ABUNDANCE, DISTRIBUTION AND CONSERVATION VALUE OF SHARKS IN THE GALAPAGOS MARINE RESERVE

Cesar R. Peñaherrera-Palma, B.Sc.

(ID: 156131)

QMS PhD Thesis

This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the CSIRO-UTAS PhD Program in Quantitative Marine Science.

Institute for Marine and Antarctic Studies. University of Tasmania, Australia

1st April 2016
Declaration of Originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Authority of Access

This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Statement of Ethical Conduct

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. All research was conducted with approval from the University of Tasmania Animal Ethics Committee (permit No. A13641), by the Institutional Animal Care and Use Committee of the University of California – Davis (permit number IACUC PROTOCOL #16022), and by the Directorate of the Galapagos National Park (research permit No. PC-60-13).

Cesar R. Peñaherrera-Palma

Date: 1st April 2016
Statement of Co-Authorship

Chapters 2-4 of this thesis have been prepared as scientific manuscripts and will be submitted for review in the near future. In all cases, the experimental design, fieldwork, data analysis and interpretation, and manuscript preparation were the primary responsibility of the candidate. However, these studies were carried out in collaboration with supervisors and co-authors. Contributions of co-authors are outlined below:

Chapter 2

César Peñaherrera-Palma: QMS Ph.D. candidate. First author.


Stewart Frusher: Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania. Hobart, Australia. Fourth author. Provided assistance in data analysis and manuscript preparation.

Alex R. Hearn: GAIAS - Universidad San Francisco de Quito. Quito, Ecuador. Fifth author. Provided expertise in setting up and maintaining the acoustic telemetry equipment, assistance during fieldtrips and manuscript preparation.


Jayson Semmens: Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania. Hobart, Australia. Eight author. Provided assistance in fund raising, applying for ethics permits, and manuscript preparation.

Chapter 3

César Peñaherrera-Palma: QMS Ph.D. candidate. First author.

Ingrid Van Putten: CSIRO Oceans and Atmosphere. Hobart, Australia. Second author. Provided assistance in project design, data analysis, and in manuscript preparation.

Yuliya V. Karpievitch: University of Western Australia. Perth, Australia. Third author. Provided assistance in data analysis.

Stewart Frusher: Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania. Hobart, Australia. Fourth author. Provided assistance in manuscript preparation.

Yasmania Llerena: Universidad San Francisco de Quito. Galapagos, Ecuador. Fifth author. Provided assistance in project design, data collection and data analysis.

Alex R. Hearn: GAIAS - Universidad San Francisco de Quito, Ecuador. Sixth author. Provided assistance in project design and manuscript preparation.

Jayson Semmens: Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania. Hobart, Australia. Seventh author. Provided assistance in manuscript preparation.
Chapter 4

César Peñaherrera-Palma: QMS Ph.D. candidate. First author.


Alex R. Hearn: GAIAS - Universidad San Francisco de Quito. Quito, Ecuador. Third author. Provided expertise in equipment preparation, fieldtrips, and assistance in manuscript preparation.


George Shillinger: The Leatherback Trust. Monterey, USA. Fifth author. Provided satellite equipment and assistance during fieldtrips.

James T. Ketchum: Pelagios Kakunjá. La Paz, Mexico. Sixth author. Provided expertise in satellite equipment preparation and assistance during fieldtrips.

A. Pete Klimley: University of California, Davis. Davis, USA. Seventh author. Provided expertise in equipment preparation, fieldtrips, and assistance in manuscript preparation.

Stewart Frusher: Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania. Hobart, Australia. Eighth author. Provided assistance in manuscript preparation.

Jayson Semmens: Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania. Hobart, Australia. Tenth author. Provided assistance in fund raising, applying for ethics permits, and manuscript preparation.

I, the undersigned agree with the above stated proportion of work undertaken for each of the above chapters contributing to this thesis, which will be submitted as peer-reviewed manuscripts:

Date: 01-April-2016                        Date: 11-October-2016

Associate Professor Jayson Semmens                  Professor Chris Carter
Primary Supervisor                          Head, Fisheries and Aquaculture
Fisheries and Aquaculture Centre,              Centre; Associate Director,
Institute for Marine and Antarctic       Institute for Marine and Antarctic
Studies, University of Tasmania              Studies, University of Tasmania
Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisory team Dr. Jayson Semmens, Dr. Stewart Frusher, Dr. Alistair Hobday and Dr. Alex Hearn. I will be forever grateful for all the invaluable support they gave me through all the stages of my candidature in terms of my work and personal life. Special thanks to Alex, who has mentored, tortured, and given me his friendship through all this time since I knocked on his Biomar's office door exactly ten years ago.

Many thanks to the Secretariat of Higher Education, Science, Technology and Innovation (formerly known as SENESCYT) of the Ecuadorean Government and the QMS top-up scholarship for providing the necessary financial support to pursue my doctoral research.

My project has benefited from the generous funding by the Holsworth Wildlife Research Endowment; Blake, Kimberly and George Rapier Charitable Trust; the Directorate of the Galapagos National Park; WWF Prince Bernard Scholarships; Linblad Expeditions; National Geographic; Galapagos Conservancy; Galapagos Conservation Trust; Conservation International; Ocearch; and the Charles Darwin Foundation.

I extend an enormous thanks to Brett McClintock, Chris Dudgeon, Ingrid van Putten and Yuliya Karpievitch. Thank you all so much for opening your office and home doors, and providing me critical academic assistance for the completion of my research analysis.

I'm indebted to my great friend and colleague Eduardo Espinoza. His support was key in all the stages of my work particularly during the last parts of my field research. Thank you so much Edu!
There are many people who were also critical in several stages of my research fieldtrips and analysis. Many thanks James Ketchum, Jonathan Green, George Shillinger, Sandra Bessudo, Harry Reyes, Peter Klimley, Yasmania Llerena, Guillermo Tomalá, Tito Franco, Inti Keith, Johanna Zimmerhackel, Julio Delgado, Mariana Vera, Manuel Ruiz, Rowena Hamer and Elric Sash!. Out of this group shines Riana Z. Gardiner, without whom the English grammar in this manuscript wouldn't have been possible (along with many aspects of my personal life in Tassie). Thank you so much mother of bettongs!

Last but not least, these last four years were full of academic and personal struggle. I learnt many life lessons, and I also re-learnt why family is family. Without them this certainly wouldn’t have been possible. This thesis is thus dedicated to my father, my mother and my brothers. Thank you so much.
Abstract

The Galapagos Marine Reserve (GMR) is the largest reserve in the Eastern Tropical Pacific (ETP), covering approximately 138000 km² of the pelagic environment surrounding the Galapagos Islands. The GMR hosts 33 species of sharks, of which two are endangered, four are near threatened, and eleven are vulnerable. In recognition of the importance of sharks to the reserve’s marine ecosystem, a precautionary management framework was adopted to protect sharks from fishing and trading since 1989. Almost two decades have passed since the creation of the reserve, and yet knowledge on population levels and spatial use of the reserve by sharks is still limited. This information is critical to review the efficacy of the reserve in protecting mobile species and provide decision-supporting tools to improve shark management at the local and regional scale. The aim of this thesis was to assess and contrast the population status and habitat preferences of the endangered scalloped hammerhead shark (*Sphyrna lewini*) and other commonly occurring shark species in the GMR. Specifically, my work aimed to: i) assess the current population size of the scalloped hammerhead in the northern GMR; ii) compare the historical abundance trends of hammerhead sharks and five other common shark species; and, iii) assess the differences in spatial and temporal use of the GMR between the scalloped hammerhead shark and the coastal blacktip shark (*Carcharhinus limbatus*).

Whilst there are many techniques to evaluate the population size of wide-ranging terrestrial wildlife, constraints imposed by challenging underwater conditions have halted their wider application to evaluate wide-ranging marine species. To investigate the population size of hammerhead sharks I applied a novel mark-resight approach by combining acoustic telemetry and visual counts. During September 2011, September 2012, and October 2013 field trips deploying acoustic tags and
undertaking underwater visual surveys (USV) were conducted at Darwin Island, north GMR. Resident population ($N^-$) and super-population ($N^*$) size were modelled using the Immigration-Emigration Logic Normal Mark-Resight Estimator (IELNE) implemented in the Mark 8.0 software. Although the resighting probabilities based on acoustic detection were generally low (average 2011=0.25; 2012=0.19; 2013=0.16), I found strong evidence of time- and session-dependent resighting probabilities and individual heterogeneity in the resighting probability, particularly for 2012. Model estimations were less variable and with narrower confidence intervals for years 2011 ($N^-\sim487$ ind.; $N^*\sim590$) and 2013 ($N^-\sim391$ ind.; $N^*\sim574$), compared to 2012 ($N^-\sim642$ ind.; $N^*\sim1672$). Temporary emigration of marked and unmarked hammerheads affected estimations for some days in 2012, yet such emigrations become increasingly likely when assessing highly mobile species with gregarious behaviour. Despite this, my analysis provided a reliable approximation of the population size of hammerhead sharks in this ecological hot-spot, and gives support to the use of combined approaches in underwater mark-resight experiments. Further work should explore the inclusion of environmental covariates with increased numbers of tags to improve estimations of resighting probability and population size in case of temporary emigration of marked and unmarked individuals.

Abundance is commonly used to assess the status of wildlife populations and their responses to changes in management frameworks. Unfortunately, monitoring abundance trends often requires long-term data collection programs, which are not always carried out. One alternative to scientific surveys is to utilise local ecological knowledge (LEK) to evaluate abundance trends in data deficient regions. To assess the historical population trends of six shark species in the GMR, I developed a LEK-based virtual abundance change (VAC) model by using the ecological knowledge of
experienced divers. This model assessed the decadal deficit or surplus in shark abundance since the beginning of the dive tourism industry in the 1980s. In general, dive guides showed consensus on negative trends for all shark species, and suggested fisheries as the major factor driving trends in shark abundance in the GMR. VAC model results suggest that hammerhead and whitetip reef sharks (*Triaenodon obesus*) have experienced the most consistent perceived decline over the last four decades. Silky sharks (*C. falciformis*) and Galapagos sharks (*C. galapagensis*) also experienced perceived declines but later stabilized. Whale shark (*Rhincodon typus*) abundance was perceived as stable across the study time frame, while blacktip sharks were perceived to have increased in abundance in recent decades. Comparing the VAC results with empirical datasets from the GMR and the ETP provided corroborating evidence that the dive guides’ ecological knowledge has described the abundance fluctuations of all species except silky sharks.

Spatial management through the implementation of marine protected areas (MPA) is one strategy to limit the extraction of commercial and/or sensitive species. Yet, its use to protect wide ranging marine predators is still unproven, mostly as their movements quite often exceed the established boundaries of MPAs. Understanding the area used by marine life is thus a key step towards the evaluation of the management framework and efficacy of a protected area. To provide information of the protective coverage of the GMR I assessed the habitat utilization distribution (UD) of hammerhead sharks and blacktip sharks in and around the GMR. My results show important aspects of the extent and seasonality of the UD of hammerhead sharks and blacktip sharks inhabiting the GMR. Nearly 90% of hammerhead shark’s UD was enclosed by the reserve boundary during the cold season (June-October), yet this progressively decreased to only ~30% with the advent of the warm season.
(December-April). Conversely, blacktip sharks’ UD was 100% enclosed by the reserve boundaries in all seasons. Season and depth were the most important environmental parameters defining the core UD of hammerhead sharks; whilst year and eddy kinetic energy were the most important parameters for blacktip sharks. These findings suggest the size of the GMR may result in seasonally variable protective coverage for sharks inhabiting either pelagic or coastal-pelagic environments.

