-0.00998</td>
<td>-0.00990</td>
<td>-0.00981</td>
<td></td>
</tr>
<tr>
<td>2-Iso</td>
<td>10</td>
<td>-0.00929</td>
<td>-0.00921</td>
<td>-0.00920</td>
<td></td>
</tr>
<tr>
<td>3-Iso</td>
<td>15</td>
<td>-0.00905</td>
<td>-0.00902</td>
<td>-0.00899</td>
<td></td>
</tr>
<tr>
<td>4-Iso</td>
<td>20</td>
<td>-0.00893</td>
<td>-0.00891</td>
<td>-0.00888</td>
<td></td>
</tr>
<tr>
<td>5-Iso</td>
<td>30</td>
<td>-0.00881</td>
<td>-0.00879</td>
<td>-0.00877</td>
<td></td>
</tr>
<tr>
<td>6-Iso</td>
<td>40</td>
<td>-0.00874</td>
<td>-0.00873</td>
<td>-0.00872</td>
<td></td>
</tr>
<tr>
<td>7-Iso</td>
<td>50</td>
<td>-0.00871</td>
<td>-0.00870</td>
<td>-0.00868</td>
<td></td>
</tr>
<tr>
<td>8-Iso</td>
<td>70</td>
<td>-0.00866</td>
<td>-0.00866</td>
<td>-0.00865</td>
<td></td>
</tr>
<tr>
<td>9-Iso</td>
<td>120</td>
<td>-0.00862</td>
<td>-0.00861</td>
<td>-0.00861</td>
<td></td>
</tr>
<tr>
<td>10-Iso</td>
<td>150</td>
<td>-0.00860</td>
<td>-0.00860</td>
<td>-0.00860</td>
<td></td>
</tr>
</tbody>
</table>

Table A5.6: Nodal Rotation (θ_i) vs Isotropic soil modulus of elasticity E_i, for $v=0.25$

Data for Graphs 5.4, 5.5 & 5.6
Appendix A5.1

Table A5.7 Nodal displacement (Δ_x) vs Isotropic soil modulus of elasticity (E_h) for v=0.25

<table>
<thead>
<tr>
<th>Item</th>
<th>E soil</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>0.02029</td>
<td>0.0205</td>
<td>0.02411</td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>0.01702</td>
<td>0.0173</td>
<td>0.01896</td>
</tr>
<tr>
<td>3-lso</td>
<td>15</td>
<td>0.01588</td>
<td>0.0160</td>
<td>0.01718</td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>0.01529</td>
<td>0.0154</td>
<td>0.01627</td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>0.01469</td>
<td>0.0147</td>
<td>0.01534</td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>0.01438</td>
<td>0.0144</td>
<td>0.01488</td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>0.01420</td>
<td>0.0142</td>
<td>0.01459</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>0.01399</td>
<td>0.0140</td>
<td>0.01427</td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>0.01376</td>
<td>0.0137</td>
<td>0.01392</td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>0.01370</td>
<td>0.0137</td>
<td>0.01383</td>
</tr>
</tbody>
</table>

Table A5.8 Nodal displacement (Δ_y) vs Isotropic soil modulus of elasticity (E_h) for v=0.25

<table>
<thead>
<tr>
<th>Item</th>
<th>E soil</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>-0.02561</td>
<td>-0.026</td>
<td>-0.0305</td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>-0.01838</td>
<td>-0.018</td>
<td>-0.0209</td>
</tr>
<tr>
<td>3-lso</td>
<td>15</td>
<td>-0.01583</td>
<td>-0.016</td>
<td>-0.0175</td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>-0.01451</td>
<td>-0.014</td>
<td>-0.0157</td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>-0.01316</td>
<td>-0.013</td>
<td>-0.0140</td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>-0.01247</td>
<td>-0.012</td>
<td>-0.0131</td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>-0.01205</td>
<td>-0.012</td>
<td>-0.0125</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>-0.01157</td>
<td>-0.011</td>
<td>-0.0119</td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>-0.01106</td>
<td>-0.011</td>
<td>-0.0112</td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>-0.01092</td>
<td>-0.010</td>
<td>-0.0111</td>
</tr>
</tbody>
</table>

Table A5.9 Nodal rotation (Φ_z) vs Isotropic soil modulus of elasticity (E_h) for v=0.25

<table>
<thead>
<tr>
<th>Item</th>
<th>E soil</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-lso</td>
<td>5</td>
<td>-0.0069</td>
<td>-0.006</td>
<td>-0.0047</td>
</tr>
<tr>
<td>2-lso</td>
<td>10</td>
<td>-0.0038</td>
<td>-0.003</td>
<td>-0.0038</td>
</tr>
<tr>
<td>3-lso</td>
<td>15</td>
<td>-0.0035</td>
<td>-0.003</td>
<td>-0.0035</td>
</tr>
<tr>
<td>4-lso</td>
<td>20</td>
<td>-0.0037</td>
<td>-0.003</td>
<td>-0.0037</td>
</tr>
<tr>
<td>5-lso</td>
<td>30</td>
<td>-0.0032</td>
<td>-0.003</td>
<td>-0.0032</td>
</tr>
<tr>
<td>6-lso</td>
<td>40</td>
<td>-0.0032</td>
<td>-0.003</td>
<td>-0.0032</td>
</tr>
<tr>
<td>7-lso</td>
<td>50</td>
<td>-0.0030</td>
<td>-0.003</td>
<td>-0.0030</td>
</tr>
<tr>
<td>8-lso</td>
<td>70</td>
<td>-0.0030</td>
<td>-0.003</td>
<td>-0.0030</td>
</tr>
<tr>
<td>9-lso</td>
<td>120</td>
<td>-0.0029</td>
<td>-0.002</td>
<td>-0.0029</td>
</tr>
<tr>
<td>10-lso</td>
<td>150</td>
<td>-0.0029</td>
<td>-0.002</td>
<td>-0.0029</td>
</tr>
</tbody>
</table>

