Condition indicators for Antarctic krill,
Euphausia superba

Hyoung-Chul SHIN, MSc
Seoul National University, Seoul, Korea

submitted in fulfilment of the requirements
for the Degree of
Doctor of Philosophy
University of Tasmania (November 2000)
This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person, except where due acknowledgment is made in the text of the thesis.

Hyoung-Chul SHIN

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Hyoung-Chul SHIN
Condition indicators for Antarctic krill,

Euphausia superba

Abstract

Antarctic krill use a variety of strategies to cope with, and thrive in the highly variable Southern Ocean environment. Despite much detailed information on its basic biology produced so far, the linkages between krill populations and the environment are yet to be systematically investigated. There is a practical need to have standardised indicators to assess the ‘condition’ of krill in relation to seasonal cycles and shifts in physical regimes and this study has aimed to develop such indicators.

The level of nucleic acids in abdominal tissue was determined as an estimator of growth rates of individual krill that could otherwise only be obtained by on-board experiments. The dynamics of the major digestive organ, the digestive gland, in its size, protein and lipid content and enzyme activities, were examined in relation to changing food regimes. The potential of using eye diameter as a long-term starvation indicator was also examined.

The amount of RNA and RNA:DNA ratio in krill muscle exhibited a significant relationship with individual growth rates, although the predictability was only modest. This was the case with both field-caught specimens and experimental juveniles. RNA-based indices were clearly different between well-fed, high-growth krill and underfed low-growth krill, and the RNA content levelled off when the growth rates became negative. The moult cycle had no significant effect on nucleic acid content. Overall, the content of nucleic acids varied considerably between individuals. Starved krill also tended to have higher DNA per unit biomass, which implies shrinkage of cells rather than loss of cells. The experimental krill showed a rapid response to the food conditions in their growth rates, either in a positive or negative direction, well within a single moult cycle.
The digestive enzyme activities in the digestive gland of field-caught adults decreased considerably during one week of starvation. The size of the gland decreased substantially both in length and weight, accompanied by a loss of lipid and protein, with the former being more readily utilised. In a laboratory experiment where juvenile krill were alternately fed and starved, the digestive enzyme activities changed in response to the food regime. These changes largely mirrored the mass gain and loss of the digestive glands. The gland size-specific activities of digestive enzymes showed no consistent trends even after a long period of starvation. When the food supply was resumed, the gland regained its mass and enzyme activities. The digestive gland appears to serve as a reserve, which can provide against a few days’ starvation and be rebuilt relatively quickly. Its size showed a prompt and steady response to short-term changes in feeding regime, proving a reliable indicator of recent feeding activities.

By tracking individuals over time and examining specimens sampled as groups, it was demonstrated that fed and starved krill are distinguishable by the relationship between the eye diameter and body length. The eye diameter of starved krill did not decrease even when the animals were shrinking in overall body length. The eye diameter of well-fed krill continued to increase as overall length increased. This created a distinction between fed and starved krill while no simultaneous separation was detected in terms of the body length to weight relationship. It would take approximately 2 moult cycles of shrinkage or more at modest rates for the eye diameter to body length relationship to significantly change. Whether this feature is manifested in the wild would be best seen at the end of winter, after the most likely period of extended food limitation.

Nucleic acid content has only limited predictive power as an estimator of growth rates. Growth rates measured by the ‘instantaneous growth rate’ technique are still the best representation of in situ growth, which is determined by the condition during the period since the last moult. The size of the digestive gland of krill, a crucial short-term storage organ, was more responsive to food condition than enzyme activities. The gland size is a result of feeding activities over the past few weeks and will not be affected by immediate past events such as cod-end feeding. The digestive
gland size should, at least, be a simple measure of whether krill have recently undergone severe, sustained food shortage. Long-term, seasonal starvation and the shrinkage it caused over a few moult cycles can be seen in the body length to eye diameter relationship more obviously than the traditional body length to weight relationship. This suite of measurements will provide a matrix of methods to determine the 'condition' of krill, in time scales from a week to a few months. These techniques are now ready for repeated measurements in the field over wider temporal and spatial extent to examine their applicability and to contribute to unravelling the outstanding questions in krill biology.
Acknowledgment

Stephen Nicol has been a source of everything, even a private tutor of thesis English. To thank him in words is simply not possible. Having Stephen Nicol as a mentor, colleague, life-long friend is truly a blessing despite all those twists during the past years in Tasmania. My affection and respect go to him.

Andrew McMinn is thanked for taking up the supervisory role and critically reading the draft.

I would not have been able to even start the whole experiment without the support of Paul Cramp and Robert King, the two krill minder at the Australian Antarctic Division. Robert King agreed to share some of his unpublished data and helped to make the posters for presentation in late hours.

My enrolment at University of Tasmania was supported by an Overseas Postgraduate Research Scholarship from the Australian Government. I gratefully acknowledge a partial stipend scholarship from the Australian Antarctic Division administered through the University.

Suam Kim, formerly with the Korea Antarctic Research Program is thanked for his interest and encouragement. Insung Corporation’s interest in krill biology as well as in a student of krill biology is acknowledged.

So Kawaguchi is thanked for his friendship while he was in Tasmania and later. Meeting him was another benefit of my days in Tasmania.

Comments from Robin Ross and an anonymous examiner helped to improve the thesis and are appreciated.

Nina Im’s family gave whole hearted support to me and my family while they were in Tasmania.

I thank my parents and mother-in-law for their support and understanding while I was grossly failing to fulfil my duty as a family member.