This study suggests that the current population size of the endangered scalloped hammerhead sharks within the GMR reflects only approximately 50% of the abundance seen four decades ago. The area used by this species exceeds the reserve size especially during the warmer months, making it vulnerable to fisheries operating around the reserve boundaries. While the GMR is providing important protective coverage for other species, arresting the decline of the scalloped hammerhead shark in the GMR may rely on revisiting the spatial management of fisheries beyond the reserve boundaries. The population assessment tools developed through this research could aid the future evaluation of the status of not only this but other wide-ranging species.
# Table of contents

**Chapter 1**  *General introduction*  
1.1 General overview  
1.1 The collapse of shark populations  
1.2 Management alternatives  
1.3 Marine protected areas: The Galapagos Marine Reserve case  
1.3.1 GMR management  
1.3.2 GMR diversity and potential to rebuild shark-populations  
1.4 Project motivation and objectives  

**Chapter 2**  *Short-term fluctuations in hammerhead shark numbers at an aggregation site based on visual census and telemetry data*  
2.1 Abstract  
2.2 Introduction  
2.3 Methods  
2.3.1 Data collection  
2.3.2 Model construction  
2.3.3 Model assumptions and estimations  
2.4 Results  
2.4.1 Sampling conditions  
2.4.2 Parameter estimations  
2.5 Discussion  
2.5.1 Population size and structure  
2.5.2 Model assumptions and parameter estimations  

**Chapter 3**  *Evaluating abundance trends of iconic species using local ecological knowledge*  

13
### 3.1 Abstract
---

3.2 Introduction

3.3 Methods

3.3.1 Study site

3.3.2 Data collection

3.3.3 Data analysis

3.4 Results

3.5 Discussion

3.5.1 VAC approach and uncertainty

3.5.2 Validation of perceived trends

3.5.3 Implications for management and conservation of sharks

### 4.1 Abstract

4.2 Introduction

4.3 Methods

4.3.1 Data collection

4.3.2 Data analysis

4.4 Results

4.4.1 Summary of traversed trajectories

4.4.2 Environmental preferences

4.4.3 Habitat utilization

4.5 Discussion

4.5.1 Ecological aspects of utilization distribution

4.5.2 Performance of the GMR with regard to sharks
Chapter 5  *General Discussion*  

5.1  Summary of findings  

5.2  Significance of findings  

   5.2.1  Methodological advances  

   5.2.2  Implications for the ecology of hammerhead sharks  

   5.2.3  Implications for the management of the GMR  

5.3  Management recommendations and future studies  

References  

108

109

112

112

116

118

121

124
List of figures

**Figure 1.1** Geographic location of the Galapagos Marine Reserve (GMR boundary: black line). ........ 25

**Figure 1.2** Ocean current system affecting the GMR: Orange arrows, warm Panama Current; blue arrows, cold Humboldt Current; and, grey arrows, submerged Cromwell Current (GMR boundary: black dashed line). Coloured scale represents depth in meters. ................................................................. 26

**Figure 2.1** *Left:* Location of the Arch (main study site) and receivers (black dots) placed around Darwin Is. *Right:* The location of the Galapagos Marine Reserve in relation to South America. .......... 37

**Figure 2.2** Movement of continuously tracked hammerhead sharks superimposed on the receiver's detection range (*external black circle – 150m radius*) and diver visual range (*inner black circle – 30m radius*) over the site East Bay (*left*), Shark Point (*centre*) and Rockfall (*right*) sites from Wolf Island (*From Ketchum et al. 2014a*). ......................................................... 42

**Figure 2.3** Variation in hammerhead sharks uncorrected and corrected-raw abundance through UVS (*left vertical axis*) and the number of detected individuals at the main ultrasonic receiver (*right vertical axis*) during the three field trips. Horizontal axis refers to the days and time of dive (*M*, morning, *D*, midday; and *A*, afternoon). .......................................................... 45

**Figure 2.4** Overall mean resighting probability (*black line*) and 95% confidence intervals (*grey area*) estimated for each secondary occasion (*UVS, M: morning; D: midday; A: afternoon*) from every year. ........ 48

**Figure 2.5** Hammerhead sharks daily (primary occasions) estimations of the mean population (*N*, *black circles*) and super-population (*N*, *white circles*) size for every fieldtrip. ......................... 49

**Figure 2.6** Hammerhead sharks daily (primary occasions) estimations of the mean population (*N*, *above*) and super-population (*N*, *below*) size the under and overestimations of raw abundance. Closed (or filled) circles represent my main model estimation from my uncorrected raw abundance. Open circles represent the underestimated (left) and over estimated (right) raw abundance scenarios. Vertical bars represent the 95% upper and lower confidence intervals............................... 51

**Figure 3.1** Questionnaire used by the Directorate of the Galapagos National Park to assess the perception of divers in relation to potential abundance changes in six shark species. This questionnaire
was originally designed and delivered to dive guides in Spanish. This figure represents the closest possible translation into English to show the neutrality of the questions asked to divers.

**Figure 3.2** Obtained trend scores summarizing shark populations based on divers' perception of abundance change. *Positive* category includes the obtained frequency of increase and major increase scores; and, *Negative*, decrease and major decrease scores.

**Figure 3.3** Variation in the averaged virtual abundance change estimations across decades for the assessed shark species. Error bars represent the variability of each virtual abundance value based on the standard deviation of modelled answers; solid black line represents a fitted three-order polynomial regression trend line.

**Figure 3.4** Comparison of the VAC model linear trends for hammerhead sharks (*a*,*b*), Galapagos sharks (*c*,*d*) and whitetip reef sharks (*e*,*f*) with the linear trend of the natural logarithm of the abundances recorded by the Galapagos Pelagic Census Surveys (*GMR – Pelagic surveys*; Hearn A/CDF-UCD-DPNG, *unpublished data*), Galapagos Reef Fish Surveys (*GPS – Reef surveys*; Banks S./Charles Darwin Foundation, *unpublished data*); Cocos Island’s shark abundance surveys (*White et al. 2015*) and Malpelo Island's shark abundance surveys (*Soler et al. 2013*). The *b* values represent the slope value of each trend line.

**Figure 4.1** Geographic location of the Galapagos Marine Reserve (GMR boundary: black line).

**Figure 4.2** Hammerhead sharks (above) and blacktip sharks (below) trajectories in and around the GMR. Black circles denote the locations cut-off where two tags (one hammerhead and one blacktip shark) started constant daily transmissions with high-speed movements (>2 ms-1) and linear trajectories.

**Figure 4.3** Estimated area of utilization distribution of hammerhead sharks and blacktip sharks for all tracked individuals and between seasons (cold, transition and warm).

**Figure 4.4** Hammerhead sharks (*left column*) and blacktip sharks (*right column*) full tracks (top) and seasonal (middle and lower) utilization distribution areas in relation to the GMR boundary (dashed lines).
**Figure 4.5** Generalized additive models (GAMs) showing the influence of depth, SST, season and year on the utilization distributions for all hammerhead sharks. Black tick marks above the x-axis represent the distribution of empirical data.

**Figure 4.6** Generalized additive models (GAMs) showing the influence of year, EKE, depth and SST on the utilization distributions for all blacktip sharks. Black tick marks above the x-axis represent the distribution of empirical data.
List of tables

Table 1.1 Shark species reported from the Galapagos Islands. Source: Hearn et al. (2014); and www.iucnredlist.org. ................................................................. 28

Table 2.1 Sampling conditions of the acoustic telemetry and underwater visual surveys (UVS). Raw Abun. refers to the counted raw abundance (Ind./20 min dive) during UVS; Size is measured in cm... 44

Table 2.2 Daily mean of the replacement ratio estimated from the marked sharks......................... 46

Table 2.3 AIC weights for selected IELNE models based on the corrected raw abundances of scalloped hammerhead shark abundance at Arch of Darwin Island. Only top-five models are shown in this table. ...................................................................................................................... 47

Table 2.4 Percentage of relative bias (PRB), mean percentage of confidence interval length (PCIL), and percentage of coverage for model estimates of mean population size and super-population size in scenarios of under- and overestimation of the raw abundances. Underestimation scenarios are represented by variations of -5% to -20% in raw abundance, and overestimations by variations of 5% to 20%. PRB, PCIL and Coverage are in percentage (%) units. .................................................................................................................. 50

Table 3.1 Description of relevant ecological, conservation and fisheries features for the six shark species under assessment................................................................. 66

Table 3.2 Number of divers per decade and bioregion grouped according to their dive experience.... 70

Table 3.3 $X^2$ goodness of fit and log-linear model deviance test results for the categorical data obtained from the divers interviews. LoE: level of experience.................................................................................. 72

Table 3.4 Differences in the perceived percentage of abundance change values per categorical score (stable was not included in this analysis), level of diver experience, and the one-way ANOVA test results for comparing differences between the levels of diver experience per categorical score........ 72

Table 4.1 Tracked scalloped hammerhead and blacktip sharks summary data. The averaged gap refers to the average time (in days) between two consecutive relocations. Distance from tagging site refers to the linear distance (in Km) between the tagging and the farthest location sharks travelled. Tagging bioregion: N, north; SC, south-central region................................................................. 93
Table 4.2 Global descriptive statistics (mean ± standard deviation) and significance tests (Kruskal-Wallis) of the differences in environmental preferences of satellite tracked hammerhead sharks (HHS) with blacktip sharks (BKT). Bold numbers indicate significant differences of p<0.05. ................................ 95

Table 4.3 Summary descriptive statistics (mean ± standard deviation) and significance tests (Kruskal-Wallis) of the seasonal environmental preferences of satellite tracked hammerhead sharks and blacktip sharks. Bold numbers indicate significant differences of p<0.05. .................................. 96

Table 4.4. Model results from the generalized additive models for the effects of environmental covariates on the utilization distributions of hammerhead and blacktip sharks around the GMR. Chl: Chlorophyll a; SST: seas surface temperature; EKE, eddy kinetic energy; GCV: Generalized cross validation criteria. Stars (*) indicate significant single predictors. Bold fonts, best fit models. ............ 99
1.1 General overview

Sharks are classified within the superorder Selachii, sub-class Elasmobranchii, class Chondrichthyes. They are a prehistoric group of fishes that evolved more than 400 million years ago (Hickman et al. 2013). Elasmobranchs (sharks and rays) are characterized by their cartilaginous skeleton, connective tissue, lack of a swim bladder, and jaws made of calcium crystals similar in strength to bones found in other vertebrates (Compagno et al. 2005). Sharks have between five to seven gills, but unlike bony fish the gill slits are uncovered (Hickman et al. 2013). Their skin is also distinctive from other fish classes. The surface of the skin is covered in dermal denticles also known as placoid scales (Compagno et al. 2005). These are arranged as helical networks, and promote faster swimming by reducing hydrodynamic drag (Oeffner and Lauder 2012).

At present, there are more than 500 extant species of sharks inhabiting a wide range of habitats around the world (Eschmeyer and Fricke 2016). Their range includes tropical freshwater riverine and lake systems (e.g. bull shark Carcharhinus leucas), coastal waters (e.g. zebra shark Stegostoma fasciatum), open seas (e.g. blue shark Prionace glauca), deep seas (e.g. sleeper shark Somniosus pacificus) and polar regions (e.g. Greenland sharks Somniosus microcephalus) (Compagno et al. 2005). Despite their worldwide distribution, most sharks and rays are restricted within these habitats (Priede et al. 2006). It is estimated that less than 5% of elasmobranchs occur in fresh water, approximately 5% are oceanic and highly migratory, 50% of elasmobranch species occur in coastal waters down to 200m in depth, 35% in deeper...
waters down to 2000m, and 5% of species inhabiting more than one of these habitats (Camhi et al. 1998).

Sharks are generally long-lived, slow-growing species, reaching maturity at 75% of their maximum body size and produce few offspring over their lifetime (Camhi et al. 1998). The life span of sharks can vary between 3 years as seen in the spiny dog fish, Squalus acanthia (Simpfendorfer 1993) and up to 70 years as seen in whale sharks (Hsu et al. 2014); yet most sharks live between 20 to 30 years (Camhi et al. 1998). Sexual maturity is commonly reached between 5 to 15 years of age (Cortés 2000). As such, sharks’ natural population rebuilding potential is amongst the lowest found in marine fish species (Au et al. 2009; Worm et al. 2013).

Sharks are important components of marine ecosystems. Most sharks are at or near the top of marine trophic webs, exerting top-down regulatory control on the density and diversity of their prey species (Stevens et al. 2000). Sharks are also an important source of economic income for extractive and non-extractive activities. The worldwide trade of shark commodities is valued at approximately USD 1 billion per year (Fischer et al. 2012), whilst elasmobranch tourism is worth more than USD 315 million a year (Cisneros-Montemayor et al. 2013).

1.1 The collapse of shark populations

The rapid expansion and development of fisheries is driving many elasmobranch species to severe population decline (Ferretti et al. 2010). It is estimated that between 63-273 million sharks are caught yearly at a rate that considerably surpasses their natural rebuilding potential (Worm et al. 2013). As such, approximately one quarter of the 1041 known shark and ray species are considered threatened (Dulvy et al. 2014). Issues regarding shark overfishing are being
increasingly discussed throughout the scientific literature. For example, trawl fisheries in the Mediterranean sea have led to the loss of 14 species of sharks from recorded catch compositions since the 1950s (Aldebert 1997). Pelagic fisheries landings in Brazil noted the disappearance of 14 species of carcharhinids (Amorim et al. 1998). Longline fisheries in the Gulf of Mexico led to the decline of the overall shark assemblage by 92 % between the 1950s and 1980s (Baum and Myers 2004). The resulting ecosystem restructure following the loss of these predatory species has also been reviewed, suggesting strong cascading effects in trophic webs affecting the overall ecosystem stability and resilience (Worm et al. 2006).

