USING THE MUCOSAL RESPONSE TO RECOMBINANT Neoparamoeba perurans ATTACHMENT PROTEINS TO DESIGN AN EXPERIMENTAL VACCINE AGAINST AMOEBOIC GILL DISEASE (AGD)

by

Victoria Andrea Carolina Valdenegro Vega
Bachelor of Veterinary Science (Hons)
Master of Applied Science (Aquaculture)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Institute for Marine and Antarctic Studies

University of Tasmania

Launceston, Tasmania
November 2014
APPROVALS

Doctor of Philosophy Dissertation

Mucosal immune responses to *Neoparamoeba perurans*

By Victoria A.C. Valdenegro Vega

BVetSc (Hons), MAppSc (Aquaculture)

Supervisor:___

Professor Barbara F. Nowak
Statements

STATEMENT OF ORIGINALITY
This thesis contains no material which has been accepted for a degree or diploma by
the University or any other institution, except by way of background information and
duly acknowledged in the thesis, and to the best of the my knowledge and belief no
material previously published or written by another person except where due
acknowledgement is made in the text of the thesis, nor does the thesis contain any
material that infringes copyright.

____________________ ______________
(signature) (date)

STATEMENT OF ACCESS
This thesis is not to be made available for loan or copying for two years following
the date this statement was signed. Following that time the thesis may be made
available for loan and limited copying in accordance with the Copyright Act 1968.

____________________ ______________
(signature) (date)
STATEMENT REGARDING PUBLISHED WORK

The publishers of the papers comprising Chapters 2 to 6, inclusive, hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the above Statement of Access and the Copyright Act 1968.

Due to the inclusion of published material there is unavoidable repetition of material between Chapters in this thesis.

____________________ ________________
 (signature) (date)

STATEMENT OF ETHICAL CONDUCT

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government’s Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.

____________________ ________________
 (signature) (date)
CO-AUTHORSHIP

The following people and institutions contributed to the publication of work undertaken as part of this thesis:

Victoria A. Valdenegro-Vega (VAV), NCMCRS, University of Tasmania
Barbara F. Nowak (BFN), NCMCRS, University of Tasmania
Philip B. Crosbie (PBC), NCMCRS, University of Tasmania
Mathew T. Cook (MTC), CSIRO, Agriculture Flagship
Benita N. Vincent (BNV), NCMCRS, University of Tasmania
Kenneth D. Cain (KDC), Department of Fish and Wildlife Resources, University of Idaho
Andrew R. Bridle (ARB), NCMCRS, University of Tasmania
Melanie J. Leef (MJL), NCMCRS, University of Tasmania
Mark Polinski (MP), NCMCRS, University of Tasmania
Richard Wilson (RW), Central Science Laboratory, University of Tasmania

We the undersigned agree with the stated proportion of work undertaken for each of the published peer-reviewed manuscripts contributing to this thesis.

Signed: ______________________ Date:____________________
Professor Barbara Nowak
Supervisor
Institute for Marine and Antarctic Studies, Launceston
University of Tasmania

Signed: ______________________ Date:____________________
Associate Professor John Purser
Deputy Director, Fisheries and Aquaculture
Institute for Marine and Antarctic Studies, Launceston
University of Tasmania
Contribution of work by co-authors for each paper:

PAPER 1: Located in Chapter 2

Authors’ Contributions:
- Conceived and designed the experiments: VAV, PBC, ARB, MJL, BFN
- Performed the experiments: VAV, PBC, MP, MJL, ARB
- Analysed the data: VAV, PBC, MP, MJL, BFN
- Contributed reagents/materials/analysis tools: MJL, BFN
- Wrote the manuscript: VAV, PBC, MP, ARB, BFN

PAPER 2: Located in Chapter 3

Authors’ Contributions:
- Conceived and designed the experiments: VAV, PBC, KDC, BFN
- Performed the experiments: VAV, PBC, BNV
- Analysed the data: VAV, PBC, BNV, BFN
- Contributed reagents/materials/analysis tools: BFN
- Wrote the manuscript: VAV, PBC, BNV, KDC, BFN
Co-authorship

PAPER 3: Located in Chapter 4

Authors’ Contributions:

Conceived and designed the experiments: VAV, PBC, MTC, BNV, BFN
Performed the experiments: VAV, PBC, MTC
Analysed the data: VAV, PBC, BNV
Contributed reagents/materials/analysis tools: MTC, BFN
Wrote the manuscript: VAV, PBC, MTC, BNV, BFN

PAPER 4: Located in Chapter 5

Authors’ Contributions:

Conceived and designed the experiments: VAV, PBC, MTC, ARB, BFN
Performed the experiments: VAV, PBC, ARB
Analysed the data: VAV, PBC, ARB
Contributed reagents/materials/analysis tools: MTC, BFN
Wrote the manuscript: VAV, PBC, MTC, ARB, BFN
PAPER 5: Located in Chapter 6

Authors’ Contributions:

Conceived and designed the experiments: VAV, PBC, ARB, MJL, RW, BFN
Performed the experiments: VAV, PBC, ARB, MJL, RW
Analysed the data: VAV, ARB, RW
Contributed reagents/materials/analysis tools: MJL, RW, BFN
Wrote the manuscript: VAV, PBC, ARB, RW, BFN
ACKNOWLEDGEMENTS

There are many people who were directly and indirectly involved in this project and that I wish to express my gratitude to.

