OXAZOLOPYRIDINES TOWARDS THE TREATMENT OF HUMAN AFRICAN SLEEPING SICKNESS

Basmah Almohaywi

A thesis submitted in total fulfillment of the requirement degree of Master of Science

November 2014

School of Chemistry
University of Tasmania
“The first thing you have to know is yourself. Someone who knows himself can step outside himself and watch his own reactions like an observer.”
— Adam Smith
DECLARATION

This Thesis entitled “Oxazolopyridine towards the treatment of Human African sleeping sickness” is a piece of original work and contains no material that has, to the best of my knowledge, been previously submitted for a degree or diploma in any university, nor does contain material published or written by another person, except where due reference is made. I certify that every effort has been made to acknowledge previously published material. Diagrams from electronic resources have been referenced.

[Signature]

Basmah Mohammed Khelewi

November 2014
Copyright declaration

This thesis may be made available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying and communication is permitted in accordance with the Copyright Act 1968.

Basmah Almohaywi

November 2014
Abstract

This thesis describes the synthesis and structure activity relationship (SAR) of oxazolopyridine and related analogues against *Trypanosoma brucei*, the causative agent of Human African Trypanosomiasis, a neglected, fatal parasitic disease that is a major cause of death and disability affecting many sub-Saharan African countries.

Collaborators at Monash Institute of Pharmaceutical Science (MIPs), and ESKITIS institute found eight compounds as potential candidates via high throughput screening (HTS) of a large library of compounds against the disease. Amongst the compounds screened, an oxazolo[4,5-b]pyridine compound was of particular interest. In collaboration with MIPS, this work aimed to modify certain regions of the lead compounds and to develop a SAR against *T. brucei*, aiming for the synthesis of better analogues of the lead compound, as discussed in Chapter 2 and Chapter 3. A number of compounds have been made through modification around the central phenyl ring and the heterocyclic oxazolopyridine core. Modification at the central phenyl ring revealed the intolerance of that position for substitution, while the best compounds remained either the lead compound itself or its analogues, with the chlorine being replaced by either a hydrogen or substituting the 2-furyl amide for its 3-furyl counterpart. Modification of the heterocyclic core has resulted in a number of active compounds. We suggested that the modification and substitutions on oxazolopyridine core is more favourable for better activity.

In addition to the anti-trypanosomal activities, these compounds are similar to heterocyclic amine derivatives found in cooked meat and fish, which has the potential to cause cancer. This has prompted us to investigate the potential for DNA damage activity of these compounds and the amine precursors, as discussed in Chapter 4.
Acknowledgements

First and foremost I would like to thank the best main supervisor in the whole world, Dr Jason Smith, for his guidance and never-ending generous support, and patience during this degree. I also thank my co-supervisor A/prof A/Prof Michael Gardiner. I also would like to thank my previous supervisors Christian Narckowicz and Chris Hyland for their guidance and support.

Thanks to everyone, current and previous students, in “Jason’s lab” for your advice and support.

Also thanks to everyone else in Chemistry, in particular to A/Prof Noel Davis and our beloved laboratory manager Murray Frith.

From my deep heart I thank my parents, my sibling and my husband, without whom I wouldn’t be inspired, and for their endless support, patience and caring.

A Big thanks to my ever-best friends, Aliaa Shallan and Hajerr Al-shaman, whom I have shared gossip, laughter and tears with during my study at UTAS.
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF</td>
<td>Dimethyl formamide</td>
</tr>
<tr>
<td>DMAP</td>
<td>Dimethylaminopyridine</td>
</tr>
<tr>
<td>DNDi</td>
<td>Drugs for Neglected Diseases initiative</td>
</tr>
<tr>
<td>HTS</td>
<td>High throughput screening</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic resonance</td>
</tr>
<tr>
<td>PPA</td>
<td>Polyphosphoric acid</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure activity relationship</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-ethyl-3-(3-dimethylaminopropyl) carbodiimide</td>
</tr>
</tbody>
</table>

T. Brucei *Trypanosoma brucei*

TLC Thin layer chromatography
Author’s Contribution

As part of this thesis, the author contributed to the synthesis and structural characterisation to library of compounds. These compounds were synthesised by the author and were sent to collaborators in Professor Jonathan Baell’s group (Monash University) to add to a larger library where the screening against *T. brucei* were conducted at the ESKITIS institute at Griffith University. These compounds and their hetrocyclic-amine precursors were also assessed for DNA damage activity, by Associate Professor Nuri Guven (Pharmacy School at UTAS).