Efforts to reduce or halt shark population collapse have grown in the last decade as a result of increased public awareness of issues within shark fisheries, particularly pertaining to shark finning. The Food and Agricultural Organization (FAO) released a set of guidelines for responsible shark fisheries which were voluntarily implemented by many countries involved in shark fishing (Fischer et al. 2012). Although there have been several improvements in international and national regulations, these have not been sufficient to halt the global decline of shark populations (Davidson et al. 2015). One of the underlining reasons for this relates to how shark catches are managed. Sharks have often been caught as by-catch of fisheries targeting teleost fish species (Barker and Schluessel 2005). As such, shark composition and contribution to catches were long underreported (Shotton 1999), impeding the assessment of reliable catch statistics and demographic parameters to inform management decisions (Clarke et al. 2006). Without this information, regulation of fishing intensity has been based on the assessment of teleost fishes, which have productivity rates considerably exceeding those of shark species (Au et al. 2009).
1.2 Management alternatives

To avoid the collapse of shark populations it is necessary to reduce fishing mortality below sharks’ natural population rebound potential (Worm et al. 2013). Yet, achieving this goal is unpractical in open fishing grounds under the current fishing regimes (Au et al. 2009). Alternatively, the creation of spatial closures can limit the extraction of sharks and provide the tools to rebuild their populations (Game et al. 2009; Myers and Worm 2005). There is substantial supporting evidence for the implementation of marine protected areas (MPA) to maintain and rebuild the biomass and diversity of coastal fish species (e.g. Edgar et al. 2014; Halpern 2003), including sharks (Friedlander and DeMartini 2002; Robbins et al. 2006). Overfished pelagic sharks could greatly benefit from the creation of MPAs, particularly if their reproductive and early life stages are encompassed by the reserves’ boundaries (Au et al. 2009). Yet, MPA efficacy to protect highly mobile species is still a subject of debate among scientists (e.g. Game et al. 2009; Game et al. 2010; Kaplan et al. 2010). Wide-ranging marine predators such as sharks show extensive movements across a diversity of habitats often larger than most MPAs and national jurisdictions (e.g. Abascal et al. 2011; Domeier 2006; Papastamatiou et al. 2013; Sequeira et al. 2013). Whilst several considerably large MPAs have been created in the last few decades, it is still unknown to what extent they are providing protection to shark populations (Wood et al. 2008). To support the wider implementation of MPAs and prevent shark population collapse and extinction, it is thus necessary to provide evidence of the effectiveness of those currently in place.
1.3 Marine protected areas: The Galapagos Marine Reserve case

The Galapagos Marine Reserve (GMR) is located in the Eastern Tropical Pacific Ocean (ETP), approximately 1000 km east from the continental coast of Ecuador, South America (Figure 1.1). It is the largest MPA in the ETP, covering an area of approximately 138,000 km$^2$ (approximately 133,000 km$^2$ excluding island areas) (Danulat and Edgar 2002). The GMR encloses an archipelago consisting of 13 major islands, 6 minor islands, over 100 islets and emergent rocks, as well as shallow and deep seamounts (Snell et al. 1996). The islands form a shallow platform with depths between 0 to 1000 m, and are surrounded by steep cliffs up to 4000 m deep (Geist and Harpp 2009).

![Figure 1.1 Geographic location of the Galapagos Marine Reserve (GMR boundary: black line).](image)

Waters within the GMR are affected by three major ocean current systems that shape the oceanographic conditions into two distinct seasons: the warm-water season, from
December to April; and the cold-water season, from June to October (Figure 1.2; Houvenaghel 1984). May and November represent the transition months between both seasons. The strengthening of the Panama current shapes the warm conditions in the archipelago, raising sea surface temperature (SST) to 25-30°C and decreasing the salinity to 30-34% around the reserve (Banks 2002). The cold season is driven by the Humboldt current, which lowers SST to 14–23°C and raises salinity to 35%, especially in the south and central areas of the GMR (Banks 2002). The submerged Cromwell current does not affect the seasons, but its upwelling creates patches of high primary productivity in the west facing sides of Fernandina and Isabela islands, and in the central area of the archipelago (Schaeffer et al. 2008).

Figure 1.2 Ocean current system affecting the GMR: Orange arrows, warm Panama Current; blue arrows, cold Humboldt Current; and, grey arrows, submerged Cromwell Current (GMR boundary: black dashed line). Coloured scale represents depth in meters.

1.3.1 GMR management

The first attempt to provide adequate management of the marine ecosystems in the Galapagos occurred in 1986 with the declaration of the Galapagos Marine Resources Reserve (Gobierno del Ecuador 1986). Unfortunately, it suffered from many legal
gaps and complex regulations that hampered its adoption and enforcement by the national authorities (Altamirano and Aguiñaga 2002). Shark-finning activities increased during this period, raising concerns for the sustainability of shark populations, that ended with the prohibition of shark fishing, trading and export within the Galapagos region (SRP 1989). While these efforts provided an important legal framework to protect sharks, it was only after the establishment of the GMR in 1998 that shark protection enforcement gained momentum (Altamirano and Aguiñaga 2002).

The creation of the GMR defined a 75 km boundary around the archipelago in which industrial fishing was prohibited and selected artisanal fishing gear (e.g. longlines) could not be used (GNPS 1998; Gobierno del Ecuador 1997, 1998). The intent of the establishment of the GMR was to provide protection to the coastal ecosystem and to a significant proportion of the surrounding pelagic areas (Danulat and Edgar 2002). Yet, at the time there was no information available on the population state, spatial behaviour or habitat preferences of any highly mobile species that could inform the reserve design. As such, it is unknown how the reserve setting could have influenced the population trends of sharks and to what extent it provides protection.

### 1.3.2 GMR diversity and potential to rebuild shark-populations

The GMR hosts an important number of shark species. Currently, there are 33 species known to inhabit the coastal, pelagic and deep sea ecosystems of the archipelago (Hearn et al. 2014) (Table 1.1). There are two species of high conservation concern: The scalloped hammerhead shark (Sphyrna lewini) and the great hammerhead shark (S. mokarran), both listed as endangered due to the large decline of their populations worldwide (Baum et al. 2007; Denham et al. 2007). Eleven other shark species are
categorized as vulnerable. The majority are pelagic species, such as the thresher shark, oceanic shark, and whale shark, but the list also includes coastal species such as the spiny dogfish and hound shark.

Table 1.1 Shark species reported from the Galapagos Islands. Source: Hearn et al. (2014); and www.iucnredlist.org.

<table>
<thead>
<tr>
<th>No.</th>
<th>English name</th>
<th>Scientific name</th>
<th>IUCN red list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pelagic thresher shark</td>
<td><em>Alopias pelagicus</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>2</td>
<td>Bigeye thresher shark</td>
<td><em>Alopias superciliosus</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>3</td>
<td>Long nose catshark</td>
<td><em>Apristurus kampae</em></td>
<td>Data deficient</td>
</tr>
<tr>
<td>4</td>
<td>Catshark</td>
<td><em>Apristurus stensenii</em></td>
<td>Data deficient</td>
</tr>
<tr>
<td>5</td>
<td>Galapagos catshark</td>
<td><em>Bythaelurus giddingsi</em></td>
<td>Not evaluated</td>
</tr>
<tr>
<td>6</td>
<td>Silvertip shark</td>
<td><em>Carcharhinus albimarginatus</em></td>
<td>Near threatened</td>
</tr>
<tr>
<td>7</td>
<td>Bignose shark</td>
<td><em>Carcharhinus altimus</em></td>
<td>Data deficient</td>
</tr>
<tr>
<td>8</td>
<td>Silky shark</td>
<td><em>Carcharhinus falciformis</em></td>
<td>Near threatened</td>
</tr>
<tr>
<td>9</td>
<td>Galapagos shark</td>
<td><em>Carcharhinus galapagensis</em></td>
<td>Near threatened</td>
</tr>
<tr>
<td>10</td>
<td>Blacktip shark</td>
<td><em>Carcharhinus limbatus</em></td>
<td>Near threatened</td>
</tr>
<tr>
<td>11</td>
<td>Oceanic whitetip shark</td>
<td><em>Carcharhinus longimanus</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>12</td>
<td>Sandbar shark</td>
<td><em>Carcharhinus plumbeus</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>13</td>
<td>White shark</td>
<td><em>Carcharodon carcharias</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>14</td>
<td>Deep water spiny dogfish</td>
<td><em>Centrophorus squamosus</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>15</td>
<td>Combtooth dogfish</td>
<td><em>Centroscyllium nigrum</em></td>
<td>Data deficient</td>
</tr>
<tr>
<td>16</td>
<td>Prickly shark</td>
<td><em>Echinorhinus cookei</em></td>
<td>Not evaluated</td>
</tr>
<tr>
<td>17</td>
<td>Catshark</td>
<td><em>Galeus sp.</em></td>
<td>Not evaluated</td>
</tr>
<tr>
<td>18</td>
<td>Tiger shark</td>
<td><em>Galeocerdo cuvier</em></td>
<td>Near threatened</td>
</tr>
<tr>
<td>19</td>
<td>Galapagos bullhead shark</td>
<td><em>Heterodontus quoyi</em></td>
<td>Data deficient</td>
</tr>
<tr>
<td>20</td>
<td>Cookie cutter shark</td>
<td><em>Isistius brasiliensis</em></td>
<td>Least concern</td>
</tr>
<tr>
<td>21</td>
<td>Shortfin mako shark</td>
<td><em>Isurus oxyrinchus</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>22</td>
<td>White-margin fin smooth-hound shark</td>
<td><em>Mustelus albipinnis</em></td>
<td>Data deficient</td>
</tr>
<tr>
<td>23</td>
<td>Speckled smooth-hound</td>
<td><em>Mustelus mento</em></td>
<td>Near threatened</td>
</tr>
<tr>
<td>24</td>
<td>White nose shark</td>
<td><em>Nasolamia velox</em></td>
<td>Data deficient</td>
</tr>
<tr>
<td>25</td>
<td>Smalltooth sand tiger shark</td>
<td><em>Odontaspis ferox</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>26</td>
<td>Blue shark</td>
<td><em>Prionace glauca</em></td>
<td>Near threatened</td>
</tr>
<tr>
<td>27</td>
<td>Whale shark</td>
<td><em>Rhinodon typus</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>28</td>
<td>Scalloped hammerhead shark</td>
<td><em>Sphyrna lewini</em></td>
<td>Endangered</td>
</tr>
<tr>
<td>29</td>
<td>Great hammerhead shark</td>
<td><em>Sphyrana mokarran</em></td>
<td>Endangered</td>
</tr>
<tr>
<td>30</td>
<td>Bonnethead shark</td>
<td><em>Sphyrana tiburo</em></td>
<td>Not evaluated</td>
</tr>
<tr>
<td>31</td>
<td>Smooth hammerhead shark</td>
<td><em>Sphyrana zygaena</em></td>
<td>Vulnerable</td>
</tr>
<tr>
<td>32</td>
<td>Whitetip reef shark</td>
<td><em>Trienodon obesus</em></td>
<td>Near threatened</td>
</tr>
<tr>
<td>33</td>
<td>Spotted hound shark</td>
<td><em>Triakis maculata</em></td>
<td>Vulnerable</td>
</tr>
</tbody>
</table>
The scalloped hammerhead is a coastal-pelagic shark species inhabiting warm temperate and tropical seas across the world (Compagno et al. 2005). Despite its broad distribution, important genetic differences can be found among neighbouring oceanic regions (Duncan et al. 2006), which makes it highly vulnerable to localized extractive activities. In the Galapagos, this species is observed aggregating in relatively large schools across the reserve but particularly around the northern islands of Darwin and Wolf (Hearn et al. 2014). It is regarded as one of the most charismatic species due to its peculiar body shape and relatively high abundance (Hearn et al. 2014; Peñaherrera et al. 2013). Efforts to understand their behaviour around oceanic islands of the GMR have provided important information on the fine scale movement and site fidelity of this species (Ketchum et al. 2014a; Ketchum et al. 2014b). Yet, it is still unknown how hammerhead and other shark species use the reserve on a larger scale.

The potential of the GMR to provide a safe ground for sharks to maintain or rebuild their population has been subject to debate. Anecdotal evidence by dive guides suggested the abundance of shark species, including hammerhead sharks, have considerably declined at the main dive sites since the 1990s (Zarate 2002). Yet, Wolff et al. (2012a) recently proposed that the occurrence of the El Niño event in 1997-1998, along with the creation of the reserve in 1998, provided the ideal scenario in which several shark species could have increased their biomass. Theoretical population increases of 37% were suggested for coastal-pelagic sharks, 24% for large pelagic sharks, and 15% for hammerheads sharks. Also, biomass increase in large predators was modelled to induce a 20% decline in the biomass of small-sized sharks. While Wolff et al. (2012a)'s findings were modelled under scenarios of reduced illegal harvesting, there are concerns that the intensity of shark poaching could have been
maintained at the level previous to the reserve setting (Schiller et al. 2014). Marked fishing pressure around the border of the reserve (Martinez-Ortiz et al. 2015) and constant seizure of poachers inside the reserve (Carr et al. 2013; Reyes and Murillo 2007) support these concerns. To date, there is no available information on shark population size and trends that could aid the evaluation of the protective coverage of the GMR to shark species.