Data for Graphs 5.7, 5.8 & 5.9
Bending Moments (M_{21}, M_{32}, M_{34}) vs Isotropic Soil Modulus of Elasticity (E_i)
(see Table 5.1a) v=0.43

<table>
<thead>
<tr>
<th>item</th>
<th>E_i</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>15.5239</td>
<td>15.9095</td>
<td>15.0556</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>19.3920</td>
<td>19.6476</td>
<td>19.0668</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>21.1144</td>
<td>21.3072</td>
<td>20.8701</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>22.0898</td>
<td>22.2446</td>
<td>21.8947</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>23.1557</td>
<td>23.2667</td>
<td>23.0170</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>23.7266</td>
<td>23.8132</td>
<td>23.6191</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>24.0825</td>
<td>24.1594</td>
<td>23.9947</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>24.5020</td>
<td>24.5541</td>
<td>24.4379</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>24.9543</td>
<td>24.9857</td>
<td>24.9160</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>25.0839</td>
<td>25.1092</td>
<td>25.0530</td>
</tr>
</tbody>
</table>

Table A5.10 Bending moment m_{p_1} vs Isotropic soil modulus of elasticity E_i for v=0.43

<table>
<thead>
<tr>
<th>item</th>
<th>E_i</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>20.6390</td>
<td>20.4257</td>
<td>-19.5163</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>26.6928</td>
<td>26.6646</td>
<td>26.0234</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>29.4209</td>
<td>29.4318</td>
<td>28.9428</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>-30.9724</td>
<td>-30.9945</td>
<td>-30.6062</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>-32.6724</td>
<td>-32.6950</td>
<td>-32.4143</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>-33.5849</td>
<td>-33.6086</td>
<td>-33.3873</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>-34.1541</td>
<td>-34.1755</td>
<td>-33.9941</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>-34.8258</td>
<td>-34.8431</td>
<td>-34.7089</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>-35.5507</td>
<td>-35.5621</td>
<td>-35.4820</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>-35.7585</td>
<td>-35.7679</td>
<td>-35.7033</td>
</tr>
</tbody>
</table>

Table A5.11 Bending moment m_{p_2} vs Isotropic soil modulus of elasticity E_i for v=0.43

<table>
<thead>
<tr>
<th>item</th>
<th>E_i</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>32.5682</td>
<td>31.7867</td>
<td>31.5535</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>32.4058</td>
<td>32.0054</td>
<td>31.8770</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>32.3694</td>
<td>32.1001</td>
<td>32.0108</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>32.3560</td>
<td>32.1592</td>
<td>32.0846</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>32.3466</td>
<td>32.2107</td>
<td>32.1638</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>32.3435</td>
<td>32.2413</td>
<td>32.2057</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>32.3422</td>
<td>32.2603</td>
<td>32.2316</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>32.3412</td>
<td>32.2827</td>
<td>32.2619</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>32.3409</td>
<td>32.3067</td>
<td>32.2945</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>32.3410</td>
<td>32.3136</td>
<td>32.3038</td>
</tr>
</tbody>
</table>

Table A5.12 Bending moment m_{p_4} vs Isotropic soil modulus of elasticity E_i for v=0.43

Data for Graphs 5.10, 5.11 & 5.12

Appendix A5.1
Nodal Displacements (Δx_1, Δy_1, Φ_{z1}) vs Modulus of Elasticity (E_H) Isotropic soil

(see Table 5.1a) $v = 0.43$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_{soil}</th>
<th>D_{group}</th>
<th>P_{group}</th>
<th>S_{group}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>0.0008</td>
<td>0.0014</td>
<td>0.0047</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>0.0004</td>
<td>0.0007</td>
<td>0.0024</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>0.0003</td>
<td>0.0005</td>
<td>0.0016</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>0.0002</td>
<td>0.0004</td>
<td>0.0012</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0008</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0006</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0005</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0004</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0002</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

Table A5.13 Nodal displacement (Δ_{u1}) vs Isotropic soil modulus of elasticity E_H for $v=0.43$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_{soil}</th>
<th>D_{group}</th>
<th>P_{group}</th>
<th>S_{group}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>-0.0034</td>
<td>-0.0044</td>
<td>-0.0076</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>-0.0014</td>
<td>-0.0019</td>
<td>-0.0035</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>-0.0008</td>
<td>-0.0012</td>
<td>-0.0022</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>0.0006</td>
<td>0.0008</td>
<td>-0.0016</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>-0.0004</td>
<td>-0.0005</td>
<td>-0.0011</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>-0.0003</td>
<td>-0.0004</td>
<td>-0.0008</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>0.0002</td>
<td>-0.0003</td>
<td>-0.0006</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>-0.0001</td>
<td>-0.0002</td>
<td>-0.0004</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>-0.0001</td>
<td>-0.0001</td>
<td>-0.0003</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>0.0001</td>
<td>-0.0001</td>
<td>-0.0002</td>
</tr>
</tbody>
</table>

