Attention is Modulated by Motivational Relevance: A Behavioural and ERP Investigation of Affective Picture Processing

Kate Elizabeth Briggs

BA (Hons) University of Tasmania

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Tasmania

June 2007
This thesis contains no material which has been accepted for a degree or diploma by the university or any other institution, except by way of background information and duly acknowledged in the thesis, and that to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Kate Briggs
June 2007
15.06.07
ABSTRACT

ERP evidence of affective picture processing generally agrees with one of two dominant theories. The first is that enhanced ERP responses to pleasant and unpleasant stimuli relative to neutral reflects the processing of stimulus motivational relevance, referred to as the quadratic effect, and the second is that enhanced ERP responses to unpleasant stimuli compared to pleasant and neutral stimuli reflects a negativity bias. The overarching aims of the current series of empirical studies were to identify which of the two aforementioned theories can most definitively account for affective picture processing (Phase 1); and to investigate how processes of attentional engagement and disengagement are influenced by the presence of motivationally relevant stimuli (Phase 2). Pictorial affective stimuli (high and low arousing pleasant, unpleasant, sexual, and neutral stimuli) were presented in a modified oddball paradigm to 38 participants (19 male, 19 female) in Experiment 1 and 34 participants (17 male, 17 female) in Experiment 2. A negativity bias was demonstrated for P3b amplitude in Experiment 1; however significantly enhanced P3b amplitudes evoked in response to sexually explicit stimuli in Experiment 2 was not consistent with either dominant theory, and raised questions as to the separable effects of motivational relevance and sexual arousal on cognitive processes. Experiment 3 was aimed at investigating whether ERP responses are differentially modulated by the social content of affective picture stimuli. The same participants from Experiment 2 participated in Experiment 3 and the oddball task involved the presentation of low arousing social and non-social pleasant, unpleasant, and neutral stimuli. No significant differences in ERP component measures were shown between social and non-social pleasant, or between social and non-social unpleasant stimuli, however both P2 and
P3b component amplitudes were enhanced in response to neutral faces compared with neutral objects. Factors associated with facial recognition and difficulties extracting affective information from a somewhat ambiguous neutral expression were cited as possible explanations for the observed ERP component modulations.

The principal aim of Phase 2 was to investigate whether the presentation of appetitive and aversive cues influences the engagement and disengagement components of covert visual attention as inferred by responses to validly and invalidly cued targets respectively. Participants in Experiment 4 (N=19 female) and Experiment 5 (N=18 female) were presented with a modified peripheral cueing paradigm, where pictorial stimuli (sexual, mutilation, threatening, and neutral) served as peripheral cues. Target processing as indexed by P1 and P3b amplitude showed significant facilitation in both Experiments 4 and 5 when targets were cued by sexual and mutilation stimuli, regardless of whether cueing was valid or invalid. It was therefore concluded that the engagement and disengagement components of covert visual attention are not differentially affected by motivationally relevant cues; rather, normal participants demonstrate a global response bias when responding to targets that are cued by motivationally relevant appetitive and aversive cues. The same participants from Experiment 5 were presented with a peripheral cueing paradigm in Experiment 6, which aimed to investigate the effect of phylogenetically (biological) and ontogenetically (cultural) fear-relevant stimuli on processes of covert visual attention. Pictorial stimuli depicting dangerous animals, human threat, and neutral objects served as peripheral cues. In line with preparedness theory (Seligman 1970, 1971), target processing was facilitated by the presence of animal threat stimuli compared to human threat and neutral stimuli, and also the early level of visual
processing as indexed by cue-evoked P1 amplitude was enhanced in response to phylogenetically, fear-relevant animal stimuli. A global response bias was again demonstrated in Experiment 6, and it was concluded that the attentional system of normal participants is sensitive to stimuli that have been evolutionarily associated with threat and/or fear. The current dissertation therefore has theoretical implications for the systematic study of affective picture processing. Furthermore, the introduction of a peripheral cueing paradigm to the study of affective picture processing provides a new insight into the effect that both appetitive and aversive stimuli have on processes of attentional orienting and target processing.
Acknowledgements

First and foremost, I acknowledge Frances Martin, my supervisor, for her guidance, support, and compassion. Without such excellent supervision timely completion would not have been possible. Thank you Frances.