1.4 Project motivation and objectives

Unprotected seas around the world provide no safe haven for shark populations under current fishing regimes. The size and management of the GMR could provide a safe ground for sharks whilst playing a key role in buffering the current decline of shark populations observed across the ETP. This doctoral research program uses the endangered scalloped hammerhead shark as a study case to assess the GMRs efficacy in protecting pelagic sharks. The scalloped hammerhead is still found in large aggregations in the GMR, providing a unique opportunity to examine the benefits of MPAs for this species. Moreover, the GMR can be considered one of the few places where marine communities are still diverse and abundant (Edgar et al. 2014; Stuart-Smith et al. 2013); knowledge from such study sites is invaluable in the face of the current rate of extinction and habitat degradation facing marine ecosystems worldwide.

The thesis is divided into five sections: an introduction, three main data chapters and a discussion chapter. The introductory chapter reviews the issues of shark fisheries, the management framework and biological baseline data on which shark management in the Galapagos Marine Reserve is based upon. The first data chapter (chapter 2) assesses the feasibility of using acoustic telemetry-visual surveys
combined with mark-resight approaches to provide estimations of the population size of the scalloped hammerhead shark in an oceanic hot-spot. The second data chapter (Chapter 3) explores the historical trends in abundance of six shark species by evaluating the local ecological knowledge of dive guides working in the Galapagos since the beginning of the tourism industry. The third data chapter (Chapter 4) aims to evaluate and compare the movement, home range and environmental preferences of the scalloped hammerhead shark to the coastal blacktip shark. My concluding chapter (General Discussion, Chapter 5) explores the use of the tools developed through this research thesis and the available information to inform scientists, stakeholders and managers on the protective effect of the GMR for the conservation of sharks, in particular the scalloped hammerhead.

The objectives of my research are closely aligned to the Ecuadorean National Plan of Action for Sharks, the International Plan of Action for Sharks, and the Galapagos Marine Reserve Management Plan. This work aims to highlight and provide essential information regarding historical and current shark abundance, how sharks use the reserve, and their preferred environmental conditions. This information was primarily obtained to aid scientists and GMR managers to make informed decisions towards improving the management framework in the Galapagos.

This project is part of a multi-institutional effort in collaboration with the University of Tasmania (UTAS), the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Directorate of the Galapagos National Park (DGNP), The Charles Darwin Foundation (CDF), The University of California - Davis, Turtle Island Restoration Network (TIRN) and OCEARCH.
Chapter 2  Short-term fluctuations in hammerhead shark numbers at an aggregation site based on visual census and telemetry data

2.1 Abstract

The application of mark-resight experiments in marine science has been sparse due to constraints imposed by challenging underwater conditions, particularly in relation to the visual sighting of marked individuals. The recent development of more general mark-resight estimators provides the framework to test the use of alternatives to sighting methodologies, such as acoustic telemetry. Here I explored the use of acoustic telemetry in combination with underwater visual surveys (UVS) to assess the population size of the endangered scalloped hammerhead shark. During September 2011, September 2012, and October 2013 field trips deploying acoustic tags and conducting UVS were carried out at Darwin Island, Galapagos Marine Reserve. Resident population and super-population size were modelled using the Immigration-Emigration Logic Normal Mark-Resight Estimator (IELNE). In 2011, the estimations of super-population size (average 605 ind.) were approximately 1.2 times larger than the resident population size (average 499 ind.). Estimations for year 2012 produced the largest values of super-population size in this study (average 1739 ind.), almost 2.6 times the resident population size (average 665 ind.). In 2013, the estimations of super-population size (average 588 ind.) were on average 1.5 times larger than the resident population size (average 401 ind.). Model estimations were less variable and with narrower confidence intervals for years 2011 (10 acoustic tags) and 2013 (20 tags), but not for 2012 (21 tags). The temporary emigration of marked and unmarked hammerheads affected estimations for some days in 2012. This scenario becomes increasingly likely when assessing highly mobile species with
gregarious behaviour. Despite this, my analysis produced a reliable approximation of the population size of hammerhead sharks in this ecological hot-spot. These results give support to the use of combined approaches in underwater mark-resight experiments, especially in areas where more traditional assessment techniques based on fishing are not appropriate.

2.2 Introduction

Mark-resight methods are used to estimate the size of animal populations from sightings rather than physical recaptures of marked individuals (Neal et al. 1993). These methods only require a single “marking” event, without incorporating new marks during subsequent resighting periods. Abundance is estimated by incorporating sightings of unmarked individuals into the estimation framework. This contrasts with traditional mark-recapture, which relies on the post-tagging capture of individuals to identify the marks (Cooch and White 2014). Therefore, mark-resight routines allow a less invasive and potentially more cost-effective alternative to mark-recapture, and are especially useful when the physical recapture of individuals is challenging or imposes stress on sensitive species (Minta and Mangel 1989).

Mark-resight methods were primarily developed to assess the abundance of wide-ranging terrestrial fauna by means of visual observation or assisted with radio telemetry (White and Garrot 1990). These methods have been widely applied to assess species across a range of animal taxa, including bears (e.g. Keech et al. 2014), deer (e.g. Bartmann et al. 1987), prairie dogs (e.g. McClintock et al. 2009), raccoons (Sollmann et al. 2012), lions (Castley et al. 2002), sheep (e.g. Neal et al. 1993) and birds (e.g. Dennhardt et al. 2015). However, their application in marine science has been limited due to the difficulty of properly identifying marks in the marine domain.
Currently, the most common approach to resight marks rely on the visual identification of implanted marks (conventional tags, e.g. Griffing et al. 2014) or unique body markings (photo-identification, e.g. Mansur et al. 2012). While this can be suitable to assess marine mammals that constantly surface to breathe (Mansur et al. 2012; Ryan et al. 2011), the underwater identification of marks can be affected by poor visibility conditions, the animal depth, distance, and movement in relation to observers (Seber 1992; Zeller and Russ 2000). Failure to account for marked individuals can directly affect the estimations of sighting probability, which constitutes the most important factor in mark resight experiments (Neal et al. 1993).

Acoustic telemetry is the use of sound to monitor the underwater presence of animals to known hydrophone locations (Grothues 2009). It has become an increasingly popular research tool in marine sciences due to its accuracy in producing reliable detection profiles of individuals in challenging underwater conditions (Heupel et al. 2006). This allowed its effective incorporation into traditional mark-recapture models for the estimation of natural mortality (e.g. Heupel and Simpfendorfer 2002), fishing mortality (e.g. Pollock et al. 2004), apparent survival (e.g. Barbour et al. 2013) and population size (e.g. Dudgeon et al. 2015). Mark-resight experiments could also benefit from the use of acoustic telemetry in sampling design. Lee et al. (2014) reported that estimations of abundance from telemetry-aided mark-resight experiments could produce similar abundance estimations (and with narrower confidence intervals) than Pollock’s mark-recapture robust design (Pollock 1982) through photo-identification. Lee et al. (2014) study provided the first revision on the potential use of acoustic telemetry in underwater mark-resight experiments, yet they only used telemetry to determine the number of marked individuals in and out the study area prior to visual resighting events. Their approach is feasible for species that
spend prolonged periods of time resting on the sea floor, but becomes less practical
with more mobile species such as coastal-pelagic sharks.

The scalloped hammerhead shark, *Sphyrna lewini*, is a coastal-pelagic shark species
that has cryptic coloration with no individually identifiable body markings
(Compagno et al. 2005). This species is known to display characteristic gregarious
behaviour while constantly circumnavigating oceanic islands and seamounts (Klimley
and Oerding 2013). Populations of hammerhead sharks are globally endangered as a
result of targeted and by-catch overfishing (Baum et al. 2007). Hammerhead sharks
have one of the highest reported mortality rates to hooking for a shark species (Gulak
et al. 2015), making them highly susceptible to fisheries and any other activity that
involves capturing individuals. The development of cost-effective and capture-
independent assessment tools is critical to provide reliable estimations of population
size while reducing the negative impacts associated with re-capturing individuals
(McClintock and White 2012).

Here I explore the use of acoustic telemetry in combination with underwater visual
surveys (UVS) to carry out mark-resight experiments and assess population size for
the scalloped hammerhead shark in an ocean hotspot. Specifically, my work is
designed to 1) construct encounter histories of a mark resight estimator using the
acoustic-telemetry detection profiles of marked individuals; 2) provide estimations of
local population sizes of the scalloped hammerhead; and 3) evaluate the model
sensitivity to over and under counting bias associated to the combined use of UVS and
acoustic telemetry. This species’ characteristic schooling and residence behaviour at
seamounts and oceanic islands provide a unique opportunity to test this approach
and evaluate its effectiveness in assessing the population size of similar fish species.
2.3 Methods

2.3.1 Data collection

Field trips were carried out during September 2011, September 2012, and October 2013 at Darwin Island, the northern-most oceanic island in the Galapagos Marine Reserve (GMR). The GMR is the largest marine protected area in the Eastern Tropical Pacific where industrial fishing is banned and sharks are protected from all fishing, including local small-scale fisheries (Figure 2.1). I acoustically tagged sharks and conducted UVS at Darwin’s Arch, which is a known aggregation hot-spot for hammerhead sharks (Hearn et al. 2014). I tagged sharks over the morning and afternoon of the first two days of every fieldtrip, followed by five to eight days of simultaneous UVS and passive acoustic tracking.

I fitted 10 (September 2011), 21 (September 2012) and 20 (October 2013) sharks with coded Vemco V16-6H tags (frequency 69 kHz, 160dB, nominal delay 90–180 s, diameter 16mm, length 95mm) tethered to a stainless steel dart with stainless steel wire. Tags were attached externally into the musculature behind the dorsal fin by using a pole spear while free diving. Tagging was carried out over the reef area at depths not greater than 15 meters. I placed one primary acoustic receiver in the Arch and two secondary receivers in nearby areas to track presence and movements of the tagged sharks around the island (Figure 2.1). I used Vemco VR2W (69 kHz) receivers set at 30 m deep and anchored to concrete blocks by PVC coated marine stainless steel cable ropes. The detection range of the primary receiver was estimated as 150 m, while the secondary receivers varied from 200 to 300 m (for more technical details see Hearn et al. 2010).
Following acoustic tagging, I carried out an UVS to collect the raw counts (hereafter called raw abundance), sex and size structure of hammerhead sharks around the primary receiver. UVS were carried out the next following day after tagging to avoid the risk of tag lost due to permanent emigration or mortality. A pair of divers carried out 20-minute UVSs three times per day: morning (between 07:00am to 10:00am), midday (10:30am to 14:00pm) and afternoon (14:00pm to 17:00pm). Number of sharks and their sex were counted by one diver, whilst the other collected data on sharks’ fork length using laser photogrammetry equipment (for equipment specifications and limitations see Rohner et al. 2011). Only pictures in which I could clearly identify laser dots and the shark’s body in a straight and perpendicular position to the camera were used to photogrammetrically measure length. Shark fork length was then converted into total length (TL) following Branstetter (1987). Divers remained in the vicinity of the acoustic receiver at depths between 20 to 40 meters. To ensure all sharks were counted when large aggregations passed by, divers swam out of the reef toward the open ocean to be as close as possible to the school without...
disrupting sharks’ normal behaviour. This sampling procedure allowed divers to extend their visual range up to 30 m away from the receiver.

Tagging and UVS protocols were approved by the University of Tasmania Animal Ethics Committee (permit No. A13641), by the Institutional Animal Care and Use Committee of the University of California – Davis (permit number IACUC PROTOCOL #16022), and by the Directorate of the Galapagos National Park (research permit No. PC-60-13).