Table A5.14 Nodal displacement (Δ_{u1}) vs Isotropic soil modulus of elasticity E_H for $v=0.43$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_{soil}</th>
<th>D_{group}</th>
<th>P_{group}</th>
<th>S_{group}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>-0.00993</td>
<td>-0.00992</td>
<td>-0.00993</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>-0.00997</td>
<td>-0.00992</td>
<td>-0.00997</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>-0.00904</td>
<td>-0.00904</td>
<td>-0.00904</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>-0.00893</td>
<td>-0.00892</td>
<td>-0.00892</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>-0.00880</td>
<td>-0.00880</td>
<td>-0.00880</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>-0.00874</td>
<td>-0.00874</td>
<td>-0.00874</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>-0.00870</td>
<td>-0.00870</td>
<td>-0.00870</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>0.00866</td>
<td>0.00866</td>
<td>0.00866</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>-0.00862</td>
<td>-0.00862</td>
<td>-0.00861</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>-0.00860</td>
<td>-0.00860</td>
<td>-0.00860</td>
</tr>
</tbody>
</table>

Table A5.15 Nodal rotation (Φ_{z1}) vs Isotropic soil modulus of elasticity E_H for $v=0.43$

Data for Graphs 5.13, 5.14 & 5.15

Appendix A5.1
Nodal Displacements ($\Delta_x, \Delta_y, \Phi_z$) vs Modulus of Elasticity (E_H) Isotropic soil

(see Table 5.1a) $v = 0.43$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_{soil}</th>
<th>D_{group}</th>
<th>P_{group}</th>
<th>S_{group}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>0.01846</td>
<td>0.01902</td>
<td>0.02232</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>0.01608</td>
<td>0.01636</td>
<td>0.01803</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>0.01524</td>
<td>0.01543</td>
<td>0.01654</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>0.01481</td>
<td>0.01495</td>
<td>0.01578</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>0.01437</td>
<td>0.01446</td>
<td>0.01502</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>0.01414</td>
<td>0.01421</td>
<td>0.01463</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>0.01400</td>
<td>0.01406</td>
<td>0.01439</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>0.01384</td>
<td>0.01386</td>
<td>0.01412</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>0.01368</td>
<td>0.01370</td>
<td>0.01384</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>0.01363</td>
<td>0.01365</td>
<td>0.01376</td>
</tr>
</tbody>
</table>

Table A5.16 Nodal displacement (Δ_x) vs Isotropic soil modulus of elasticity E_H for $v=0.43$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_{soil}</th>
<th>D_{group}</th>
<th>P_{group}</th>
<th>S_{group}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>-0.02378</td>
<td>-0.02450</td>
<td>-0.02819</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>-0.01740</td>
<td>-0.01775</td>
<td>-0.01963</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>-0.01515</td>
<td>-0.01538</td>
<td>-0.01664</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>-0.01399</td>
<td>-0.01416</td>
<td>-0.01511</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>-0.01280</td>
<td>-0.01292</td>
<td>-0.01356</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>-0.01220</td>
<td>-0.01228</td>
<td>-0.01277</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>-0.01184</td>
<td>-0.01190</td>
<td>-0.01229</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>-0.01141</td>
<td>-0.01146</td>
<td>-0.01174</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>-0.01097</td>
<td>-0.01100</td>
<td>-0.01116</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>-0.01084</td>
<td>-0.01087</td>
<td>-0.01100</td>
</tr>
</tbody>
</table>

Table A5.17 Nodal displacement (Δ_y) vs Isotropic soil modulus of elasticity E_H for $v=0.43$

<table>
<thead>
<tr>
<th>Item</th>
<th>E_{soil}</th>
<th>D_{group}</th>
<th>P_{group}</th>
<th>S_{group}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Iso</td>
<td>5</td>
<td>-0.00441</td>
<td>-0.00431</td>
<td>-0.00438</td>
</tr>
<tr>
<td>12-Iso</td>
<td>10</td>
<td>-0.00368</td>
<td>-0.00363</td>
<td>-0.00367</td>
</tr>
<tr>
<td>13-Iso</td>
<td>15</td>
<td>-0.00342</td>
<td>-0.00339</td>
<td>-0.00341</td>
</tr>
<tr>
<td>14-Iso</td>
<td>20</td>
<td>-0.00329</td>
<td>-0.00326</td>
<td>-0.00328</td>
</tr>
<tr>
<td>15-Iso</td>
<td>30</td>
<td>-0.00315</td>
<td>-0.00313</td>
<td>-0.00315</td>
</tr>
<tr>
<td>16-Iso</td>
<td>40</td>
<td>-0.00308</td>
<td>-0.00307</td>
<td>-0.00308</td>
</tr>
<tr>
<td>17-Iso</td>
<td>50</td>
<td>-0.00304</td>
<td>-0.00303</td>
<td>-0.00304</td>
</tr>
<tr>
<td>18-Iso</td>
<td>70</td>
<td>-0.00299</td>
<td>-0.00298</td>
<td>-0.00299</td>
</tr>
<tr>
<td>19-Iso</td>
<td>120</td>
<td>-0.00294</td>
<td>-0.00293</td>
<td>-0.00294</td>
</tr>
<tr>
<td>20-Iso</td>
<td>150</td>
<td>-0.00292</td>
<td>-0.00292</td>
<td>-0.00292</td>
</tr>
</tbody>
</table>

Table A5.18 Nodal rotation (Φ_z) vs Isotropic soil modulus of elasticity E_H for $v=0.43$
A5.2