Thanks to all ERP lab members that helped with the running of my studies and deciphering what it all meant at the end. Special thanks to Richard Thomson for all his technical support and aiding my battle against my arch nemesis “the STIM”. Special thanks also to Andrea Adam for undertaking the gruelling task of reviewing the ‘final draft’.

Many thanks to Dave Chadderton for his technical support, Sue Ross for all her help over the years, and to Pam Tithery for administrative support.

For making me realise that I deserved so much more, thanks to the Andreas’, Gillian Long, and Naomi Thomas for helping me through an emotional time.

Thanks to all RHD students, particularly Hak for being so lovely and making the office a joy to work in.

To my close friends Steve, Danny, Kristy, and Hayden thanks for keeping me sane over the years.

Thanks to our furry kiddies Sweep and Tyson for providing endless hours of amusement, love, and much needed distractions.

Thanks to my family, especially my mum for doing the best job a mum could ever do and for being so proud of me.

Thanks to the 109 participants that participated, this thesis would not have been possible without their time.

Last, but by no means least, thanks to my wonderful fiancé Simon for believing in me and making me believe in myself.
TABLE OF CONTENTS

CHAPTER 1: OVERVIEW OF THE THESIS ...1

CHAPTER 2: MODELS OF EMOTION, AFFECTIVE SPACE, AND THE EVOLUTION OF THE EMOTIONAL SYSTEM ...5

* Bipolar Dimensions of Affective Space ..8
* Motivational Models of Attention, Emotion and Affective States11
* Evaluative Space Model: Positivity Offset and Negativity Bias18
* Öhman and Mineka's Evolved Fear Module and Theories of Preparedness24
* Summary ..29

CHAPTER 3: PHYSIOLOGY AND NEUROPHYSIOLOGY OF EMOTION31

* Hemispheric Lateralisation of Approach and Withdrawal ..31
* Sex Differences in Emotion ...35
* Event-Related Potentials (ERPs) ..39
* ERPs as a Measure of Affective Picture Processing ..49
* ERPs, Facial Recognition, and Emotion ..54
* Summary ..56

CHAPTER 4: VISUAL ATTENTION AND EMOTION59

* Covert Visual Attention ..59
* Facilitation and Inhibitory Effects of Reflexive Attention61
* Covert Visual Attention and Emotion ...68
* Summary ..71

CHAPTER 5: RATIONALE AND GENERAL AIMS73
CHAPTER 6: PHASE 1 - THE QUADRATIC EFFECT AND THE NEGATIVITY

BIAS ... 78

Experiment 1: The Negativity Bias .. 78
 Method ... 84
 Results and Discussion .. 92
 Summary .. 108

Experiment 2: Appetitive and Aversive Cues 109
 Method .. 113
 Results and Discussion .. 118
 Summary .. 142

Experiment 3: Social Content .. 144
 Method .. 145
 Results and Discussion .. 148
 Summary .. 165

CHAPTER 7: PHASE 2 - ATTENTIONAL ORIENTING AND EMOTION 167

Experiment 4: Attentional Disengagement or Global Response Bias? 167
 Method .. 171
 Results and Discussion .. 176
 Summary .. 186

Experiment 5: Facilitation or Global Response Bias? 186
 Method .. 189
 Results and Discussion .. 193
 Summary .. 207
Experiment 6: Biology or Culture? Investigating Preparedness Theory207