2.3.2 Model construction

I modelled population size using the Immigration–Emigration Logit-Normal Estimator (IELNE) implemented in the MARK 8.0 software (Cooch and White 2014). IELNE is a mark-resight modelling framework that does not require geographic closure (McClintock and White 2012). I built my IELNE models under Pollock’s robust design framework, which combines secondary sampling occasions embedded in primary intervals (Kendall 2001; Pollock 1982). I defined each UVS as a secondary occasion and each day (from 0:00 to 23:59) as a primary occasion. This produced three secondary sampling occasions for each primary occasion, and between five to eight primary occasions depending on the year. I used the presence of marked sharks (from acoustic telemetry) and raw abundance (from UVS) to construct the marked individual encounter histories for IELNE. For purposes of abundance estimation, I defined residents as individuals that were registered on a regular basis at the primary receiver with absences no greater than 24 hours. Individuals not detected for more than 24 hours were categorized as non-residents, following Soria et al. (2009) and Capello et al. (2015). Based on these definitions, encounter histories of resident marked individuals were assigned a “1” if they were acoustically detected at the Arch.
(primary receiver) within the period of the 20 minute UVS survey, and “0” if otherwise. I considered the non-resident marked sharks as unavailable for sighting during UVS, and were thus assigned a “.” in the analysis matrix. The total number of marks deployed during each fieldtrip was registered as the marked super-population group (i.e., the number of tagged sharks using the study area), whilst the differences between the number of sharks counted per dive and the number of acoustically detected sharks in the corresponding UVS were considered the unmarked counts for each secondary sampling occasion.

IELNE models estimate two types of abundance: the mean population size ($N_{ij}$), and the super-population size ($N_{ij}^*$. Based on my study methods and design, the mean population size is the number of resident sharks in the primary receiver’s detection range during each primary period $j$; while the super-population refers to the number of resident sharks using the entire Darwin Island receiver detection range and surrounding waters outside of the receivers area during each primary period $j$. Other output parameters obtained through this model are the mean re-sighting probability ($p_{ij}$) for resident sharks within the receivers’ detection range during a secondary occasion $i$ (i.e., the probability that a resident animal is within the Darwin Arch receiver range during a specific UVS); the overall mean resighting probability ($\bar{u}$) for secondary occasion $i$ of primary interval $j$; the difference ($\alpha_{ij}$) between the population size within the primary receiver’s detection range during a secondary occasion $i$ of primary interval $j$ and the mean population size during primary interval $j$ (i.e., $\alpha_{ij} = N_{ij} - N_{ij}$); and the individual heterogeneity level ($\sigma^2_j$ ) in mean resighting probability during primary interval $j$ (McClintock and White 2012). Candidate models were constructed by allowing parameters $p_{ij}, \sigma^2_j, N_j^*$ and $N_j^*$ to fluctuate either through only secondary occasions (time-dependent); only primary occasions (session dependent);
or to be constant across the whole fieldtrip. Initial parameter values estimated from the simplest time-independent model using the logit-link function were provided for each model in order to reduce potential convergence issues (Cooch and White 2014). Model selection criteria were based on the adjusted Akaike's Information Criterion (AIC) values to take into account differences in effective sample size and lack of fit (Burnham and Anderson 2002). Finally, I used parametric (Analysis of Variance, Fisher 1918; Student’s t-test, Student 1908), and non-parametric (Kruskal-Wallis test, Kruskal and Wallis 1952) statistical analyses to test differences between the collected data, model estimates and between years and time of day.

2.3.3 Model assumptions and estimations

For realistic estimations, my experimental design must fulfil at least four critical IELNE requirements: 

1) marks cannot be lost, 
2) the number of marks available for resighting must be known during each occasion; 
3) every sampling must be without replacement; and 
4) the subset of the population selected for marking must be representative of the entire population in terms of sighting probability (McClintock and White 2012). While the presence of all marked sharks during and after their sampling sessions confirmed I fully met the first two assumptions, the telemetry-based approach may not completely fulfil the last two requirements. Hammerhead sharks do not have distinctive natural body markings that allow divers to accurately identify individuals and avoid re-counting individuals. This increases the risk of overestimating the real raw abundance of sharks swimming by the study site (violation of assumption iii). Moreover, the combination of acoustic telemetry and USV represents a risk of not observing individuals swimming out of the divers’ visual
range (30 m) yet within the acoustic detection range (150 m), potentially resulting in underestimations of the collected raw abundances (violation of assumption iv). To evaluate the effect of violating these assumptions and correct my data from both sources of bias, I used passive and active acoustic telemetry data to estimate a replacement and a difference in sighting probability (hereafter availability) ratio. Replacement and availability were modelled on the assumption that both scenarios are directly associated with the entries and departures of sharks to and from the study site. The replacement ratio was calculated using the acoustic detections profiles of all marked sharks during my surveys. To achieve this, I binned (in 5 min intervals) all the detections collected during daytime hours (6 am to 6pm) at the primary receiver and for each shark separately, and performed a sliding selection of every possible 20 min timeframe that could have recorded a marked shark at least once. This represented my total number of possible UVS within a day. Following Melnychuk and Walters (2010), I counted all the potential replacement events in which a marked shark would display an entry – re-entry detection pattern across a fixed acoustic receiver. The final replacement ratio was then calculated as the mean product of the possible replacement events over all possible UVS. The availability ratio was calculated using the fine-scale movement data for hammerhead sharks collected at Wolf Island (full details in Ketchum et al. 2014a), given there is not an equivalent dataset available for Darwin Island. I selected the dataset of sharks actively tracked during the cold season (July-November) and over three sites (East Bay, Shark Point, and Rockfall, Figure 2.2) that share similar biophysical conditions and high hammerhead shark connectivity with my study site than with any other area of the GMR (Hearn et al. 2010; Ketchum et al. 2014b). Following Dennhardt et al. (2015), I used the Tracking Analysis tool available in the ESRI ArcGIS 9.3 software, and
calculated the availability ratio as the number of times a shark entered only within the detection range area (excluding the visual range) over the total number of times it entered the entire detection range area (including the visual range). The resulting replacement and availability ratios were used to correct my raw abundance with the following equation:

$$A_{Ci} = (1 - S) \times A_i / (1 - R)$$

(1)

Where $A_{Ci}$ represents the corrected raw abundance for secondary occasion $i$, $A_i$ is the measured raw abundance for secondary occasion $i$, $S$ is the availability ratio, and $R$ the replacement ratio. IELNE models were constructed using the corrected raw abundances for every year.

![Figure 2.2](image)

**Figure 2.2** Movement of continuously tracked hammerhead sharks superimposed on the receiver’s detection range (external black circle – 150m radius) and diver visual range (inner black circle – 30m radius) over the site East Bay (left), Shark Point (centre) and Rockfall (right) sites from Wolf Island (From Ketchum et al. 2014a).

To further understand the effect of violating model assumptions (iii and iv) several models were simulated to test the effect of under- and over-counting the raw abundance in the estimations of mean population and super-population size. By varying the uncorrected raw abundances in both reductions and increases of 5%, 10%, 15% and 20%, I re-estimated the population size using the most parsimonious
model for each year. I used the percentage of relative bias (PRB), the main percentage of confidence interval length (PCIL) and CI coverage indicators to compare the results obtained from these simulations with those of the basic models of “no variation” in uncorrected raw abundances (for more technical information on these indicators see Neal et al. 1993).

2.4 Results

2.4.1 Sampling conditions

A total of fifty-one sharks were acoustically tagged (marked) over three years (Table 2.1). All, except one shark (tagged in 2011) were detected during subsequent sampling days. The undetected shark moved out of the study area immediately after being tagged, but was detected one month later by an acoustic receiver located at Wolf Island, showing emigration rather than tag loss. In 2011 significantly smaller sharks were marked (mean=218.2 cm, Kruskal-Wallis $X^2=17.9713$, $p=0.001$) and observed (mean=229 cm, 49 ind.; Kruskal-Wallis $X^2=6.2314$, $p=0.044$) compared to 2012 and 2013. The largest and broadest body size spectra were marked in 2013 (mean =242.9 cm; min=195, max=286), followed by 2012 (mean =235.3 cm; min=221, max=260). The largest and broader observed size spectra were recorded for year 2012 (242.3 cm), followed by 2013 (237 cm). I found no significant differences between the mean total length of the marked and observed sharks within year, with exception of the year 2011 when marked sharks were slightly smaller than those measured through UVS (t-test $t=2.2512$, $p=0.03$). I could not identify the sex of the marked sharks due to the angle of the free diver while tagging the individuals. Female hammerheads from UVS accounted for 84 to 89% of the observed schools sex.
composition, with no significant differences between years (two-way ANOVA year*sex: F=0.1, p=0.75).

Table 2.1 Sampling conditions of the acoustic telemetry and underwater visual surveys (UVS). Raw Abun. refers to the counted raw abundance (Ind./20 min dive) during UVS; Size is measured in cm.

<table>
<thead>
<tr>
<th>Year</th>
<th>Marked sharks</th>
<th>Size Mean (SD)</th>
<th>Marks detected during UVS</th>
<th>Day s</th>
<th>Raw Abun. Mean (SD)</th>
<th>UVS Size Mean (SD)</th>
<th>Num</th>
<th>Sex composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>10</td>
<td>218.2 (11.9)</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>229.9 (24.9)</td>
<td>49</td>
<td>89</td>
</tr>
<tr>
<td>2012</td>
<td>21</td>
<td>235.3 (12.5)</td>
<td>21</td>
<td>0</td>
<td>8</td>
<td>242.3 (9.0)</td>
<td>48</td>
<td>84</td>
</tr>
<tr>
<td>2013</td>
<td>20</td>
<td>242.9 (21.1)</td>
<td>20</td>
<td>5</td>
<td>62</td>
<td>237.0 (23.4)</td>
<td>35</td>
<td>88</td>
</tr>
</tbody>
</table>

The counted raw abundance of sharks varied around a general mean of 83 ind./20 min across years, with peaks of abundance reaching up to 377 ind./20 min (Figure 2.3). Year 2012 had the highest mean raw abundance (97 ind./20 min) in comparison to year 2011 (82 ind./20 min) and 2013 (63 ind./20min; Table 2.1), yet differences in the raw abundance across years were not significant (Kruskal-Wallis $X^2=0.43$, $p=0.80$). The maximum raw abundance recorded in a single dive was 377 ind./20 min, and the lowest was zero. The raw abundance recorded in 2011 showed a peak of 315 ind./20 min, but a minimum of 4 ind./20 min. The least variable year was 2013, with only subtler changes across the five sampling days in comparison to previous years, yet the raw abundance varied from a minimum of 15 to a maximum of 141 ind./20 min. The average of morning (91 ind./20 min) and midday UVS (90 ind./20 min) were higher than the afternoon UVS counts (70 ind./20 min) but differences were not significant (Kruskal-Wallis $X^2=1.34$, $p=0.512$).
Figure 2.3 Variation in hammerhead sharks uncorrected and corrected-raw abundance through UVS (left vertical axis) and the number of detected individuals at the main ultrasonic receiver (right vertical axis) during the three field trips. Horizontal axis refers to the days and time of dive (M, morning; D, midday; and A, afternoon).

The replacement ratio was relatively consistent across years (Table 2.2). The highest value was estimated for the fifth primary occasion in year 2012, coinciding with the lowest counted raw abundances of this study. The lowest values were also estimated for the same year, yet these were not related to any pattern in the amount of detected sharks of the counted raw abundance. Given that I found no significant differences between the estimated values between days and years (Kruskall-Wallis p>0.05), I used the overall mean replacement (0.24) as the replacement ratio value (R) in equation 1. In terms of the availability ratio (detected but unseen), movement analysis showed the majority of shark passes (0.74) occurred over both the detection and visual ranges (Figure 2.2). The remaining ratio (0.26) reflected sharks passing only over the detection range (remaining unseen by divers), and was used as my availability ratio S in equation 1. Final corrected raw abundances varied slightly (increment of 2%) from those measured (Figure 2.3). I found no significant
differences between the yearly means of the counted and corrected raw abundances (Anova 2011 $p=0.97$; 2012, $p=0.96$; 2013, $p=0.96$).

Table 2.2 Daily mean of the replacement ratio estimated from the marked sharks.

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>0.33</td>
<td>0.24</td>
<td>0.20</td>
</tr>
<tr>
<td>Day 2</td>
<td>0.21</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>Day 3</td>
<td>0.27</td>
<td>0.16</td>
<td>0.31</td>
</tr>
<tr>
<td>Day 4</td>
<td>0.23</td>
<td>0.17</td>
<td>0.31</td>
</tr>
<tr>
<td>Day 5</td>
<td>0.20</td>
<td>0.40</td>
<td>0.26</td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td></td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Day 8</td>
<td></td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td>Mean</td>
<td>0.24</td>
<td>0.23</td>
<td>0.26</td>
</tr>
<tr>
<td>SD</td>
<td>0.11</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

The number of marked individuals detected within each UVS varied similarly to the (measured) raw abundance (Figure 2.3). While there were slightly more sharks detected during 2013 and during morning UVS, no significant differences were found between years (Kruskal-Wallis $X^2=4.56$, $p=0.102$) or time of day (Kruskal-Wallis $X^2=0.22$, $p=0.894$). Situations in which no shark was detected were also observed, particularly in year 2012 when nine UVS detected no sharks. These situations were often related to observed declines in raw abundances, especially during the second quarter of year 2012.