First and foremost, I am deeply indebted to my supervisory team for helping me complete my dream of becoming a PhD, in particular Prof. Barbara Nowak and Dr Phil Crosbie. Thank you for providing me with the opportunity to be part of this project. Without your constant support, insightful discussions, advice and dedication I would have not been able to complete this immense task. I would also like to thank my co-supervisor Dr Benita Vincent for her patience, her valuable teachings and time spent in the laboratory comforting an unexperienced and sometimes nervous student. To Dr Mathew Cook, for his technical advice and invaluable provision of materials to undertake important part of this research.

I would like to thank the Seafood CRC for my scholarship and acknowledge the different sources of funding that made travel expenses possible to present this work at different conferences and workshops: Fisheries Society of the British Isles Travel Grant, ARC/NHMRC Research Network for Parasitology travel award and the University of Tasmania Post-graduate Conference and Research Travel Fund.

To the members of the Aquatic Animal Health group at the University of Tasmania, in Launceston, Dr Melanie Leef, Dr Andrew Bridle and Ms Karine Cadoret, I express my gratitude for your advice and expertise in laboratory techniques and troubleshooting; and your permanent motivation when things did not look all that positive. I would also like to thank Dr Mark Adams, for lending a helping hand every time technical issues related to fish husbandry occurred.

To my co-authors Dr Kenneth Cain and Dr Richard Wilson, thank you for being part of this work and for your expert advice in mucosal immunology (Ken) and liquid chromatography and proteomics analyses (Richard).

To my fellow PhD candidates and friends Deb, Kaeden, Dan, Catarina, Anna, Rebecca, Max, Mark, Leanne, Ylenia, Gianluca, Megan, Bikram and Ash for being willing listeners of all my complaints, for your help with work and for all those BBQs and desserts which made this journey a lot easier and were so thoroughly
Acknowledgements

enjoyed. To the “Latin girls” Carmen, Laura, Bel and Marian, for those weekly gatherings and long talks in Spanish that made me feel a bit closer to home and added some “spice” to my Australian life.

To my Australian family, Glenda, Grant, Brady, Lauren and Lucas, I thank you for all your love and support. To my parents Hernan and Sara, for believing in me and encouraging me to be the best in everything I wanted to do. To my sisters, nephew and niece, Vero, Vivi, Nico and Flo, thank you for being there for me during those extended Skype talks, for your visits and constant support that helped me go through the difficult moments. I love you all very much.

And finally to my dearest husband James, for offering me your incredible emotional support, your unconditional help during the weekends at the University, your endless patience and love, and just for being as kind as you are. Te amo.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVALS</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>STATEMENT OF ORIGINALITY</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>STATEMENT OF ACCESS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>STATEMENT REGARDING PUBLISHED WORK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>STATEMENT OF ETHICAL CONDUCT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>CO-AUTHORSHIP</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxvi</td>
<td></td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xxviii</td>
<td></td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>xxx</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1. GENERAL INTRODUCTION

1.1 SALMONID AQUACULTURE INDUSTRY IN TASMANIA 2

1.2 DISEASES AFFECTING SALMON CULTURE IN TASMANIA 4

1.3 AMOEbic GILL DISEASE 5

1.4 IMMUNE SYSTEM OF TELEOSTS 8

1.5 IMMUNE RESPONSES AGAINST *Neoparamoeba perurans* 14

1.6 STUDY OF MUCOSAL CONSTITUENTS IN FISH AFFECTED BY AGD 16

1.7 PREVIOUS VACCINATION APPROACHES AGAINST AGD 18

1.8 AIMS AND THESIS STRUCTURE 24

CHAPTER 2. EFFECTS OF IMMUNOSTIMULANTS AND REPEATED INFECTIONS WITH AMOEbic GILL DISEASE ON ANTIBODY LEVELS AND IMMUNE GENE EXPRESSION IN ATLANTIC SALMON (*Salmo salar*). 26

2.1 ABSTRACT 27

2.2 INTRODUCTION 27

2.3 MATERIALS AND METHODS 30
CHAPTER 2. EFFECT OF IMMUNOSTIMULATORY DIETS ON ANTIBODY RESPONSES TO AGD IN ATLANTIC SALMON (Salmo salar)

2.3.1 Effects of repeated AGD exposure on antibody levels and transcription ... 30
2.3.2 Effects of immunostimulatory diets on antibody responses to AGD ... 31
2.3.3 Enzyme-linked immunosorbent assay (ELISA) ... 33
2.3.4 Gene Expression ... 34
2.3.5 Statistical analyses ... 36

2.4 RESULTS ... 37
2.4.1 Effects of repeated AGD infection on antibody levels and transcription ... 37
2.4.2 Effects of immunostimulatory diets on antibody responses to AGD ... 41

2.5 DISCUSSION .. 46

2.6 ACKNOWLEDGEMENTS .. 51

CHAPTER 3. EFFECT OF IMMUNISATION ROUTE ON MUCOSAL AND SYSTEMIC IMMUNE RESPONSE IN ATLANTIC SALMON (Salmo salar) .. 52

3.1 ABSTRACT .. 53
3.2 INTRODUCTION .. 53
3.3 MATERIALS AND METHODS ... 55
3.3.1 Fish ... 55
3.3.2 Antigen .. 56
3.3.3 Treatments .. 57
3.3.4 Serum and cutaneous mucus sampling .. 58
3.3.5 Tissue explants and supernatant .. 59
3.3.6 ELISA .. 59
3.3.7 Western blot (WB) against FITC and DNP haptens and chemiluminescent detection .. 62
3.3.8 Statistical analysis ... 63