Tables associated with Graphs 5.19-5.36
Output of structural analysis associated with cross-anisotropic soil
(sub-cases 3 & 5 from Table 5.1)
Bending Moment (M_{21} , M_{32}, M_{34}) vs Cross-anisotropic soil Modulus of Elasticity (E_v)
(See Table 5.1b)

<table>
<thead>
<tr>
<th>item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>21.8510</td>
<td>21.8785</td>
<td>21.4490</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>21.9743</td>
<td>22.0015</td>
<td>21.5854</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>22.0898</td>
<td>22.1167</td>
<td>21.7131</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>22.1982</td>
<td>22.2247</td>
<td>21.8329</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>22.3001</td>
<td>22.3263</td>
<td>21.9456</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>22.3961</td>
<td>22.4219</td>
<td>22.0518</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>22.4867</td>
<td>22.5121</td>
<td>22.1520</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>22.5723</td>
<td>22.5974</td>
<td>22.2467</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>22.6534</td>
<td>22.6781</td>
<td>22.3364</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>22.7303</td>
<td>22.7546</td>
<td>22.4214</td>
</tr>
</tbody>
</table>

Table A5.19 Bending moment M_{21} vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>-32.4010</td>
<td>-32.4440</td>
<td>-32.0647</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>-32.5373</td>
<td>-32.5796</td>
<td>-32.2114</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>-32.6651</td>
<td>-32.7065</td>
<td>-32.3489</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>-32.7850</td>
<td>-32.8258</td>
<td>-32.4781</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>-32.8979</td>
<td>-32.9380</td>
<td>-32.5997</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>-33.0043</td>
<td>-33.0437</td>
<td>-32.7144</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>-33.1048</td>
<td>-33.1435</td>
<td>-32.8227</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>-33.1999</td>
<td>-33.2378</td>
<td>-32.9251</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>-33.2899</td>
<td>-33.3272</td>
<td>-33.0221</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>-33.3753</td>
<td>-33.4120</td>
<td>-33.1142</td>
</tr>
</tbody>
</table>

Table A5.20 Bending moment M_{32} vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>33.3255</td>
<td>33.2285</td>
<td>33.1741</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>33.2903</td>
<td>33.1966</td>
<td>33.1441</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>33.2575</td>
<td>33.1670</td>
<td>33.1162</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>33.2269</td>
<td>33.1393</td>
<td>33.0902</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>33.1983</td>
<td>33.1134</td>
<td>33.0659</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>33.1714</td>
<td>33.0892</td>
<td>33.0431</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>33.1462</td>
<td>33.0664</td>
<td>33.0217</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>33.1225</td>
<td>33.0449</td>
<td>33.0016</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>33.1001</td>
<td>33.0247</td>
<td>32.9826</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>33.0790</td>
<td>33.0057</td>
<td>32.9647</td>
</tr>
</tbody>
</table>

Table A5.21 Bending moment M_{34} vs Cross-anisotropic soil modulus of elasticity E_v

Data for Graphs 5.19, 5.20 & 5.21

Appendix A5.2
Nodal Displacements ($\Delta x_1, \Delta y_1, \Phi_2$) vs Cross-anisotropic modulus of Elasticity (E_v)
(See Table 5.1b)

<table>
<thead>
<tr>
<th>item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>0.00140</td>
<td>0.00153</td>
<td>0.00208</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>0.00135</td>
<td>0.00147</td>
<td>0.00201</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>0.00130</td>
<td>0.00142</td>
<td>0.00194</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>0.00126</td>
<td>0.00137</td>
<td>0.00188</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>0.00122</td>
<td>0.00133</td>
<td>0.00182</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>0.00118</td>
<td>0.00129</td>
<td>0.00176</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>0.00115</td>
<td>0.00125</td>
<td>0.00171</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>0.00111</td>
<td>0.00121</td>
<td>0.00165</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>0.00108</td>
<td>0.00118</td>
<td>0.00161</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>0.00105</td>
<td>0.00115</td>
<td>0.00156</td>
</tr>
</tbody>
</table>

Table A5.22 Nodal displacement (Δx_1) vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>-0.00045</td>
<td>-0.00067</td>
<td>-0.00130</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>-0.00043</td>
<td>-0.00064</td>
<td>-0.00124</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>-0.00041</td>
<td>-0.00062</td>
<td>-0.00120</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>-0.00040</td>
<td>-0.00059</td>
<td>-0.00115</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>-0.00038</td>
<td>-0.00057</td>
<td>-0.00111</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>-0.00037</td>
<td>-0.00055</td>
<td>-0.00107</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>-0.00035</td>
<td>-0.00053</td>
<td>-0.00104</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>-0.00034</td>
<td>-0.00051</td>
<td>-0.00101</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>-0.00033</td>
<td>-0.00050</td>
<td>-0.00097</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>-0.00032</td>
<td>-0.00048</td>
<td>-0.00094</td>
</tr>
</tbody>
</table>

Table A5.23 Nodal displacement (Δy_1) vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>-0.00872</td>
<td>-0.00871</td>
<td>-0.00872</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>-0.00872</td>
<td>-0.00870</td>
<td>-0.00869</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>-0.00871</td>
<td>-0.00869</td>
<td>-0.00868</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>-0.00871</td>
<td>-0.00869</td>
<td>-0.00868</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>-0.00870</td>
<td>-0.00868</td>
<td>-0.00867</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>-0.00869</td>
<td>-0.00868</td>
<td>-0.00866</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>-0.00869</td>
<td>-0.00868</td>
<td>-0.00866</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>-0.00869</td>
<td>-0.00867</td>
<td>-0.00866</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>-0.00868</td>
<td>-0.00867</td>
<td>-0.00866</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>-0.00868</td>
<td>-0.00867</td>
<td>-0.00865</td>
</tr>
</tbody>
</table>