Han and Hoon have been irresistible distractions and they are now growing into a driving force out of a dragging force, to which I feel even more grateful. Yoon-Hee proved herself to be an excellent lab mate as well as soul mate. She endured more than what she should, but what she possibly could.
Table of contents

Abstract i
Acknowledgment iv
Table of contents v
List of figures vii
List of tables x

Chapter 1. General introduction 1

Chapter 2. Nucleic acid content as a potential growth rate estimator of Antarctic krill; results from field-caught krill from the Indian Sector of the Southern Ocean
2.1 Abstract 11
2.2 Introduction 12
2.3 Materials and methods 15
2.4 Results 17
2.5 Discussion 24

Chapter 3. Growth and nucleic acid contents of juvenile Antarctic krill in the laboratory
3.1 Abstract 27
3.2 Introduction 28
3.3 Materials and methods 31
3.4 Results 34
3.5 Discussion 44

Chapter 4. Changes in the digestive gland of Antarctic krill during short-term starvation: mass, content of protein and lipid, and digestive enzyme activity
4.1 Abstract 49
4.2 Introduction 50
4.3 Materials and methods 53
4.4 Results 56
4.5 Discussion 67
Chapter 5. Changes in the digestive gland of juvenile Antarctic krill during a long-term feeding experiment

5.1 Abstract 74
5.2 Introduction 75
5.3 Materials and methods 77
5.4 Results 80
5.5 Discussion 93

Chapter 6. The potential of using eye diameter as an indicator of shrinkage in Antarctic krill: an experimental appraisal

6.1 Abstract 100
6.2 Introduction 101
6.3 Materials and methods 104
6.4 Results 106
6.5 Discussion 115

Chapter 7. Concluding remarks

7.1 Summary of results 126
7.2 Suggestions for future application 128

References 131
List of figures

Fig. 2.1 The body size and nucleic acid levels in tissue of the krill by moult stages. 19

Fig. 2.2 Growth rates and nucleic acid levels in tissue of the krill from the IGR experimental groups. 20

Fig. 2.3 Regressions of instantaneous growth rates (IGR) versus nucleic acid-based indices. 22

Fig. 3.1 Changes in the growth rates of the Harvest Group krill over time in response to food conditions. 36

Fig. 3.2 Growth rates in length and weight determined from the Monitor Group over time. 37

Fig. 3.3 The relationship between growth in carapace length and fresh body weight in percentage increase per moult. 38

Fig. 3.4 Changes in nucleic acid levels of krill tissue during the experiment. 41

Fig. 3.5 Regressions of instantaneous growth rates (IGR) versus nucleic acid-based indices. 43

Fig. 4.1 Changes in mass, protein and lipid in the digestive gland of the krill during Starvation Experiment 1. 58

Fig. 4.2 Changes in the concentration of protein and lipid (μg mg⁻¹ dry weight) in the digestive gland in Starvation Experiment 1. 59
Fig. 4.3 Changes in the ratio of lipid to protein in the digestive gland during Starvation Experiment 1.

Fig. 4.4 Changes in the body size and the digestive gland of the krill during Starvation Experiment 2.

Fig. 4.5 The relationships between different measures of the size of the digestive gland in krill.

Fig. 4.6 Digestive enzyme activities in the digestive gland of the krill during Starvation Experiment 2.

Fig. 4.7 Carapace length and digestive gland length of fresh high summer krill and early autumn krill, and starved summer krill.

Fig. 4.8 Growth rate-time profile from the 'instantaneous growth rate' experiment run parallel with starvation Experiment 1 and the decline in the mass of the digestive gland.

Fig. 5.1 Change in body size of the krill.

Fig. 5.2 Change in digestive gland size of the krill.

Fig. 5.3 Enlargement of the digestive gland of the newly fed krill in Phase 2 after a long period of starvation during Phase 1.

Fig. 5.4 Changes in digestive enzyme activities in the digestive gland of the krill.

Fig. 5.5 Change in ratio of trypsin activity over laminarinase activity in the digestive gland of the krill.

Fig. 6.1 Changes in the body size of the krill from the Monitor group.
Fig. 6.2 The relationship between the body length and body weight of well-fed or starved krill. 109

Fig. 6.3 The relationship between carapace length and eye diameter of the fed or starved krill. 110

Fig. 6.4 The carapace length to eye diameter relationship over time from the animals of the Monitor Group. 111

Fig. 6.5 Eye diameter and carapace length increment in percentage per moult of the individually monitored krill throughout the experiment. 113

Fig. 6.6 Trajectories of carapace length and eye diameter of 3 representative krill that completed both feeding and starvation phase of the experiment. 114

Fig. 6.7 Trajectories of carapace length and body weight of representative individual krill from the 'fed and then starved' group. 116

Fig. 6.8 Hypothetical 5-year growth of krill that shrink over winter or do not shrink. 120

Fig. 6.9 The change of the ratio of body length to eye diameter over 5 years as modelled in Fig 6.8. 121

Fig. 6.10 Multiple regression lines of body length versus eye diameter generated by shrinkage on top of the initial 'no-shrinkage' line. 121
List of tables

Table 2.1 Matrix of pairwise comparison probabilities from multiple comparisons of the ‘instantaneous growth rate’ (IGR) experimental groups by body size, growth rate and nucleic acid-based indices. 21

Table 2.2 Regression statistics of the instantaneous growth rates (IGR) versus nucleic acid-based indices. 23

Table 3.1 Regression statistics of the instantaneous growth rates (IGR) versus nucleic acid-based indices. 42

Table 5.1 Summary of changes in body size and digestive gland size of the experimental krill. 83

Table 5.2 Changes in the digestive enzyme activities in the digestive gland of the experimental krill. 91

Table 5.3 Change in trypsin/laminarinase ratio of the experimental krill. 92