3.4 RESULTS ... 63
3.4.1 Anti-FITC serum antibodies in ELISA .. 63
3.4.2 Anti-FITC mucus antibodies in ELISA .. 65
3.4.3 Anti-FITC tissue supernatant antibodies in ELISA ... 67
3.4.4 Anti-DNP serum antibodies in ELISA ... 69
3.4.5 Anti-DNP mucus antibodies in ELISA ... 71
3.4.6 Anti-DNP tissue supernatant antibodies in ELISA ... 72
3.4.7 WB against antigens .. 73
3.5 DISCUSSION ... 75
3.5.1 Systemic antibody production .. 75
3.5.2 Mucosal antibody production .. 76
3.5.3 Tissue explants ... 78
3.6 CONCLUDING REMARKS .. 80
3.7 ACKNOWLEDGEMENTS ... 80

CHAPTER 4. ADMINISTRATION OF RECOMBINANT ATTACHMENT PROTEIN (r22C03) OF Neoparamoeba perurans INDUCES HUMORAL IMMUNE RESPONSE AGAINST THE PARASITE IN ATLANTIC SALMON (Salmo salar) ... 81

4.1 ABSTRACT .. 82
4.2 INTRODUCTION .. 82
4.3 MATERIALS AND METHODS ... 84
4.3.1 N. perurans trophozoites ... 84
4.3.2 Identification and molecular analyses of attachments proteins in N. perurans .. 84
4.3.3 DNA cloning, sequencing and construction of the expression vector 85
4.3.4 Expression and purification of a soluble recombinant 22C03 fusion protein (r22C03) .. 85
4.3.5 Experimental animals and treatment ... 86
4.3.6 Serum and cutaneous mucus sampling .. 87
4.3.7 N. perurans antigen ... 87
4.3.8 Enzyme-linked immunosorbent assay (ELISA) ... 88
4.3.9 Western blot, dot blot and chemiluminescent detection 89
4.3.10 Sodium periodate oxidation of WB ... 91
4.3.11 Immunocytochemistry .. 91

xiv
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.12</td>
<td>Statistical analysis</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>RESULTS</td>
<td>92</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Protein sequence</td>
<td>92</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Expression and purification of a soluble r22C03 protein by using E. coli expression system</td>
<td>93</td>
</tr>
<tr>
<td>4.4.3</td>
<td>N. perurans antigens</td>
<td>95</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Systemic and mucosal antibody levels against r22C03</td>
<td>96</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Systemic and mucosal antibody levels against N. perurans antigens.</td>
<td>98</td>
</tr>
<tr>
<td>4.4.6</td>
<td>WB and dot blots</td>
<td>100</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Immunocytochemistry</td>
<td>104</td>
</tr>
<tr>
<td>4.5</td>
<td>DISCUSSION</td>
<td>106</td>
</tr>
<tr>
<td>4.6</td>
<td>ACKNOWLEDGMENTS</td>
<td>109</td>
</tr>
</tbody>
</table>

CHAPTER 5. VACCINATION WITH RECOMBINANT PROTEIN (r22C03), A PUTATIVE ATTACHMENT FACTOR OF *Neoparamoeba perurans*, AGAINST AGD IN ATLANTIC SALMON (*Salmo salar*) AND IMPLICATIONS OF A CO-INFECTION WITH *Yersinia ruckeri*110

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>ABSTRACT</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>INTRODUCTION</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>MATERIALS AND METHODS</td>
<td>114</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Fish</td>
<td>114</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Immunisation</td>
<td>115</td>
</tr>
<tr>
<td>5.3.3</td>
<td>N. perurans challenge</td>
<td>116</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Sampling procedure</td>
<td>118</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Enzyme-linked immunosorbent assay (ELISA)</td>
<td>118</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Assessment of intensity of AGD infection</td>
<td>120</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Analysis of samples for co-infection</td>
<td>120</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Statistical analyses</td>
<td>122</td>
</tr>
<tr>
<td>5.4</td>
<td>RESULTS</td>
<td>122</td>
</tr>
</tbody>
</table>
5.4.1 r22C03 was able to induce systemic and mucosal antibody responses in both vaccination groups, but at different times before and after challenge ... 122

5.4.2 Vaccination did not affect survival time of AGD-challenged fish 127

5.4.3 Vaccination did not have an effect on intensity of AGD infection.... 129

5.4.4 Concurrent infection during AGD challenge and Y. ruckeri detection .. 131

5.5 DISCUSSION .. 134

5.6 ACKNOWLEDGEMENTS ... 139

CHAPTER 6. DIFFERENTIALLY EXPRESSED PROTEINS IN GILL AND SKIN MUCUS OF ATLANTIC SALMON (Salmo salar) AFFECTED BY AMOEBC GILL DISEASE ... 140