Table A5.24 Nodal rotation (Φ_2) vs Cross-anisotropic soil modulus of elasticity E_v

Data for Graphs 5.22, 5.23 & 5.24

Appendix A5.2
Nodal Displacements (Δ_{x3}, Δ_{y3}, Φ_{z3}) vs Cross-anisotropic Modulus of Elasticity (E_v)

(see Table 5.1b)

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>0.01539</td>
<td>0.01547</td>
<td>0.01595</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>0.01532</td>
<td>0.01539</td>
<td>0.01589</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>0.01525</td>
<td>0.01533</td>
<td>0.01580</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>0.01519</td>
<td>0.01526</td>
<td>0.01572</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>0.01513</td>
<td>0.01520</td>
<td>0.01565</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>0.01508</td>
<td>0.01515</td>
<td>0.01558</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>0.01503</td>
<td>0.01509</td>
<td>0.01551</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>0.01498</td>
<td>0.01504</td>
<td>0.01545</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>0.01494</td>
<td>0.01500</td>
<td>0.01539</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>0.01490</td>
<td>0.01495</td>
<td>0.01534</td>
</tr>
</tbody>
</table>

Table A5.25 Nodal displacement (Δ_{x3}) vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>-0.01335</td>
<td>-0.01349</td>
<td>-0.01426</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>-0.01324</td>
<td>-0.01338</td>
<td>-0.01413</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>-0.01314</td>
<td>-0.01327</td>
<td>-0.01400</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>-0.01305</td>
<td>-0.01317</td>
<td>-0.01388</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>-0.01296</td>
<td>-0.01308</td>
<td>-0.01376</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>-0.01288</td>
<td>-0.01300</td>
<td>-0.01366</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>-0.01280</td>
<td>-0.01291</td>
<td>-0.01355</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>-0.01273</td>
<td>-0.01284</td>
<td>-0.01346</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>-0.01266</td>
<td>-0.01277</td>
<td>-0.01337</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>-0.01260</td>
<td>-0.01270</td>
<td>-0.01328</td>
</tr>
</tbody>
</table>

Table A5.26 Nodal displacement (Δ_{y3}) vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ciso</td>
<td>26</td>
<td>-0.00327</td>
<td>-0.00326</td>
<td>-0.00327</td>
</tr>
<tr>
<td>2-Ciso</td>
<td>27</td>
<td>-0.00326</td>
<td>-0.00324</td>
<td>-0.00326</td>
</tr>
<tr>
<td>3-Ciso</td>
<td>28</td>
<td>-0.00325</td>
<td>-0.00323</td>
<td>-0.00325</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>29</td>
<td>-0.00323</td>
<td>-0.00322</td>
<td>-0.00324</td>
</tr>
<tr>
<td>5-Ciso</td>
<td>30</td>
<td>-0.00322</td>
<td>-0.00321</td>
<td>-0.00322</td>
</tr>
<tr>
<td>6-Ciso</td>
<td>31</td>
<td>-0.00321</td>
<td>-0.00320</td>
<td>-0.00321</td>
</tr>
<tr>
<td>7-Ciso</td>
<td>32</td>
<td>-0.00320</td>
<td>-0.00319</td>
<td>-0.00320</td>
</tr>
<tr>
<td>8-Ciso</td>
<td>33</td>
<td>-0.00319</td>
<td>-0.00318</td>
<td>-0.00319</td>
</tr>
<tr>
<td>9-Ciso</td>
<td>34</td>
<td>-0.00318</td>
<td>-0.00317</td>
<td>-0.00318</td>
</tr>
<tr>
<td>10-Ciso</td>
<td>35</td>
<td>-0.00317</td>
<td>-0.00316</td>
<td>-0.00317</td>
</tr>
</tbody>
</table>

Table A5.27 Nodal rotation (Φ_{z3}) vs Cross-anisotropic soil modulus of elasticity E_v

Data for Graphs 5.25, 5.26 & 5.27

Appendix A5.2
Bending Moment (M_{21}, M_{32}, M_{34}) vs Cross-anisotropic soil Modulus of Elasticity (E_v)

(See Table 5.1b)

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D Group</th>
<th>P Group</th>
<th>S Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>24.3209</td>
<td>24.3358</td>
<td>24.1869</td>
</tr>
<tr>
<td>22-Ciso</td>
<td>76</td>
<td>24.3373</td>
<td>24.3520</td>
<td>24.2049</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>24.3532</td>
<td>24.3678</td>
<td>24.2224</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>78</td>
<td>24.3687</td>
<td>24.3831</td>
<td>24.2396</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>24.3839</td>
<td>24.3982</td>
<td>24.2563</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>24.3987</td>
<td>24.4128</td>
<td>24.2726</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>24.4131</td>
<td>24.4271</td>
<td>24.2885</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>24.4272</td>
<td>24.4410</td>
<td>24.3041</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>24.4410</td>
<td>24.4547</td>
<td>24.3193</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>24.4544</td>
<td>24.4680</td>
<td>24.3341</td>
</tr>
</tbody>
</table>

Table A5.28 Bending moment M_{21} vs Cross-anisotropic soil modulus of elasticity E_v