Publication (Co-author)

TABLE OF CONTENT

OXAZOLOPYRIDINES TOWARDS THE TREATMENT OF HUMAN AFRICAN SLEEPING SICKNESS ... I

ACKNOWLEDGEMENTS ... V

CHAPTER 1 – INSIGHTS TOWARDS THE TREATMENT OF HUMAN AFRICAN TRYPANOSOMIASIS .. 1

1.1 Background of Human African Trypanosoma (HAT) and current treatment .. 1
1.2 Life cycle of parasites ... 4
1.3 Current medication for treatment of HAT .. 7
1.4 Current research towards the discovery of new treatment for HAT ... 12
 1.4.1 Amidine compounds ... 12
 1.4.2 Nitroheterocycles for HAT ... 20
 1.4.3 Benzoaboroles .. 28
 1.4.6 Biochemical pathways a target for T. brucei inhibition .. 32
1.5 Background for the scope of this thesis .. 44
 1.5.1 Background to the lead compound selected for medicinal chemistry optimisation 44
 1.5.2 Oxazolopyridine and the importance of SIRT1 in trypanosomes ... 46
 1.5.3 Other biological activity for oxazolopyridine ... 48
1.6 This Study .. 50
CHAPTER 2 CHEMISTRY AND SYNTHESIS OF OXAZOLOPYRIDINE AND RELATED COMPOUNDS

2.1 SYNTHESIS AND CHEMISTRY OF OXAZOLOPYRIDINE AND RELATED ANALOGUES53
2.2 EXPLORING ALTERNATIVE METHODS TO FORM OXAZOLOPYRIDINE ..55
2.3 MODIFICATION TO THE CENTRAL PHENYL RING ..58
2.4 MODIFICATION OF THE FUSED SYSTEM OF OXAZOLOPYRIDINE RING ..66
2.5 SUBSTITUTION OF THE PYRIDINE RING ON THE OXAZOLOPYRIDINE CORE69
2.6 UNSUBSTITUTED CENTRAL PHENYL RING WITH AMIDE ON THE PYRIDINE RING OF THE OXAZOLOPYRIDINE CORE ..80
2.7 SUMMARY OF THE SYNTHESIS AND FUTURE TARGETS ...82

3. SAR TOWARDS INHIBITION OF T. BRUCEI ...85

3.1 SELECTION OF THE LEAD COMPOUND ..85
3.2 SAR STUDY OF OXAZOLOPYRIDINE AND RELATED ANALOGUES ...86
3.3 GENERATION 1: MODIFICATION AROUND THE CENTRAL PHENYL RING ...87
3.2 GENERATION 2 - MODIFICATION OF THE HETEROCYCLIC CORE ...90
3.3 RECENT REPORT OF OXAZOLOPYRIDINE COMPOUNDS ...92
3.4 CONCLUSION ...95
3.5 FUTURE WORK ...96

CHAPTER 4: MUTAGENICITY POTENTIAL OF OXAZOLOPYRIDINES ...101

4.1 INTRODUCTION ..101
4.2 TESTING OF DNA DAMAGE ...105
4.2.1 BACKGROUND ..105
4.2.2 RESULTS AND DISCUSSION .. 106
4.3 CONCLUSION AND FUTURE .. 109

CHAPTER 5: EXPERIMENTAL ... 110

5.1 GENERAL EXPERIMENTAL .. 110
5.2 SYNTHETIC COMPOUNDS ... 112
5.3 GENERAL PROCEDURES ... 112

CHAPTER 6: REFERENCES .. 135