2.4.2 Parameter estimations

I ran up to nine models for every yearly session from 2011 to 2013 (Table 2.3). Models with time- and session-dependent parameterizations for mean re-sighting rate ($\rho$), and session-dependant values for the mean population ($N^\prime$) and superpopulation size ($N^\ast$) had the most support (e.g. lowest AIC values). Individual heterogeneity ($\sigma^2$) was parameterized separately for each year, with the most
parsimonious 2011 model favoured by a constant $\sigma^2$, 2012 by session-dependent $\sigma^2$, and 2013 by a zero heterogeneity parameterization ($\sigma^2=0$). For the first two years, the estimated values of $\sigma^2$ were generally greater than 1 and provided some evidence of heterogeneity in the resighting probability, particularly for 2012.

Table 2.3 AIC weights for selected IELNE models based on the corrected raw abundances of scalloped hammerhead shark abundance at Arch of Darwin Island. Only top-five models are shown in this table.

<table>
<thead>
<tr>
<th>Year</th>
<th>Model</th>
<th>AICc</th>
<th>Delta AICc</th>
<th>AICc Weights</th>
<th>Num. Par.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>260.82</td>
<td>0</td>
<td>0.6142</td>
<td>25</td>
</tr>
<tr>
<td>2011</td>
<td>$p(\text{session}<em>t) \sigma(0) N^</em>(\text{session})$</td>
<td>262.09</td>
<td>1.28</td>
<td>0.3248</td>
<td>24</td>
</tr>
<tr>
<td>2011</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>265.73</td>
<td>4.93</td>
<td>0.0527</td>
<td>27</td>
</tr>
<tr>
<td>2011</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>270.27</td>
<td>9.45</td>
<td>0.0055</td>
<td>28</td>
</tr>
<tr>
<td>2011</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>271.55</td>
<td>10.74</td>
<td>0.0029</td>
<td>27</td>
</tr>
<tr>
<td>2012</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>478.76</td>
<td>0</td>
<td>0.9962</td>
<td>37</td>
</tr>
<tr>
<td>2012</td>
<td>$p(\text{session}<em>t) \sigma(0) N^</em>(\text{session})$</td>
<td>491.40</td>
<td>12.61</td>
<td>0.0018</td>
<td>40</td>
</tr>
<tr>
<td>2012</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>492.10</td>
<td>13.30</td>
<td>0.0013</td>
<td>41</td>
</tr>
<tr>
<td>2012</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>494.22</td>
<td>15.43</td>
<td>0.0004</td>
<td>41</td>
</tr>
<tr>
<td>2012</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>494.90</td>
<td>16.10</td>
<td>0.0003</td>
<td>42</td>
</tr>
<tr>
<td>2013</td>
<td>$p(\text{session}<em>t) \sigma(0) N^</em>(\text{session})$</td>
<td>360.28</td>
<td>0</td>
<td>0.7175</td>
<td>25</td>
</tr>
<tr>
<td>2013</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>362.53</td>
<td>2.25</td>
<td>0.2328</td>
<td>26</td>
</tr>
<tr>
<td>2013</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>367.16</td>
<td>6.88</td>
<td>0.0230</td>
<td>28</td>
</tr>
<tr>
<td>2013</td>
<td>$p(\text{session}<em>t) \sigma(0) N^</em>(\text{session})$</td>
<td>367.42</td>
<td>7.14</td>
<td>0.0202</td>
<td>28</td>
</tr>
<tr>
<td>2013</td>
<td>$p(\text{session}<em>t) \sigma(\text{session}) N^</em>(\text{session})$</td>
<td>369.68</td>
<td>9.41</td>
<td>0.0065</td>
<td>29</td>
</tr>
</tbody>
</table>

The overall mean resighting probability was relatively low for all years (average value for years 2011=0.18; 2012=0.15; 2013=0.17), and varied within the same range for the three years (min=0, max=0.37; Figure 2.4). Overall, there were no significant differences between the three years ($t$-test $p>0.16$). The 95% confidence intervals varied similarly to the mean resighting probability with few exceptions. For example, year 2012 had the widest (0.15-0.94) and narrowest (0.13-0.14) confidence intervals for a secondary occasion. Estimated confidence intervals were generally wider in
amplitude during 2011 and narrower in 2013, yet I found no significant differences in lower ($t$-test $p>0.18$) and upper ($t$-test $p>0.11$) limits between years.

![Figure 2.4](image)

**Figure 2.4** Overall mean resighting probability (black line) and 95% confidence intervals (grey area) estimated for each secondary occasion ($UVS, M$: morning; $D$: midday; $A$: afternoon) from every year.

Estimations of the mean population ($N^*$) and super-population size ($N^s$) from the corrected raw abundances were also variable across primary occasions in all years (Figure 2.5). In 2011, the estimations of super-population size (average 605 ind.; min=203, max=1067) were approximately 1.2 times larger than the mean population size (average 499 ind.; min=158, max=1067). Estimations for year 2012 produced the largest values of super-population size in this study (average 1739 ind.; min=321, max=2842), almost 2.6 times the mean population size (665 ind.; min=144, max=1656). This year was particularly atypical as the lack of marked sharks detected in acoustic receivers, and the reduced raw abundance during the 4th primary interval, affected the estimation of the super population size. In 2013, the estimations of super-population size (588 ind.; min=359, max=958) were on average 1.5 times larger than the mean population size (401 ind.; min=233, max=718). Confidence intervals were the narrowest for both mean population and super-population size in
year 2013, followed by year 2011. Year 2012 experienced an increase in the amplitude of confidence intervals after the third primary occasion, mainly driven by the reduction in the corrected abundance and the absence of marked sharks in the study site. Confidence intervals then tended to shrink as marked sharks returned to the study area. A comparison of the estimations between years showed a significant difference only for the super-population estimations. In 2012, the super-population estimations were significantly larger than those from 2011 (t-test \( p=0.01 \)) and 2013 (t-test \( p=0.009 \)).

![Figure 2.5](image)

Figure 2.5 Hammerhead sharks daily (primary occasions) estimations of the mean population (\( N \), black circles) and super-population (\( N^* \), white circles) size for every fieldtrip.

Simulations showed a varied response of relative bias (PRB), confidence interval length (PCIL) and coverage to changing values of raw abundance. The PRB in the population estimates of every scenario varied at similar magnitude with the under and overestimations of raw abundance (Table 2.4). Contrastingly, PCIL was affected by the level of heterogeneity in sighting probability rather than varying magnitudes in raw abundance. PCIL showed the same trend during each primary sampling
occasion, with increased values in response to increased level of heterogeneity (Figure 2.6). The mean PCIL per year was nevertheless consistent across all scenarios, except when the variation in raw abundance reached ± 20% (Table 2.4). It is noteworthy that mean PCIL values for the mean population estimates were larger than those from super-population estimates, despite the wider confidence intervals observed in year 2012. The coverage shows that if there is a ± 5% variation in the raw abundances, all population estimates across primary occasions still contain the population estimates of the uncorrected raw abundances. This situation becomes less likely when the error is greater than ±10%, and the level of heterogeneity affects the estimations of population estimates.

**Table 2.4** Percentage of relative bias (PRB), mean percentage of confidence interval length (PCIL), and percentage of coverage for model estimates of mean population size and super-population size in scenarios of under- and overestimation of the raw abundances. Underestimation scenarios are represented by variations of -5% to -20% in raw abundance, and overestimations by variations of 5% to 20%. PRB, PCIL and Coverage are in percentage (%) units.

<table>
<thead>
<tr>
<th>Raw abundance variation</th>
<th>Mean population size</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRB</td>
<td>PCIL</td>
<td>Coverage</td>
<td>PRB</td>
<td>PCIL</td>
</tr>
<tr>
<td>20%</td>
<td>19.6</td>
<td>140</td>
<td>100</td>
<td>19.8</td>
</tr>
<tr>
<td>15%</td>
<td>14.7</td>
<td>140</td>
<td>100</td>
<td>14.5</td>
</tr>
<tr>
<td>10%</td>
<td>10.0</td>
<td>140</td>
<td>100</td>
<td>9.8</td>
</tr>
<tr>
<td>5%</td>
<td>4.7</td>
<td>140</td>
<td>100</td>
<td>4.7</td>
</tr>
<tr>
<td>0%</td>
<td>--</td>
<td>140</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>-5%</td>
<td>-4.7</td>
<td>140</td>
<td>100</td>
<td>-5.0</td>
</tr>
<tr>
<td>-10%</td>
<td>-10.1</td>
<td>140</td>
<td>100</td>
<td>-10.3</td>
</tr>
<tr>
<td>-15%</td>
<td>-14.8</td>
<td>139</td>
<td>100</td>
<td>-14.5</td>
</tr>
<tr>
<td>-20%</td>
<td>-19.7</td>
<td>139</td>
<td>100</td>
<td>-19.5</td>
</tr>
</tbody>
</table>

**Super-population size**

<table>
<thead>
<tr>
<th>PRB</th>
<th>PCIL</th>
<th>Coverage</th>
<th>PRB</th>
<th>PCIL</th>
<th>Coverage</th>
<th>PRB</th>
<th>PCIL</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>19.6</td>
<td>65</td>
<td>80</td>
<td>19.7</td>
<td>103</td>
<td>63</td>
<td>19.2</td>
<td>38</td>
</tr>
<tr>
<td>15%</td>
<td>14.8</td>
<td>64</td>
<td>80</td>
<td>14.6</td>
<td>104</td>
<td>75</td>
<td>14.6</td>
<td>38</td>
</tr>
<tr>
<td>10%</td>
<td>10.0</td>
<td>64</td>
<td>100</td>
<td>9.7</td>
<td>103</td>
<td>100</td>
<td>9.9</td>
<td>38</td>
</tr>
<tr>
<td>5%</td>
<td>4.7</td>
<td>64</td>
<td>100</td>
<td>4.4</td>
<td>103</td>
<td>100</td>
<td>4.9</td>
<td>38</td>
</tr>
<tr>
<td>0%</td>
<td>--</td>
<td>64</td>
<td>--</td>
<td>--</td>
<td>103</td>
<td>--</td>
<td>--</td>
<td>38</td>
</tr>
<tr>
<td>-5%</td>
<td>-4.7</td>
<td>64</td>
<td>100</td>
<td>-5.1</td>
<td>103</td>
<td>100</td>
<td>-4.7</td>
<td>38</td>
</tr>
<tr>
<td>-10%</td>
<td>-10.1</td>
<td>64</td>
<td>100</td>
<td>-10.3</td>
<td>102</td>
<td>100</td>
<td>-9.9</td>
<td>38</td>
</tr>
<tr>
<td>-15%</td>
<td>-14.8</td>
<td>64</td>
<td>80</td>
<td>-14.6</td>
<td>102</td>
<td>75</td>
<td>-14.5</td>
<td>38</td>
</tr>
<tr>
<td>-20%</td>
<td>-19.7</td>
<td>44</td>
<td>40</td>
<td>-19.5</td>
<td>103</td>
<td>63</td>
<td>-19.3</td>
<td>38</td>
</tr>
</tbody>
</table>
Hammerhead sharks daily (primary occasions) estimations of the mean population \( (N, \text{above}) \) and super-population \( (N^*, \text{below}) \) size the under and overestimations of raw abundance. Closed (or filled) circles represent my main model estimation from my uncorrected raw abundance. Open circles represent the underestimated (left) and over estimated (right) raw abundance scenarios. Vertical bars represent the 95% upper and lower confidence intervals.

2.5 Discussion

I used the Immigration-Emigration Logit-Normal mark-resight estimator (IELNE; McClintock & White 2012) under an acoustic telemetry-UVS combined approach to estimate the abundance of the endangered scalloped hammerhead shark in the Galapagos. The use of acoustic telemetry to study this species in its habitat is critical
to overcome the constraints of working underwater by allowing to 1) construct reliable encounter histories and estimate the resighting probabilities of marked individuals (Dudgeon et al. 2015; Pollock et al. 2004); and 2) evaluate the replacement and differential telemetry-UVS sighting probabilities (Dennhardt et al. 2015; Melnychuk and Walters 2010). My modelling framework provided satisfactory estimations (with narrow confidence intervals) for short-term population size of the hammerhead sharks aggregating at an oceanic hot-spot. These results give support to the use of this method to evaluate the population size of highly mobile pelagic shark species.

2.5.1 Population size and structure

In contrast with visual surveys that count only the visible portion of a population (Brock 1982; Seber 1982), the mark-resight framework estimates the absolute number of unique (visible and invisible) individuals in a population (Cooch and White 2014). This is particularly key when assessing status indicators (e.g. survival, density, biomass and reproductive potential) and detecting early changes in wildlife populations (Cairns et al. 1993).