6.1 ABSTRACT ... 141

6.2 INTRODUCTION ... 141

6.3 MATERIALS AND METHODS ... 144

6.3.1 Fish and experimental procedures ... 144

6.3.2 Sampling procedures .. 144

6.3.3 Mucus preparation for proteomics ... 145

6.3.4 nanoLiquid Chromatography-LTQ-Orbitrap Tandem mass spectrometry. .. 146

6.3.5 Database searching and criteria for protein identification 146

6.3.6 Statistical analyses ... 147

6.4 RESULTS AND DISCUSSION .. 148

6.5 ACKNOWLEDGEMENTS ... 165

CHAPTER 7. GENERAL DISCUSSION .. 166

7.1 INTERPRETING THE ANTIBODY RESPONSES TO DIFFERENT ANTIGENS AND N. perurans IN ATLANTIC SALMON .. 167

7.2 ARE ANTIBODY RESPONSES THE BEST METHOD TO TEST FOR VACCINE EFFICIENCY AND AGD PROTECTION? 172

7.3 OTHER CONSIDERATIONS WHEN TESTING VACCINES 176

REFERENCES .. 181
Table of Contents

APPENDICES .. 200

APPENDIX 1: OTHER MANUSCRIPTS PUBLISHED DURING PhD 200

APPENDIX 2: CONFERENCE PROCEEDINGS ... 201
LIST OF FIGURES

Figure 1.1 Percentage of Australian aquaculture production 2011–12, for total
production in weight (A) and for total production value (B). Modified from [4]. 2

Figure 2.1 Antibody (IgM) levels (units) in plasma and IgM levels in skin mucus and
gill mucus corrected by the level of mucus protein, from Atlantic salmon (Salmo
salar) from experiment 1, which tested the effects of repeated AGD infection.
Dots (●) represent fish which have not been affected by AGD (n=19) while
squares (■) represent fish that have been subjected to four consecutive
challenges with the disease (n=24) for a total period of 18 weeks. Dots/squares
indicate individual values and bars represent group means. 38

Figure 2.2 Quantitative RT-PCR analysis of immune-related gene expression in gill
of Atlantic salmon (Salmo salar) from experiment 1, which tested the effects of
repeated AGD infection. Three different gill samples were analysed: gills from
non-AGD affected salmon (n=10-19) and from AGD-affected salmon in areas
with no apparent lesion (n=13-22) or with typical AGD lesion (n=10-22). Bars
represent mean values (+S.E.). Different letters represent significant differences
by one-way ANOVA (P<0.05). 40

Figure 2.3 Antibody (IgM) levels (units) in serum and skin mucus of Atlantic salmon
(Salmo salar) from experiment 2, which tested the effects of immunostimulatory
diets on responses to AGD. Bars represent mean (n=12 for each group). 42

Figure 2.4 Quantitative RT-PCR analysis of immune-related gene expression in gill
of Atlantic salmon (Salmo salar) from experiment 2, which tested the effects of
immunostimulatory diets on responses to AGD. Diet A represents a commercial
formulation and diets B and C incorporated immunostimulants. Three different
gill samples were analysed: gill from non-AGD affected salmon and from AGD-
affected salmon in areas with no apparent lesion or with typical AGD lesion
(n=15-21 for each gill area). Bars represent mean values (+S.E.) Different letters
represent significant differences by one-way ANOVA (P<0.05). 45

Figure 3.1. Antibody levels (units) present in Atlantic salmon (Salmo salar) serum,
against FITC measured by ELISA. Serum dilution was 1:100. Treatment groups
and controls were immunised as explained in Table 3.1 with fluorescein isothiocyanate conjugated with keyhole limpet haemocyanin (FITC). (◆) FITC-IP; (◊) PBS-IP; (■) FITC-PA; (□) PBS-PA; (▲) FITC-GILLS; (△) PBS-GILLS. Significant differences (P<0.05) are reported between each treatment and its control group (*) or among FITC treatments (a,b) at each time point.

Figure 3.2. Mucus antibody levels (units) per mg of protein present in Atlantic salmon (*Salmo salar*) mucus, against FITC measured by ELISA. Mucus dilution was 1:1. Treatment groups and controls were immunised as explained in Table 3.2 with fluorescein isothiocyanate conjugated with keyhole limpet haemocyanin (FITC). (◆) FITC-IP; (◊) PBS-IP; (■) FITC-PA; (□) PBS-PA; (▲) FITC-GILLS; (△) PBS-GILLS. Significant differences (P<0.05) are reported between each treatment and its control group (*) or among FITC treatments (a,b) at each time point.

Figure 3.3. Antibody levels (units) present in supernatant from tissue explants obtained from Atlantic salmon (*Salmo salar*) against FITC, measured by ELISA. Supernatant dilution was 1:5. Fish were immunised as explained in Table 3.2 with fluorescein isothiocyanate conjugated with keyhole limpet haemocyanin (FITC) 8 and 12 weeks before obtaining the samples. Tissues were excised and incubated for 72 h in L-15 media supplemented with 10% bovine foetal serum, 2 x PSN antibiotic mix and 1 x Glutamax™. Significant differences (P<0.05) are reported between each treatment and its control group (*) or among treatments (a,b) for each tissue.

Figure 3.4. Antibody levels (units) present in Atlantic salmon (*Salmo salar*) serum, against DNP measured by ELISA. Serum dilution was 1:100. Fish were immunised as explained in Table 3.2 with dinitrophenol conjugated with keyhole limpet haemocyanin (DNP). (◆) DNP-IP; (◊) PBS-IP; (■) DNP-PA; (□) PBS-PA; (▲) DNP-GILLS; (△) PBS-GILLS. Significant differences (P<0.05) are reported between each treatment and its control group (*) or among DNP treatments (a,b) at each time point.