 Method ...209

 Results and Discussion ...213

 Summary ...220

CHAPTER 8: GENERAL DISCUSSION AND CONCLUSION221

 Discussion of Phase 1: Quadratic Effect and Negativity bias221

 Sex Differences in ERP and Behavioural Responses224

 The Effect of Social Content on ERP measures ...225

 Discussion of Phase 2: Attentional Orienting and Emotion226

 Standard Cueing Effects for Phase 2 ...227

 Motivational Relevance and the Global Response Bias230

 P1 and P3b Responses to Specific Picture Categories231

 Phylogenetic Fear-Relevant Stimuli Facilitate Target Processing233

 What does the P1 Component Index in the Current Empirical Studies?234

 Summary ...235

REFERENCES ...239

APPENDICIES

 Appendix A: Pictorial stimuli for Experiment 1 ...261

 Appendix B: Pictorial stimuli for Experiment 2 ...266

 Appendix C: Pictorial stimuli for Experiment 3 ...270

 Appendix D: Pictorial stimuli for Experiments 4 & 5274

 Appendix E: Pictorial stimuli for Experiment 6 ...277

 Appendix F: Information sheet, consent form, and medical questionnaire279
Appendix J: Mixed repeated measures ANOVAs for RT, accuracy, ratings of valence, arousal, approach/avoidance tendencies, state anxiety; independent samples t-test for trait anxiety, and correlations for valence and arousal ratings for Experiment 2

Appendix K: Mixed repeated measures ANOVAs for P2, N2, and P3b amplitude and latency, and P3b amplitude for hemispheres for Experiment 2

Appendix L: Mixed repeated measures ANOVAs for RT, accuracy, ratings of valence, arousal, approach/avoidance tendencies, and social content for Experiment 3

Appendix M: Mixed repeated measures ANOVAs for N2, P2, and P3b amplitude and latency for Experiment 3

Appendix N: Repeated measures ANOVAs for RT, accuracy, and ratings of valence, arousal, interest, and novelty for Experiment 4

Appendix O: Repeated measures ANOVAs for cue evoked P3b amplitude and latency, target evoked P1 amplitude and latency, and target evoked P3b amplitude and
latency for Experiment 4

Appendix P: Repeated measures ANOVAs for RT and accuracy for Experiment 5

Appendix Q: Repeated measures ANOVAs for cue evoked P1 amplitude and latency, target evoked P1 amplitude and latency, and target evoked P3b amplitude and latency for Experiment 5

Appendix R: Repeated measures ANOVAs for RT, accuracy, and ratings of valence, arousal, interest, and novelty for Experiment 6

Appendix S: Repeated measures ANOVAs for cue evoked P1 amplitude and latency, target evoked P1 amplitude and latency, and target evoked P3b amplitude and latency for Experiment 6

Appendix T: All ANOVAs and Tukey HSD post hoc tests for all experiments
TABLE OF FIGURES AND TABLES

FIGURES

Figure 1. Russell's (1980) circumplex model of affect.. 10

Figure 2. Miller's (1959) animal conflict behaviour model... 20

Figure 3. Heller's (1990) model of regional activation.. 33

Experiment 1

Figure 4. Distribution of valence and arousal scores for the experimental stimuli......... 87

Figure 5. Mean accuracy scores in response to high and low arousing picture categories .. 94

Figure 6. Mean valence ratings for high and low arousing neutral, pleasant, and unpleasant stimuli .. 96

Figure 7. Mean valence ratings for males and females for neutral, pleasant, and unpleasant stimuli ... 97

Figure 8. Mean arousal ratings for high and low arousing neutral, pleasant, and unpleasant stimuli ... 98

Figure 9. Correlation between ratings of valence and arousal for high and low arousing stimuli for female participants ... 100

Figure 10. Correlation between ratings of valence and arousal for high and low arousing stimuli for male participants ... 100

Figure 11a. Grand mean averages for high arousing picture stimuli and distracters.. 104

Figure 11b. Grand mean averages for low arousing picture stimuli and distracters .. 105

Figure 12. Mean P3b amplitude in response to high and low arousing neutral, pleasant, and unpleasant stimuli ... 106

Experiment 2
Figure 13. Distribution of valence and arousal measures for stimuli in Experiment 2
..114

Figure 14. Mean reaction time in response to high and low arousing picture categories
..119

Figure 15. Mean valence ratings for high and low arousing neutral, pleasant, sexual, and unpleasant stimuli ...121

Figure 16. Mean valence ratings for each picture category for males and females....122

Figure 17. Mean arousal ratings for high and low arousing neutral, pleasant, sexual, and unpleasant stimuli ...123

Figure 18. Mean arousal ratings for neutral, pleasant, sexual, and unpleasant stimuli for males and females ...124

Figure 19. Correlation between ratings of valence and arousal for high and low arousing picture categories for female participants126

Figure 20. Correlation between ratings of valence and arousal for high and low arousing picture categories for male participants126

Figure 21. Mean approach and avoidance ratings for high and low arousing picture categories ...129