Bending Moment M_{32} vs Modulus of Elasticity (E_v) Cross-anisotropic medium

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D Group</th>
<th>P Group</th>
<th>S Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>-35.0783</td>
<td>-35.1026</td>
<td>-34.9631</td>
</tr>
<tr>
<td>22-Ciso</td>
<td>76</td>
<td>-35.0976</td>
<td>-35.1215</td>
<td>-34.9838</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>-35.1164</td>
<td>-35.1401</td>
<td>-35.0040</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>78</td>
<td>-35.1347</td>
<td>-35.1581</td>
<td>-35.0237</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>-35.1526</td>
<td>-35.1757</td>
<td>-35.0429</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>-35.1700</td>
<td>-35.1929</td>
<td>-35.0616</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>-35.1871</td>
<td>-35.2097</td>
<td>-35.0799</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>-35.2037</td>
<td>-35.2261</td>
<td>-35.0978</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>-35.2200</td>
<td>-35.2422</td>
<td>-35.1153</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>-35.2359</td>
<td>-35.2578</td>
<td>-35.1323</td>
</tr>
</tbody>
</table>

Table A5.29 Bending moment M_{32} vs Cross-anisotropic soil modulus of elasticity E_v

Bending Moment M_{34} vs Modulus of Elasticity (E_v) Cross-anisotropic medium

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D Group</th>
<th>P Group</th>
<th>S Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>32.6218</td>
<td>32.5930</td>
<td>32.5762</td>
</tr>
<tr>
<td>22-Ciso</td>
<td>76</td>
<td>32.6181</td>
<td>32.5897</td>
<td>32.5732</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>32.6146</td>
<td>32.5865</td>
<td>32.5702</td>
</tr>
<tr>
<td>24-Ciso</td>
<td>78</td>
<td>32.6111</td>
<td>32.5834</td>
<td>32.5673</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>32.6077</td>
<td>32.5803</td>
<td>32.5644</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>32.6044</td>
<td>32.5774</td>
<td>32.5617</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>32.6012</td>
<td>32.5745</td>
<td>32.5590</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>32.5981</td>
<td>32.5717</td>
<td>32.5563</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>32.5950</td>
<td>32.5689</td>
<td>32.5538</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>32.5920</td>
<td>32.5662</td>
<td>32.5513</td>
</tr>
</tbody>
</table>

Table A5.30 Bending moment M_{34} vs Cross-anisotropic soil modulus of elasticity E_v

Data for Graphs 5.28, 5.29 & 5.30

Appendix A5.2
Nodal Displacement (Δx_1, Δy_1, Φz_1) vs Modulus of Elasticity (E_v) of Cross-anisotropic medium (See Table 5.1b)

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D Group</th>
<th>P Group</th>
<th>S Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>0.00041</td>
<td>0.00045</td>
<td>0.00061</td>
</tr>
<tr>
<td>22-Ciso</td>
<td>76</td>
<td>0.00040</td>
<td>0.00044</td>
<td>0.00060</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>0.00040</td>
<td>0.00044</td>
<td>0.00060</td>
</tr>
<tr>
<td>4-Ciso</td>
<td>78</td>
<td>0.00039</td>
<td>0.00043</td>
<td>0.00059</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>0.00039</td>
<td>0.00042</td>
<td>0.00058</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>0.00038</td>
<td>0.00042</td>
<td>0.00057</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>0.00038</td>
<td>0.00041</td>
<td>0.00057</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>0.00037</td>
<td>0.00041</td>
<td>0.00056</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>0.00037</td>
<td>0.00040</td>
<td>0.00055</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>0.00037</td>
<td>0.00040</td>
<td>0.00055</td>
</tr>
</tbody>
</table>

Table A5.31 Nodal displacement (Δ_x) vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D Group</th>
<th>P Group</th>
<th>S Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>-0.00012</td>
<td>-0.00020</td>
<td>-0.00040</td>
</tr>
<tr>
<td>22-Ciso</td>
<td>76</td>
<td>-0.00012</td>
<td>-0.00020</td>
<td>-0.00040</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>-0.00012</td>
<td>-0.00019</td>
<td>-0.00039</td>
</tr>
<tr>
<td>24-Ciso</td>
<td>78</td>
<td>-0.00012</td>
<td>-0.00019</td>
<td>-0.00039</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>-0.00012</td>
<td>-0.00019</td>
<td>-0.00038</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>-0.00012</td>
<td>-0.00019</td>
<td>-0.00038</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>-0.00011</td>
<td>-0.00018</td>
<td>-0.00037</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>-0.00011</td>
<td>-0.00018</td>
<td>-0.00037</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>-0.00011</td>
<td>-0.00018</td>
<td>-0.00036</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>-0.00011</td>
<td>-0.00018</td>
<td>-0.00036</td>
</tr>
</tbody>
</table>

Table A5.32 Nodal displacement (Δ_y) vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D Group</th>
<th>P Group</th>
<th>S Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>-0.00061</td>
<td>-0.00061</td>
<td>-0.00060</td>
</tr>
<tr>
<td>22-Ciso</td>
<td>76</td>
<td>-0.00060</td>
<td>-0.00061</td>
<td>-0.00061</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>-0.00061</td>
<td>-0.00061</td>
<td>-0.00060</td>
</tr>
<tr>
<td>24-Ciso</td>
<td>78</td>
<td>-0.00061</td>
<td>-0.00061</td>
<td>-0.00060</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>-0.00061</td>
<td>-0.00060</td>
<td>-0.00060</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>-0.00061</td>
<td>-0.00060</td>
<td>-0.00060</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>-0.00061</td>
<td>-0.00060</td>
<td>-0.00060</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>-0.00061</td>
<td>-0.00060</td>
<td>-0.00060</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>-0.00061</td>
<td>-0.00060</td>
<td>-0.00060</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>-0.00061</td>
<td>-0.00060</td>
<td>-0.00060</td>
</tr>
</tbody>
</table>