Figure 3.5 Mucus antibody levels (units) per mg of protein present in Atlantic salmon (*Salmo salar*) mucus, against DNP measured by ELISA. Serum dilution was
1:1. Fish were immunised as explained in Table 3.2 with dinitrophenol conjugated with keyhole limpet haemocyanin (DNP). (♦) DNP-IP; (◇) PBS-IP; (◼) DNP-PA; (□) PBS-PA; (▲) DNP-GILLS; (△) PBS-GILLS. Significant differences ($P<0.05$) are reported between each treatment and its control group (*) or among DNP treatments (a,b) at each time point.

Figure 3.6 Antibody levels (units) present in supernatant from tissue explants obtained from Atlantic salmon (*Salmo salar*) against DNP, measured by ELISA. Supernatant dilution was 1:5. Fish were immunised as explained in Table 3.2 with dinitrophenol conjugated with keyhole limpet haemocyanin (DNP) 8 and 12 weeks before obtaining the samples. Tissues were excised an incubated for 72 h in L-15 media supplemented with 10% bovine foetal serum, 2 x PSN antibiotic mix and 1 x Glutamax™. Significant differences ($P<0.05$) are reported between each treatment and its control group (*) or among treatments (a,b) for each tissue.

Figure 3.7. Western blot showing reactivity of pooled samples of serum, mucus and tissue supernatants from fish i.p. injected 8 and 12 weeks prior with FITC-KLH against FITC-BSA (A, black arrow head) and BSA only (B). Positive and negative samples tested via ELISA were used. Lanes 1 positive serum, lanes 2 negative serum, lanes 3 positive mucus, lanes 4 negative mucus, lanes 5 positive skin supernatant (purified IgM), lanes 6 culture media only (L-15 media, 1 x Glutamax™ and 1 x PSN antibiotic mix) and lanes 7 PBS only. Blots were then probed with mouse anti-salmon IgM mAb at 1:500 and with goat anti-mouse IgG. All samples were electrophoresed under non-reducing conditions. The white arrow head represents mix of native and modified native forms that form after BSA is heated.

Figure 4.1 Amino acid sequence of recombinant fusion protein r22C03. Underlined residues from 2 to 98 represent homology to a Thioredoxin-like fold. Residues in bold represent the C-type lectin carbohydrate recognition domain (residues 78-213). The # above residues 185, 189, 191, 194, 196-99 and 202-204 indicates conserved carbohydrate ligand binding sites.
List of Figures

Figure 4.2 Recombinant fusion protein r22C03 (arrow) solubilised from inclusion bodies and purified using a Ni-NTA Resin. In silver stained SDS-PAGE, the original solubilised r22C03 before the purification with the Ni-NTA resin could be observed (2), as well as the fraction that did not bind to the resin (3). Eluates after a 20mM imidazole wash (4), 50 mM imidazole wash (5) 100 mM imidazole wash (6) and 200 mM imidazole wash (7) are shown. The last three eluates (5, 6 and 7) were pooled and used as the final purified protein. Molecular weight markers are shown in (1). 94

Figure 4.3 Silver stained SDS-PAGE gel of Neoparamoeba perurans protein lysate. Proteins were obtained through freezing and sonication, run on a 10% SDS-PAGE gel and visualised using silver staining. Reduced (1) and non-reduced (2) antigens are shown. M: molecular weight markers. 95

Figure 4.4 Antibody levels (units) against r22C03 in serum (A) or per gram of protein in skin mucus (B) of Atlantic salmon (Salmo salar). Fish were immunised initially with r22C03 and given a booster immunisation 4 weeks after. Antibody levels were measured by ELISA. Groups labelled with different letters are significantly different of one another by one-way ANOVA (P<0.05). 97

Figure 4.5 Antibody levels (units) against antigens of Neoparamoeba perurans in serum (A) or per gram of protein in skin mucus (B) of Atlantic salmon (Salmo salar). Fish were immunised initially with r22C03 and given a booster immunisation 4 weeks after. Antibody levels were measured by ELISA. Groups labelled with different letters are significantly different of one another by one-way ANOVA (P<0.05). 99

Figure 4.6 Binding of serum antibodies from fish immunised with r22C03 produced distinctly different profiles against the recombinant protein and the whole Neoparamoeba perurans antigens. (A) Anti-r22C03 antibodies in pooled serum of fish immunised 8, 10 and 12 weeks prior with r22C03 (n=4-5), reacted to a band of approximately 17 kDa (lanes 2, 3, and 4), but not pooled serum of fish before immunisation (lane 1, n=5). (B) In contrast, binding of serum antibodies of fish immunised with r22C03 8, 10 and 12 weeks prior to sampling (n=4-5), produced a smear across a broad molecular range against amoebae antigens.
(lanes 6, 7 and 8 respectively). Serum obtained from fish before immunisation with r22C03 did not react against *N. perurans* antigens (lane 5, n=5). Fish were held in freshwater and therefore were AGD-naïve. (C) Sera from fish injected with FCA followed by a booster with FIA 5 weeks later did not show antibody binding to r22C03 (n=4), but antibodies from these samples did bind to FCA antigen. (+) control was a blot of serum detected only with the secondary antibody. (-) control blot of PBS only probed with samples and secondary antibody.