My estimations of the population size of hammerhead sharks were highly variable yet always fluctuating around a mean of 545 resident individuals (mean population), and a mean of 1100 resident plus transient individuals (super-population). There is only one study that has assessed the population size of hammerhead sharks that could provide a comparable basis to my results. During a single one-day assessment Klimley and Nelson (1981) used free diving to tag and visually count the size of hammerhead schools aggregating at a seamount off the Gulf of California. They reported similar raw abundances (12 to 225 ind.) and size spectra (mean 1.8 m, min
1, max=3.4) of hammerheads, and estimated a population size of 525 individuals. Despite the methodological differences, their findings are similar to my results in terms of raw abundance (0-377 ind.), size structure (160-240 cm) and mean population size (average 2001=499 ind.; 2012=665 ind.; 2013=401 ind.). The similarities in both studies suggest my estimations could provide reliable approximations of the population size of hammerhead sharks in Darwin Island. Furthermore, the relatively low estimates of population size reported by Klimley and Nelson (1981) and my study suggests potential constraints limiting the number of hammerhead sharks aggregating daily in a hot-spot. While this cannot be confirmed, the potential existence of a limited capacity raises important conservation concerns, particularly given this species’ observed sexual segregation (Klimley 1987), and reported global (Baum et al. 2007) and regional (Chapter 3) decline.

Female-dominated aggregations are regarded to occur as a reproductive strategy of many elasmobranchs to either remain in close proximity to pupping grounds (Heithaus 2004), or to exploit energy-rich food sources favouring growth and maturation (Klimley 1987). Although no nursery areas of this species have been reported inside the GMR (Hearn et al. 2014), there is evidence that suggests these female-biased aggregations could be a common trait in the oceanic hot-spots of the Eastern Tropical Pacific Ocean (Bessudo et al. 2012; Klimley 1985). My results provide more evidence of this by showing adult and sub-adult female hammerhead sharks dominating the aggregations observed at Darwin’s Arch during the three-year study period. Females represent a critical portion of a population that should be protected with greater emphasis to ensure the species’ long-term resilience (Au et al. 2009). If the daily abundance of hammerhead sharks in oceanic hot-spots is constrained by the carrying capacity of the core-refuging habitat, aggregation hot-
spots like Darwin could represent a fragile section of a sub-population of this species foraging in neighbouring off-shore areas. As such, these aggregation hot-spots might be highly susceptible to localized depletion, and could be the underlining reason for the unrecovered, depleted state of hammerheads sharks reported by Baum et al. (2007) at the seamount first studied by Klimley and Nelson (1981).

2.5.2 Model assumptions and parameter estimations

The application of the IELNE has several rigorous assumptions, particularly in regards to sampling without replacement (assumption iii) and equivalent sighting probability between the marked and unmarked individuals (assumption iv). Despite my efforts to avoid any possible model violation, cryptic body coloration and movement behaviour of fishes can increase the risk of replacement (a violation of assumption iii) or differential sighting probability (a violation of assumption iv) of individuals while carrying out UVS (Lincoln Smith 1989; Watson and Quinn 1997). The use of passive and active acoustic telemetry in my analysis show that at least 24% of individuals may have been double-counted (replacement ratio), and that around 26% of the individuals coming into the detection range of the receiver may have had a differential sighting probability from UVS (availability ratio). While violating replacement (assumption iii) and availability (assumption iv) separately represented significant sources of bias, they almost cancelled each other’s effect when correcting raw abundances. Over and undercounting bias cancellation is reported to occur under different methodologies, as noted in the assessment of sharks from fisheries catch data (Punt et al. 2000), bull trout from redd counts (Muhlfeld et al. 2006), haddock from experimental fishing (Collie and Sissenwine 1983), or mountain goats from aerial surveys (Rice et al. 2009). My simulations of
under- and over counting bias showed that the replacement and availability did not bias final population estimates from corrected raw abundances in comparison to the original uncorrected raw abundances. Corrected raw abundance were 2% larger than the uncorrected raw abundances, yet simulations showed only deviations greater than 5% could considerably bias populations estimates. This result supports the use of my combined telemetry-UVS mark-resight approach by showing that the behaviour of the species did not affect the replacement and availability of the species to be counted during sampling periods. It is reasonable to assume that under- and over-counting bias cancellation does not imply a norm, as both replacement and availability can vary considerably depending on the species under assessment (e.g. Dennhardt et al. 2015). To avoid potential violation of these model assumptions, both replacement and availability should be carefully evaluated in regards to the species behaviour and sampling area.

The selection of individuals to be marked (by acoustic telemetry) can also produce differences in the sighting probability (assumption iv) if they are not a representative subset of the population to be resighted (by UVS) (McClintock and White 2012). Sharks were tagged whenever schools passed near by or directly over the reef area. The only restrictive criterion to tag sharks was depth, as free-divers diving capacity was restricted to depths shallower than 15meters. While all sharks tended to evade divers, successful tagging only occurred when divers took advantage of the individuals’ blind spot, by diving from straight above a shark, regardless of the animal’s depth.

Klimley (1983) and Ketchum et al. (2014a) have reported that hammerhead sharks swimming in aggregation areas constantly vary their depth from the bottom to the surface. This random depth variation in sharks suggests any shark in the study site
could have been at a free-diver’s reach. The lack of significant differences between the total length of the marked and observed sharks further supports considering the marked individuals as representative of the sampled population.

My results showed that population size estimates were particularly sensitive to the level of heterogeneity in resighting probability of my data. Neal et al. (1993) reported that the levels of heterogeneity can be particularly affected by the behaviour of the species and the environmental conditions. A marked reduction in the raw abundance, lack of acoustic detections and sustained reduction of current strength at the Darwin’s Arch provided evidence of this during the third to fifth primary intervals of 2012. Despite AIC values supporting models full time- and session-dependant in the resighting probability, the temporary emigration of marked and unmarked sharks in the middle of 2012 was unfortunate for estimation purposes. Hammerhead sharks are known to constantly arrive and/or depart from oceanic islands and seamounts across the Eastern Tropical Pacific ocean (Bessudo et al. 2011; Klimley et al. 1993), including Darwin Island (Ketchum et al. 2014b). The resulting rapid turnover of individuals in response to the oceanographic conditions could imply that the studied population was mostly comprised of transient rather than resident individuals. A similar scenario of low resighting probability and rapid turnover (less than two days) was reported for photo-identified whale sharks also aggregating at Darwin’s Arch (Acuna-Marrero et al. 2014). This scenario becomes increasingly likely when assessing a highly mobile species in a highly dynamic environment, and should be carefully considered in the design of future studies. I recommend that additional research should be carried out to review the inclusion of environmental variables (e.g. water visibility, current strength, thermocline depth, water temperature, etc.) within the modelling framework to improve parameter estimations. The use of a
larger number of tags would increase the probability of tagging more resident sharks and reduce the effect of the level of heterogeneity in population estimates. This is seen in my study where both years 2011 (ten tags) and 2013 (twenty tags) produced fairly stable estimations of mean population and super-population size, however the latter year produced the narrowest confidence intervals.

These results provide support to use this approach as an alternative tool for monitoring the population size of this endangered species in aggregation hotspots, and suggest a highly variable yet relatively low daily abundance (~545 ind.) of residents, and low daily confluence (~1100 ind.) of resident and transient hammerhead sharks. They also provide a solid baseline for transitioning the use of this approach to other marine species; however, specific behavioural and environmental traits should be carefully reviewed to reduce the likelihood of model violations. The use of telemetry is not only a helpful tool for resighting individuals in the field but also for aiding the evaluation of model violation and adjusting raw counts. This approach provides a less invasive alternative that could reduce the stress factor on hammerheads posed by the elevated post-capture mortality associated with fishing methods (Gulak et al. 2015). Furthermore, a simultaneous assessment of Darwin Island with nearby ‘aggregation’ islands is also recommended to 1) explore the existence of potential constrains limiting the resident population size of hammerhead sharks at aggregation hot-spots; and 2) explore the feasibility of scaling up estimations of the super-population (residents and transients individuals) size to the entire northern GMR.
Chapter 3 Evaluating abundance trends of iconic species using local ecological knowledge

3.1 Abstract

Wildlife abundance is commonly used to assess the status of wildlife populations and their responses to changes in management frameworks. Unfortunately, monitoring abundance trends often requires long-term data collection programs, which are not always carried out due to adverse environmental conditions, lack of economic resources and or insufficient planning. One alternative to scientific surveys is to utilise local ecological knowledge (LEK), which has proven accurate when assessing the population status of many wildlife species and in determining the effectiveness of different management regulations, such as the creation of protected areas. Here I developed a LEK-based approach to assess historical wildlife population trends by using the ecological knowledge of non-extractive resource users. Specifically, I assessed the recollections of dive guides regarding the abundance trends of six shark species in the Galapagos Marine Reserve (GMR). I explored dive guides’ experience and knowledge on shark population status and issues within the reserve, and their perceived trends since the 1980s. Based on dive guides’ trend perceptions, I developed a virtual abundance change (VAC) model to assess the deficit or surplus in abundance for the decades following the 1980s. In general, dive guides showed consensus for negative trends for all shark species, and suggested fisheries as the major factor driving abundance trends of sharks in Galapagos. VAC model results suggest that hammerhead and whitetip reef sharks have experienced the most consistent perceived decline over the last four decades. Silky sharks and Galapagos sharks also experienced perceived declines but later stabilized. Whale shark
abundance was perceived as stable across the study time frame, while blacktip sharks were the only species perceived to have increased in abundance in recent decades. Comparing the VAC results with empirical datasets from the GMR and the Eastern Tropical Pacific provided corroborating evidence that the dive guides’ ecological knowledge has described the abundance fluctuations of all except silky sharks. This study is an important addition to the growing literature regarding the value of LEK in assessing the state of marine resources in data-limited management regions. My VAC method offers an alternative approach by which LEK can provide valuable insights into the historical trends in iconic species abundance.

3.2 Introduction

The primary objective of population assessment is to collect data on population size and structure to identify trends (i.e. increasing, stable, decreasing) in plant or animal populations (Meffe and Carroll 1997). Abundance is a predictor commonly used to assess the long-term persistence and extinction risk of a population (Sutherland 1996), and to assess the species response to adopted management frameworks, such as harvesting regulations or the creation of protected areas (e.g. Gillingham et al. 2015; Lubchenco et al. 2007). Unfortunately, monitoring abundance trends often requires long-term data collection programs, which are not always carried out due to adverse environmental conditions, lack of economic resources or insufficient planning (Chambers et al. 2014; Claudet and Guidetti 2010; Johannes 1998). This lack of scientific data hampers the evaluation of wildlife, and consequently, the adoption of different management alternatives to deal with conservation issues (Ludwig et al. 1993; Walters 1986).
An alternative to this issue is to explore the local ecological knowledge (LEK) of people who have continuous interactions with the environment/resources (Davis and Wagner 2003). LEK is associated with people whose livelihood largely depends on a natural resource, either through extractive or conservation activities (Brook and McLachlan 2008). LEK is often criticized because perceptions are affected by cultural beliefs and the economic importance of the exploited resource (Gilchrist et al. 2005; Howard and Widdowson 1996). However, it has now been widely used in a diverse number of cases and shown to be indicative of the population status and trends of birds (e.g. Gilchrist et al. 2005; Gregory et al. 2004), lobsters (e.g. Eddy et al. 2010), and sharks and fishes (e.g. Taylor et al. 2011), trends in ecological processes (e.g. Poizat and Baran 1997; Rochet et al. 2008) and fisheries dynamics (e.g. Ainsworth et al. 2008; Neis et al. 1999). As such, LEK is becoming an important tool in assisting the evaluation of different resource management frameworks, such as fisheries community-based management (Hoggarth et al. 2006) or the establishment of marine protected areas (MPA; e.g. Friedlander et al. 2003) and their potential to preserve or rebuild fish stocks (e.g. Gerhardinger et al. 2009; Yasué et al. 2010).

Resource development and management schemes have often been designed without significant historical information on the state of their resources (Wolff 2009). This is especially true in marine management where the widespread lack of biodiversity baselines hampers the evaluation of the conservation state of resources and the effectiveness of adopted management frameworks. The Galapagos Marine Reserve (GMR) is a case in point. Few ongoing projects are dedicated towards monitoring the abundance and distribution of biodiversity over a sufficient time scale to test the effect of reserve creation (Danulat and Edgar 2002). Yet there are still important gaps of information regarding many charismatic megafauna, such as sharks (Hearn et al.
The life history traits of sharks makes them one of the most vulnerable taxa to overfishing (Compagno et al. 2005), with many shark species now classified as being at risk of extinction (Dulvy et al. 2014). In the GMR, the management framework adopted in 1989 has protected sharks from fishing and trading (WildAid 2010), in response to the fishing pressure they face inside the reserve (Carr et al. 2013; Reyes and Murillo 2007) as well as around the Eastern Tropical Pacific Ocean (ETP; Watts and Wu 2005). It is suggested that the size of the reserve, coupled with the effect of El Niño Southern Oscillations and the adopted management framework, may have favoured the recovery of some shark populations (Wolff et al. 2012). However, the lack of long-term monitoring in the Galapagos hinders the evaluation of the population trends of shark species and confirmation of any rebuilding trend.