Figure 22a. Grand mean waveforms for high arousing picture categories132

Figure 22b. Grand mean waveforms for low arousing picture categories133

Figure 22c. Grand mean waveforms for neutral, pleasant, and unpleasant stimuli averaged across high and low arousing picture stimuli134

Figure 23. Mean P2 amplitude in response to high and low arousing picture categories 135
Figure 24. Mean P3b amplitude in response to high and low arousing picture categories ... 138

Experiment 3

Figure 25. Mean reaction time in response to social and non-social picture types 149
Figure 26. Mean valence ratings for social and non-social picture types 151
Figure 27. Mean approach/avoidance ratings for social and non-social picture types .. 153

Figure 28. Mean social content ratings for social and non-social picture types 154
Figure 29a. Grand mean waveforms for neutral, pleasant and unpleasant social stimuli .. 156

Figure 29b. Grand mean waveforms for neutral, pleasant, and unpleasant non-social stimuli .. 157

Figure 30. Mean P2 amplitude for social and non-social picture types 158
Figure 31. Mean P2 latency for social and non-social picture types 160
Figure 32. Mean P3b amplitude for social and non-social picture types 162
Figure 33. Mean P3b latency for social and non-social picture types 163

Experiment 4

Figure 34. EEG analysis parameters for the modified Posner cueing paradigm in Experiment 4 ... 172

Figure 35. Timing and sequence of events for Experiment 4 174
Figure 36a. Grand mean waveforms for validly and invalidly cued targets collapsed across peripheral cue contents ... 180

Figure 36b. Grand mean waveforms for targets validly cued by neutral, sexual,
mutilation, and threatening stimuli .. 181

Figure 36c. Grand mean waveforms for targets invalidly cued by neutral, sexual,
mutilation and threatening stimuli .. 182

Experiment 5

Figure 37. EEG parameters for the modified Posner cueing paradigm used in
Experiment 5 .. 190

Figure 38. Timing and sequence of events for Experiment 5 191

Figure 39a. Grand mean waveforms for validly and invalidly cued targets collapsed
across peripheral cue contents .. 196

Figure 39b. Grand mean waveforms for validly and invalidly cued targets in the left
(LVF), and right (RVF) visual fields collapsed across peripheral cue
contents ... 197

Figure 39c. Grand mean waveforms for targets validly cued by neutral, sexual,
mutilation, and threatening stimuli .. 198

Figure 39d. Grand mean waveforms for targets invalidly cued by neutral,
mutilation, and threatening stimuli .. 199

Figure 39e. Grand mean waveforms for targets validly and invalidly cued by
mutilation stimuli in the left and right visual fields 200

Figure 39f. Grand mean waveforms for targets validly and invalidly cued by neutral
stimuli in the left and right visual fields ... 201

Figure 39g. Grand mean waveforms for targets validly and invalidly cued by sexual
stimuli in the left and right visual fields ... 202

Figure 39h. Grand mean waveforms for targets validly and invalidly cued by
threatening stimuli in the left and right visual fields .. 203

Experiment 6

Figure 40a. Grand mean average waveforms for validly and invalidly cued targets collapsed across peripheral cue contents ... 215

Figure 40b. Grand mean waveforms for targets validly cued by neutral, animal threat, and human threatening stimuli ... 216

Figure 40c. Grand mean waveforms for targets invalidly cued by neutral, animal, and human threatening stimuli ... 217

TABLES

Table 1. Pearson's correlation coefficients for correlations between valence and arousal ratings for males and females ... 101

Table 2. Pearson's correlation coefficients for correlations between valence and arousal ratings for males and females ... 128

Table 3a. Mean valence and arousal ratings for IAPS and non-IAPS stimuli presented in Experiment 1 ... 262

Table 3b. Mean valence and arousal ratings for IAPS and non-IAPS stimuli presented in Experiment 2 ... 267

Table 3c. Mean valence and arousal ratings for IAPS and non-IAPS stimuli presented in Experiment 3 ... 271

Table 3d. Mean valence and arousal ratings for IAPS stimuli presented in Experiments 4 and 5 ... 275

Table 3e. Mean valence and arousal ratings for IAPS stimuli presented in Experiment 6 ... 278