Figure 4.7 Binding of skin mucus antibodies from fish immunised with r22C03 was strong against the recombinant protein but very weak against the whole *Neoparamoeba perurans* antigens. Anti-r22C03 antibodies in skin mucus of fish immunised with the recombinant protein 4 weeks prior to sampling, reacted to a blot of recombinant protein r22C03, but only very weakly to the blot containing *N. perurans* antigens, these fish had showed the highest absorbance through ELISA. In contrast, skin mucus from fish before immunisation (Week 0) did not react against the recombinant protein r22C03 or to *N. perurans* antigens. A negative control blotted and probed only with PBS was included. Antigens were diluted in PBS and applied to PVDF membranes. Diluted serum ((+) Control) was applied to the membrane as a positive control to test the secondary mAb; additionally a negative control which was only a PBS blot was also probed with the samples ((-) Control). Serum was pooled from all fish sampled on each date. Fish were held in freshwater and therefore were AGD-naïve.

Figure 4.8 Anti-r22C03 antibodies produced in serum and mucus of immunised Atlantic salmon bind to a cell surface antigen on fixed *Neoparamoeba perurans* trophozoites. *N. perurans* clone 4 trophozoites were fixed and probed with positive salmon serum sampled 8 weeks after immunisation (A and C), with positive skin mucus sampled 4 weeks post immunisation (E and G), negative salmon serum (B and D) and negative skin mucus (F and H) collected from salmon before immunisation. Serum from Southern bluefin tuna (*Thunnus macoyii*) was used as an isotype control (I and K). Cells probed with only PBS (J and L) were used as negative and background control. Positive salmon serum...
was pooled from 5 fish immunised with r22C03 8 weeks prior. Positive skin mucus polled from 5 fish sampled 4 weeks after immunisation with r22C03. Negative serum and skin mucus was obtained from 5 salmon before immunised. All salmon were maintained in freshwater and were therefore AGD-naïve. Scale = 50 µm.

Figure 5.1 Antibody levels (units) in serum, mucus, gill and skin explant of Atlantic salmon against the recombinant protein r22C03, before challenge with *Neoparamoeba perurans*. Fish in groups RP and mRP had been immunised with r22C03 at week 0 and given a booster at week 5. Tables show statistical differences between the vaccinated groups (RP and mRP) and their respective controls for each time point. Groups are identified as: Initial (*), RP (●); ADJ (■), BF (▲), mRP (○), mADJ (□) and mBF (∆). Symbols represent values for individual fish, bars represent averages for each group. n=4 for each treatment at each time point. *= P between 0.05 and 0.01, **= P<0.01 by a one-way ANOVA.

Figure 5.2 Antibody levels (units) in serum, mucus, gill and skin explant of Atlantic salmon against the recombinant protein r22C03, after the second challenge with *Neoparamoeba perurans*. Fish in groups RP and mRP had been immunised with r22C03 29 weeks prior and given a booster at 24 weeks earlier than sampling. Different letters represent statistical differences between the vaccinated groups (RP and mRP) and with their respective controls by a one-way ANOVA. Symbols represent values for individual fish; bars represent averages for each group.

Figure 5.3 Percent survival for Atlantic salmon (*Salmo salar*) vaccinated with r22C03 after infection with *Neoparamoeba perurans*, in challenged tanks (A) or in a non-infection control tank (B). Fish in groups RP and mRP had been immunised with r22C03 21 weeks prior and given a booster at 16 weeks before the challenge.

Figure 5.4 Percentage of affected filaments (A), average size of AGD lesions in affected filaments (B) and correlation between these two variables (C) in gills of surviving Atlantic salmon from different vaccination treatments and controls, 58
d after the second infection with *N. perurans*. Symbols represent values for individual fish; bars represent averages for each group.

Figure 6.1 Protein extractions from Atlantic salmon (*Salmo salar*) gill mucus resolved by Bis-Tris 4-12% NuPAGE® Novex® Mini gel and silver stained. Each lane contains a similar amount of protein yield (~6 µg per lane), after dialysis and lyophilisation. Lane 1 MWM, lanes 2-6: gill mucus samples from AGD-naïve fish, lanes 7-10: gill mucus from AGD-affected fish. Stars (★) indicate bands that were excised and subjected to in-gel digestion for identification by nanoLC-MS/MS.

Figure 6.2 Principal component analysis of the full set of proteins identified at a high confidence level (≥2 peptides) in the biological replicates (n=5) of gill (A) and skin (B) mucus of Atlantic salmon. The blue dots denote the AGD naïve fish and the red dots represent AGD-affected fish.

Supplementary Figure 6.3 Ingenuity pathway of three proteins networks identified during the experiment in gill mucus of Atlantic salmon affected by AGD, one in main image and two in the inset (one in grey, one in purple). Each gene involved in the pathway is denoted by their ENTREZ gene symbol or in some cases full gene name. The proteins indicated in coloured circles showed statistically significant (*P*<0.05) differential expression by beta-binomial distribution analysis in R (red denotes over expressed, while green denotes under expressed). Figures in white indicate other proteins involved in the pathway. Solid arrows indicate direct protein interactions and dashed arrows indicate indirect protein interactions. Pathway analysis was done based on the mammalian orthologues of the proteins identified.