Table A5.33 Nodal rotation (Φ_z) vs Cross-anisotropic soil modulus of elasticity E_v

Data for Graphs 5.31, 5.32 & 5.33

Appendix A5.2
Nodal Displacements ($\Delta_{x3}, \Delta_{y3}, \Phi_{z3}$) vs Cross-anisotropic Modulus of Elasticity (E_v)
(see Table 5.1b)

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>0.01405</td>
<td>0.01407</td>
<td>0.01422</td>
</tr>
<tr>
<td>22-Ciso</td>
<td>76</td>
<td>0.01404</td>
<td>0.01406</td>
<td>0.01421</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>0.01403</td>
<td>0.01405</td>
<td>0.01420</td>
</tr>
<tr>
<td>24-Ciso</td>
<td>78</td>
<td>0.01402</td>
<td>0.01404</td>
<td>0.01419</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>0.01402</td>
<td>0.01404</td>
<td>0.01418</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>0.01401</td>
<td>0.01404</td>
<td>0.01417</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>0.01400</td>
<td>0.01402</td>
<td>0.01416</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>0.01400</td>
<td>0.01401</td>
<td>0.01415</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>0.01399</td>
<td>0.01401</td>
<td>0.01414</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>0.01398</td>
<td>0.01400</td>
<td>0.01414</td>
</tr>
</tbody>
</table>

Table A5.34 Nodal displacement (Δ_{x3}) vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>-0.01135</td>
<td>-0.01139</td>
<td>-0.01165</td>
</tr>
<tr>
<td>22-Ciso</td>
<td>76</td>
<td>-0.01133</td>
<td>-0.01138</td>
<td>-0.01163</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>-0.01132</td>
<td>-0.01136</td>
<td>-0.01162</td>
</tr>
<tr>
<td>24-Ciso</td>
<td>78</td>
<td>-0.01131</td>
<td>-0.01135</td>
<td>-0.01160</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>-0.01130</td>
<td>-0.01134</td>
<td>-0.01159</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>-0.01128</td>
<td>-0.01133</td>
<td>-0.01157</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>-0.01127</td>
<td>-0.01131</td>
<td>-0.01155</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>-0.01126</td>
<td>-0.01130</td>
<td>-0.01154</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>-0.01125</td>
<td>-0.01129</td>
<td>-0.01153</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>-0.01124</td>
<td>-0.01128</td>
<td>-0.01151</td>
</tr>
</tbody>
</table>

Table A5.35 Nodal displacement (Δ_{y3}) vs Cross-anisotropic soil modulus of elasticity E_v

<table>
<thead>
<tr>
<th>Item</th>
<th>E_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Ciso</td>
<td>75</td>
<td>-0.00300</td>
<td>-0.00299</td>
<td>-0.00300</td>
</tr>
<tr>
<td>23-Ciso</td>
<td>77</td>
<td>-0.00299</td>
<td>-0.00299</td>
<td>-0.00300</td>
</tr>
<tr>
<td>25-Ciso</td>
<td>79</td>
<td>-0.00299</td>
<td>-0.00299</td>
<td>-0.00299</td>
</tr>
<tr>
<td>26-Ciso</td>
<td>80</td>
<td>-0.00299</td>
<td>-0.00298</td>
<td>-0.00299</td>
</tr>
<tr>
<td>27-Ciso</td>
<td>81</td>
<td>-0.00299</td>
<td>-0.00298</td>
<td>-0.00299</td>
</tr>
<tr>
<td>28-Ciso</td>
<td>82</td>
<td>-0.00299</td>
<td>-0.00298</td>
<td>-0.00299</td>
</tr>
<tr>
<td>29-Ciso</td>
<td>83</td>
<td>-0.00299</td>
<td>-0.00298</td>
<td>-0.00299</td>
</tr>
<tr>
<td>30-Ciso</td>
<td>84</td>
<td>-0.00298</td>
<td>-0.00298</td>
<td>-0.00299</td>
</tr>
</tbody>
</table>

Table A5.36 Nodal rotation (Φ_{z3}) vs Cross-anisotropic soil modulus of elasticity E_v

Data for Graphs 5.34, 5.35 & 5.36

Appendix A5.2
A5.3

Tables associated with
Graphs 5.37-5.45
Output of structural analysis
associated with
cross-anisotropic soil
(sub-cases 7 to 11 from Table 5.1)
Bending Moment (M_{21}, M_{32}, M_{34}) vs Cross-anisotropic soil Modulus of Elasticity (F_v)

(See Table 5.1c)

<table>
<thead>
<tr>
<th>item</th>
<th>F_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>22.129</td>
<td>22.218</td>
<td>21.941</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>22.370</td>
<td>22.466</td>
<td>22.232</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>22.439</td>
<td>22.532</td>
<td>22.301</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>22.460</td>
<td>22.561</td>
<td>22.342</td>
</tr>
</tbody>
</table>

Table A5.37 Bending moment M_{21} vs Cross-anisotropic soil modulus of elasticity F_v