Supplementary Figure 6.4 Two ingenuity pathways of proteins identified during the experiment in skin mucus of Atlantic salmon affected by AGD. Each gene involved in the pathway is denoted by their ENTREZ gene symbol or in some cases full gene name. The proteins indicated in coloured circles showed statistically significant (*P*<0.05) differential expression by beta-binomial distribution analysis in R (red denotes over expressed, while green denotes under expressed). Figures in white indicate other proteins involved in the
List of Figures

pathway. Solid arrows indicate direct protein interactions and dashed arrows indicate indirect protein interactions. Pathway analysis was done based on the mammalian orthologues of the proteins identified. _______________________ 160
LIST OF TABLES

Table 1.1 Different fish species and areas where AGD has been reported and *N. perurans* presence has been confirmed. 6

Table 1.2 Different vaccination approaches against AGD in Atlantic salmon. 20

Table 1.3 Criteria for potency testing of vaccines (elaborated by Amend [138]). 22

Table 2.1 Proximate composition of the four diets used to feed Atlantic salmon in Experiment 2. 32

Table 2.2 Oligonucleotide primers used in real-time qPCR experiments. 36

Table 2.3 Two-way ANOVA results for transcription of immune related genes of Atlantic salmon (*Salmo salar*) from experiment 2, which tested the effects of immunostimulatory diets on responses to AGD. Values in bold show significant results (*P*<0.005). 44

Table 3.1 Number (n) of Atlantic salmon (*Salmo salar*) in each treatment group. Treatments included fish immunised via intraperitoneal injection with Freund’s complete adjuvant (IP), peranal intubation with Freund’s incomplete adjuvant (PA) or immersion of gills and cranial end of fish (GILLS) with fluorescein isothiocyanate conjugated with keyhole limpet haemocyanin (FITC) or with dinitrophenol conjugated with keyhole limpet (DNP). Controls were sham exposed through the same routes with phosphate buffered saline (PBS). Primary and booster immunisations were given at week 0 and week 4. 56

Table 3.2 Experimental design for immunisation of Atlantic salmon (*Salmo salar*) with two different hapten-antigens conjugates: FITC-KLH and DNP-KLH. 58

Table 5.1 Timeline for immunisations, challenges and sample collection for the investigation of immunity and protection against AGD induced by recombinant protein *r*22C03. 115

Table 5.2 Experimental design for immunisations of Atlantic salmon (*Salmo salar*) with recombinant protein *r*22C03. 116

Table 5.3 Relative percent survival (RPS) in each vaccination treatment group at the end of the second AGD challenge. 129
Table 5.4 *Yersinia ruckeri* infection status ((+) = positive) in serum of moribund Atlantic salmon by real-time qPCR, before and after the second challenge with *Neoparamoeba perurans*. Salmon were subjected to different vaccination treatments with a recombinant protein before AGD challenge. 132

Table 5.5 Number (n) of surviving Atlantic salmon and their *Yersinia ruckeri* infection status ((+) = positive or (-) = negative) detected by real-time qPCR in serum, at the end of the second challenge with *Neoparamoeba perurans* 58 d post-infection. Salmon were subjected to different vaccination treatments with a recombinant protein before AGD challenge. A negative AGD challenge control was located in a different uninfected tank. 133

Table 5.6 Number (n) of surviving Atlantic salmon and their *Yersinia ruckeri* infection status ((+) = positive or (-) = negative) detected by real-time qPCR in serum, at the end of the second challenge with *Neoparamoeba perurans* 58 d post-infection. Salmon were subjected to different vaccination treatments with a recombinant protein before AGD challenge. A negative AGD challenge control was located in a different uninfected tank. 133

Table 6.1 Proteins significantly and differentially abundant in gill mucus of AGD-affected Atlantic salmon. Proteins were identified by nanoLC-MS/MS. Proteins with $P<0.05$ and fold change >2.0 are in bold letters. SpC C, Spectral count control group; SpC D, spectral count diseased (AGD) group; FC, Fold change. 152

Supplementary Table 6.2 Proteins significantly and differentially abundant in skin mucus of AGD-affected Atlantic salmon. Proteins were identified by nanoLC-MS/MS. Proteins with $P<0.05$ and fold change >2.0 are in bold letters. SpC C, Spectral count control group; SpC D, spectral count diseased (AGD) group; FC, Fold change. 155

Table 7.1 Systemic and mucosal antibody responses in Atlantic salmon against whole cells of *N. perurans* or against particular antigens of the parasite, following AGD challenge only or vaccination and challenge. 170

Table 7.2 *Neoparamoeba perurans* dose, number and time of infections used in the present project. 179
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D</td>
<td>two dimensional</td>
</tr>
<tr>
<td>AGD</td>
<td>amoebic gill disease</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>ASC</td>
<td>antibody secreting cell</td>
</tr>
<tr>
<td>BCA</td>
<td>bicinchoninic acid</td>
</tr>
<tr>
<td>BLAST</td>
<td>basic local alignment search tool</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>b.w.</td>
<td>body weight</td>
</tr>
<tr>
<td>CTL</td>
<td>cytotoxic T lymphocyte</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>df</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNP</td>
<td>dinitrophenol</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FCA</td>
<td>Freund’s complete adjuvant</td>
</tr>
<tr>
<td>FIA</td>
<td>Freund’s incomplete adjuvant</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>G</td>
<td>gauge</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>HSWB</td>
<td>high salt wash buffer</td>
</tr>
<tr>
<td>ICC</td>
<td>immunocytochemistry</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>immunoglobulin M</td>
</tr>
<tr>
<td>IgT</td>
<td>immunoglobulin T</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>KLH</td>
<td>keyhole limpet haemocyanin</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>L-15</td>
<td>L-15 Medium (Leibovitz) for cell culture</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani media</td>
</tr>
<tr>
<td>LC MS/MS</td>
<td>liquid chromatography tandem mass spectrometry</td>
</tr>
<tr>
<td>LSWB</td>
<td>low salt wash buffer</td>
</tr>
<tr>
<td>M</td>
<td>mol</td>
</tr>
<tr>
<td>mAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>MBP</td>
<td>mannose-binding protein</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mM</td>
<td>micromole</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>n</td>
<td>number of samples</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>NAPS</td>
<td>nucleic acid preservation solution</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NCMCRS</td>
<td>National Centre for Marine Conservation and Resource Sustainability</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organization for Animal Health</td>
</tr>
<tr>
<td>p.a.</td>
<td>peranal</td>
</tr>
<tr>
<td>PAMP</td>
<td>pathogen associated molecular pattern</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PRR</td>
<td>pattern recognition receptor</td>
</tr>
<tr>
<td>PSN</td>
<td>penicillin – streptomycin – neomycin</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene difluoride</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate - polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>r</td>
<td>recombinant</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>TBS</td>
<td>tris-buffered saline</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TMB</td>
<td>3,3′,5,5′-tetramethyl benzidine</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>WB</td>
<td>western blot</td>
</tr>
<tr>
<td>x</td>
<td>times</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre</td>
</tr>
</tbody>
</table>
Amoebic gill disease (AGD) is the main disease affecting the Tasmanian salmonid industry and the condition has also been described in other major salmon and trout producing countries. AGD is caused by *Neoparamoeba perurans*, and outbreaks of the disease appear during the marine grow-out phase, in particular when water temperature rises. Some characterisation of the host immune response against the parasite has been achieved through gene expression studies and through others investigations which focused on antibody responses against *N. perurans*, particularly IgM. A variety of treatments have been tested, but currently the only treatment option widely used in Tasmania is freshwater bathing, which represent a high economic burden for the industry. Therefore, the development of a vaccine remains a high priority for salmon producers and different types of vaccines have been previously tested against AGD without success.

In order to develop a potentially successful vaccine strategy, a better understanding of the antibody immune response associated with the disease is necessary. To address this general objective, the followings aims were studied in this thesis:

- Investigate the mucosal and systemic immune response of Atlantic salmon against *N. perurans*, the causative agent of AGD.
- Investigate mucosal and systemic anti-*N. perurans* antibody responses to a recombinant putative attachment protein of the amoeba, first identified by the generation of a cDNA library from the parasite.
- Investigate vaccine formulations for AGD, using the recombinant protein described above.
- Investigate other mucosal components potentially involved in the host response against *N. perurans*.

This thesis presents the results obtained from several different experiments aimed at addressing the above stated aims. Firstly, an experiment where the immune responses of Atlantic salmon were assessed at transcription and antibody production levels, after repeated infections with *N. perurans*. Secondly, an experiment where immune responses were assessed after a single infection and fish were fed commercially
developed diets containing immunostimulants. We showed that antibody levels do not always correlate with mRNA transcription levels identified in AGD gill lesions, which is possibly explained by weak correlations existing between protein and mRNA abundances in cells and tissues. Additionally, we demonstrated that the use of immunostimulants containing diets did not affect the levels of serum or skin mucus IgM and were unable to induce IgM and IgT transcription at the site of AGD infection.

Following from this experiment; the systemic and mucosal immune responses of Atlantic salmon were studied using two protein-hapten antigens. This study aimed at evaluating the best delivery method of antigens to be used in the testing of a vaccine candidate in subsequent experiments. The results showed that i.p. injection of immunogens emulsified in FCA was the best delivery method for inducing systemic and mucosal antibody responses.

We described the production of a recombinant protein named r22C03, identified as a mannose-binding protein-like (MBP-like) similar to attachment factors of other amoebae, and a putative attachment factor of N. perurans. This protein was capable of inducing systemic and mucosal antibody responses against the amoebae and both systemic and mucosal antibodies produced were able to bind the surface of formalin-fixed N. perurans. The recombinant protein was then tested as a vaccine candidate against AGD, following the rationale that by using functional antibodies present in mucosal surfaces, the putative attachment factor of N. perurans might be blocked and the severity of AGD could potentially be reduced. Fish were immunised with r22C03 using two different vaccination strategies and then challenged with the parasite. A strong antibody response against the recombinant protein was observed in serum and mucosal surfaces of vaccinated salmon, but no differences in survival curves or size of lesion in the gills were observed. However, a concurrent infection with Yersinia ruckeri was present during the experiment, and even though the simultaneous presentation of both pathogens could represent a situation more closely related to infection patterns observed on commercial farms, survival results obtained after the parasite challenge had to be examined with caution in the context of vaccine efficacy against N. perurans.
Executive Summary

Following from the unsuccessful challenge, nanoLC-MS/MS and proteomics analyses were used on skin and gill mucus of AGD-affected fish, as a tool to identify the changes in the proteome of mucus after repeated infection with amoebae. Proteins that have been previously related to gene expression in AGD-affected gills as well as proteins that have not been previously described in AGD-affected fish were identified and it was proposed that future research should focus on better understanding the role these components play in the response against infection with *N. perurans*.

This thesis provided further understanding into the mucosal responses to AGD. However, the role mucosal antibodies play in responses against AGD cannot be completely comprehended until the study of IgT responses in AGD-affected fish can be completed, as it has been hampered by the lack of available reagents. Finally, adjuvants that have been designed specifically to elicit mucosal responses need to be fully tested in AGD vaccine formulations.