<table>
<thead>
<tr>
<th>item</th>
<th>F_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>-33.229</td>
<td>-33.258</td>
<td>-32.958</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>-33.629</td>
<td>-33.652</td>
<td>-33.384</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>-33.689</td>
<td>-33.712</td>
<td>-33.449</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>-33.707</td>
<td>-33.733</td>
<td>-33.476</td>
</tr>
</tbody>
</table>

Table A5.38 Bending moment M_{32} vs Cross-anisotropic soil modulus of elasticity F_v

<table>
<thead>
<tr>
<th>item</th>
<th>F_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>33.518</td>
<td>33.394</td>
<td>33.344</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>33.519</td>
<td>33.395</td>
<td>33.348</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>33.491</td>
<td>33.370</td>
<td>33.324</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>33.482</td>
<td>33.361</td>
<td>33.315</td>
</tr>
</tbody>
</table>

Table A5.39 Bending moment M_{34} vs Cross-anisotropic soil modulus of elasticity F_v

*: Cross-anisotropy simplifies to isotropy.

Data for Graphs 5.37, 5.38 & 5.39

Appendix A5.3
Nodal Displacement (Δ_x, Δ_y, Φ_z) vs Modulus of Elasticity (F_v) of Cross-anisotropic I
(See Table 5.1c)

<table>
<thead>
<tr>
<th>item</th>
<th>F_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>0.0016</td>
<td>0.0017</td>
<td>0.0023</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>0.0016</td>
<td>0.0017</td>
<td>0.0023</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>0.0016</td>
<td>0.0017</td>
<td>0.0022</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>0.0016</td>
<td>0.0017</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

Table A5.40 Nodal displacement (Δ_x) vs Cross-anisotropic soil modulus of elasticity F_v

<table>
<thead>
<tr>
<th>item</th>
<th>F_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>-0.0004</td>
<td>-0.006</td>
<td>-0.0011</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>-0.0003</td>
<td>-0.005</td>
<td>-0.0010</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>-0.0003</td>
<td>-0.005</td>
<td>-0.0009</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>-0.0003</td>
<td>-0.005</td>
<td>-0.0009</td>
</tr>
</tbody>
</table>

Table A5.41 Nodal displacement (Δ_y) vs Cross-anisotropic soil modulus of elasticity F_v

<table>
<thead>
<tr>
<th>item</th>
<th>F_v (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>-0.0064</td>
<td>-0.0061</td>
<td>-0.00863</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>-0.0061</td>
<td>-0.0061</td>
<td>-0.00861</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>-0.0061</td>
<td>-0.0061</td>
<td>-0.00861</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>-0.0061</td>
<td>-0.0061</td>
<td>-0.00861</td>
</tr>
</tbody>
</table>

Table A5.42 Nodal rotation (Φ_z) vs Cross-anisotropic soil modulus of elasticity F_v

*: Cross-anisotropy I simplifies to isotropy.

Data for Graphs 5.40, 5.41 & 5.42

Appendix A5.3
Nodal Displacements \((\Delta_{x3}, \Delta_{y3}, \phi_{z3})\) vs Cross-anisotropic Modulus of Elasticity \(F_v\)
(see Table 5.1c)

<table>
<thead>
<tr>
<th>Item</th>
<th>(F_v) (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>0.01537</td>
<td>0.01546</td>
<td>0.01603</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>0.01527</td>
<td>0.01536</td>
<td>0.01591</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>0.01530</td>
<td>0.01532</td>
<td>0.01585</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>0.01522</td>
<td>0.01530</td>
<td>0.01583</td>
</tr>
</tbody>
</table>

Table A5.43 Nodal displacement \((\Delta_{x3})\) vs Cross-anisotropic soil modulus of elasticity \(F_v\)

<table>
<thead>
<tr>
<th>Item</th>
<th>(F_v) (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>-0.01285</td>
<td>-0.01297</td>
<td>-0.01363</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>-0.01258</td>
<td>-0.01269</td>
<td>-0.01327</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>-0.01253</td>
<td>-0.01263</td>
<td>-0.01321</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>-0.01252</td>
<td>-0.01262</td>
<td>-0.01319</td>
</tr>
</tbody>
</table>

Table A5.44 Nodal displacement \((\Delta_{y3})\) vs Cross-anisotropic soil modulus of elasticity \(F_v\)

<table>
<thead>
<tr>
<th>Item</th>
<th>(F_v) (MPa)</th>
<th>D group</th>
<th>P group</th>
<th>S group</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-Ciso*</td>
<td>21.429</td>
<td>-0.00323</td>
<td>-0.00321</td>
<td>-0.00322</td>
</tr>
<tr>
<td>32-Ciso</td>
<td>21.450</td>
<td>-0.00320</td>
<td>-0.00318</td>
<td>-0.00319</td>
</tr>
<tr>
<td>34-Ciso</td>
<td>22.627</td>
<td>-0.00319</td>
<td>-0.00317</td>
<td>-0.00318</td>
</tr>
<tr>
<td>33-Ciso</td>
<td>23.000</td>
<td>-0.00319</td>
<td>-0.00317</td>
<td>-0.00318</td>
</tr>
</tbody>
</table>

Table A5.45 Nodal rotation \((\phi_{z3})\) vs Cross-anisotropic soil modulus of elasticity \(F_v\)

*: Cross-anisotropy \nsimplifies to isotropy.

Data for Graphs 5.43, 5.44 & 5.45

Appendix A5.3