Here I developed an alternative approach to scientific surveys to assess wildlife historical population trends – instead using the ecological knowledge of non-extractive resource users. Particularly, I was interested in capturing users’ knowledge to assess how shark populations have changed through time to the present abundance levels. To achieve this, I developed a semi-quantitative analysis method that evaluates population trends rather than quantifying numerical abundances. I tested my approach using the recollections of dive guides (hereafter “divers”) regarding abundance of six shark species found in the GMR. I constrained my assessment to the decades since the 1980s to coincide with the expansion of the dive tourism industry in Galapagos (Danulat et al. 2003). Given the divers’ reliable presence in the main dive sites across the GMR, they are considered important LEK holders. I tested their knowledge against published and unpublished data on shark trends from fish surveys carried out in Galapagos and across the ETP.
3.3 Methods

3.3.1 Study site

The GMR is currently the largest MPA in the Eastern Pacific Ocean and hosts the most functionally diverse fish communities worldwide (Stuart-Smith et al. 2013). This extraordinary suite of species has attracted fishermen and conservationists from across the globe, and consequently, produced several disputes over resource use and sustainability (Camhi 1995; Merlen 1995). Large predatory fish, such as sharks, have experienced increased fishing pressure since the early 1950s from international fishing fleets targeting sharks for their fins (Carr et al. 2013; INP 1964; Reyes and Murillo 2007). The Ecuadorian Government imposed a ban on shark fishing and trading in 1989 (SRP 1989), in response to the recognition of the sharks' vulnerability to fisheries and pressure from local fishermen and tourism sectors who denounced industrial fishing of sharks (Fenopader 1989). This protective scheme has since been improved by regulating the use of fishing gear with high levels of by-catch (GNPS 1998; Murillo et al. 2004), installing high-technology patrolling and surveillance to seize poachers (DPNG 2009) and enforcing legal processes (WildAid 2010). Unfortunately, illegal fishing still occurs in the GMR, however, the magnitude and dynamics are unknown (Carr et al. 2013). In contrast to fishing, the dive tourism industry started in Galapagos in the mid-1980s, and since then sharks have been a main attraction (Hearn et al. 2014). Over the last decades the dive industry has grown considerably even though growth has been at a slower rate than land-based tourism (Cubero 2008). Divers have been visiting the same sites around the archipelago, although the most common are close to the islands of Darwin and Wolf (Danulat et al. 2003). Although authorities track site use and frequency of visits by tour operators,
there are no official records of the total number of divers who have worked in this industry since it started.

3.3.2 Data collection

The Directorate of the Galapagos National Park held a series of compulsory seminars (July-November of 2013) directed at guides currently working in the Galapagos Islands to deliver the most up-to-date information on scientific research and conservation efforts in the area. It is noteworthy that none of the presentations during the seminars covered the population status and trends of sharks in the GMR, as this information was unknown. During this time, questionnaires were provided to divers who were known to have been guiding in the GMR for more than five years. Given the lack of records of all divers who have worked for the tourism industry, I implemented a section at the end of the questionnaire asking divers to name others known to have experience guiding in the GMR. I limited my survey to divers who had more than five years guiding to ensure their experience was sufficient to detect possible changes in the abundance of the target species. A total of 35 divers were approached and handed the questionnaires, however, only 25 returned completed surveys.

My questionnaires focused on assessing the status of the six most common shark species found across dive sites in the GMR (Danulat et al. 2003; Zarate 2002). This selection comprised blacktip sharks (*Carcharhinus limbatus*), Galapagos sharks (*C. galapagensis*), hammerhead sharks (*Sphyrna lewini*), silky sharks (*C. falciformis*), whale sharks (*Rhincodon typus*) and whitetip reef sharks (*Triaenodon obesus*). These species represent a range of biological, ecological, and fishery susceptibility combinations (Table 3.1). They are found from coastal to pelagic ecosystems.
displaying either restricted or broad-scale movements, which influences their susceptibility to fisheries operating inside and around the GMR.

Questionnaires were carefully designed to express neutral, unpolarised questions that avoided influencing divers with predetermined answers (Figure 3.1). Questionnaires were designed to collect information on: i) the years and places of divers’ experience, ii) their overall perception of change (if any), iii) factors causing the perceived changes, iv) decadal perception of change per species using predetermined trend scores, and v) a quantification of the trend scores. In the first section, divers were requested to state the years and the bioregions (as in Edgar et al., 2004) they visited while actively working for the tourism industry. The second and third sections were intended to understand if they held any general perceptions regarding shark abundance trends across the whole GMR, and the reasons for these perceptions, if any. These questions were used to crosscheck the following sections of the questionnaire. The fourth section asked the divers to state their perception of abundance change for the six species across the whole GMR, within the 1980s, 1990s, 2000s and 2010s. The current decade (2010-2019), although incomplete, was incorporated into the analysis to provide an additional reference point to compare with ongoing empirical data collection projects. I provided divers with five predefined categorical scores: major decline (MD), decline (D), stable (S), increase (I), and major increase (MI). Finally, I requested divers to state how much each categorical score meant to them in terms of their perceived abundance change. I requested them to state these values in percentages (e.g. “decline” may equate to 25% in abundance reduction; “major increase” to a 70% increase in abundance). The information from this last section was used as an indication of the relative abundance each decade as perceived by each dive guide.
The main objective of this questionnaire is to assess the perception of the dive guides working in the Galapagos Marine Reserve in regards to the abundance of six shark species. The Directorate of the Galapagos National Park thanks your collaboration with any information you could provide in this questionnaire. This information will be analysed to understand any changes these sharks’ species could have incurred. No personal information collected will be disclosed at any time.

A) EXPERIENCE
1) Age: ___________________ Nationality: ___________________
2) Which activity do you currently do? ___________________
3) How many years of experience do you have (per activity)?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Years</th>
<th>Activity</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photography</td>
<td>Science</td>
<td>Dive guide</td>
<td>Other</td>
</tr>
</tbody>
</table>

4) Could you state in which regions, and how many years of experience do you have per region?

<table>
<thead>
<tr>
<th>Region</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>North (Darwin, Wolf, Roca Redonda, Marchena, Pinta and Genovesa)</td>
<td></td>
</tr>
<tr>
<td>South (Floreana, Española, neighbouring seamounts and islets)</td>
<td></td>
</tr>
<tr>
<td>West (Fernandina and western Isabela)</td>
<td></td>
</tr>
<tr>
<td>Centre (Santa Cruz, Santiago, San Cristobal, and northeast and southeast Isabela)</td>
<td></td>
</tr>
</tbody>
</table>

B) ABUNDANCE
1) Have you noticed any change in the abundance of sharks in your years of experience? No: ____ Yes: ____
   If NO, jump to section C.
2) If you noticed changes in the abundance of sharks, how would you rate this change? Positive: ____ Negative: ____
3) Would you be able to state per species and per decade if you observe any change in the abundance of the following shark species? Please use the following scale:
   **Major increment (MI), increment (I), Stable (S), Decrease (D), Major decrease (MD)**

<table>
<thead>
<tr>
<th>Decade</th>
<th>Hammerhead s.</th>
<th>Blacktip s.</th>
<th>Whale shark</th>
<th>Galápagos s.</th>
<th>Silky s.</th>
<th>Whitetip reef s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4) Could you state which is for you the meaning of the used trend scales in terms of percentage of change?

<table>
<thead>
<tr>
<th>Major decrease (MD)</th>
<th>_____%</th>
<th>Decrease (D)</th>
<th>_____%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment (I)</td>
<td>_____%</td>
<td>Major increment (MI)</td>
<td>_____%</td>
</tr>
</tbody>
</table>

5) Could you name which factors you believe are affecting the abundance of the previously named sharks?

___________________________________________________________________________________________________
___________________________________________________________________________________________________

C) ADDITIONAL INFORMATION
1) Would you like to be contacted in the future? Name: ___________ E-mail: ___________
2) Could you name other diver that have worked for more than five years guiding in the Galapagos Marine Reserve

<table>
<thead>
<tr>
<th>Name</th>
<th>Current occupation</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) DO YOU HAVE ANY COMMENT OR ADDITIONAL INFORMATION YOU WOULD LIKE TO SHARE?

___________________________________________________________________________________________________
___________________________________________________________________________________________________

**Figure 3.1** Questionnaire used by the Directorate of the Galapagos National Park to assess the perception of divers in relation to potential abundance changes in six shark species. This questionnaire was originally designed and delivered to dive guides in Spanish. This figure represents the closest possible translation into English to show the neutrality of the questions asked to divers.
Table 3.1 Description of relevant ecological, conservation and fisheries features for the six shark species under assessment.

<table>
<thead>
<tr>
<th>Species</th>
<th>2010-2013 average abundance</th>
<th>Habitat type</th>
<th>Residence in GMR (%)</th>
<th>Nursery grounds</th>
<th>Conservation status</th>
<th>Misidentification risk</th>
<th>Susceptibility to coastal fisheries inside GMR</th>
<th>Susceptibility to pelagic fisheries inside GMR</th>
<th>Fishing susceptibility outside Reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blacktip shark</td>
<td>4</td>
<td>Reef associated</td>
<td>High</td>
<td>Yes</td>
<td>Near threatened</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Galapagos shark</td>
<td>8</td>
<td>Reef associated</td>
<td>High</td>
<td>Yes</td>
<td>Near threatened</td>
<td>High (with silky sharks)</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Scalloped hammerhead shark</td>
<td>51</td>
<td>Semi-pelagic, oceanodromous</td>
<td>Medium</td>
<td>Probable</td>
<td>Endangered</td>
<td>None</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Silky shark</td>
<td>2</td>
<td>Semi-pelagic, oceanodromous</td>
<td>Medium</td>
<td>Probable</td>
<td>Near threatened</td>
<td>High (with Galapagos sharks)</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Whale shark</td>
<td>2</td>
<td>Pelagic, oceanodromous</td>
<td>Low (Seasonal)</td>
<td>No</td>
<td>Vulnerable</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Whitetip reef shark</td>
<td>2</td>
<td>Reef associated</td>
<td>Permanent</td>
<td>Yes</td>
<td>Near threatened</td>
<td>None</td>
<td>Low</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

3.3.3 Data analysis

I binned positive (I and MI) and negative scores (D and MD), as well as the guides’ years of diving experience (Low: 5 to 10 years; Medium: 10 to 20; and, High: 20 or more) to simplify the data description and allow the following statistical analysis. I used the $X^2$ goodness-of-fit tests (Lancaster 2004) to search differences in the categorical trend scores per decade, and logistic regression models (Jaeger 2008) to explore the effect of the level of experience and decades on the frequency of the obtained scores. Furthermore, I tested differences in the percentage of abundance change scores per level of experience by running One-way Analysis of Variance (Zar 2010).

A semi-quantitative virtual abundance change (VAC) model was then created in order to estimate the species virtual abundance across decades. The model uses an initial virtual abundance value of 1, and then calculates the remnant or surplus in abundance for the following decades by transforming the categorical trend scores and the percentage of abundance change into virtual abundances. The model is based on the following equation:

\[ V_{ka} = X_{k-1} \pm (X_{k-1} \times Y_{Zka}) \]  

where $V$ is the virtual abundance value estimated for decade $k$ and dive guide $a$. $X$ is an average of all the virtual abundance size values for all guides of the decade $k-1$. $Y$ is the percentage of perceived abundance change of the corresponding categorical score $Z$ for decade $k$ and diver $a$. It is important to note that when $k$ was equal to 1980s, $X_{k-1}$ was set as the initial virtual abundance value. Moreover, when $k$ was not equal to 1980s, $X_{k-1}$ represented the average of the virtual abundance values of all divers from the previous decade to reduce the effect of shifting baselines (Ainsworth et al. 2008).
Divers who started diving in decade $k$ did not observe the same abundance as divers who dived in decade $k-1$, but the remnant or surplus of abundance from $k-1$. With these considerations, a logic rule was then created to estimate the virtual abundance per decade per diver based on the categorical trend scores as follows:

\[
\text{if } Z_k = S, \quad \text{then } V_{ka} = X_{k-1} \quad (2)
\]

otherwise

\[
\text{if } Z_k = MD, \quad \text{then } V_{ka} = X_{k-1} - (X_{k-1} \ast Y_{Dk_ka}) \quad (3)
\]

otherwise

\[
\text{if } Z_k = D, \quad \text{then } V_{ka} = X_{k-1} - (X_{k-1} \ast Y_{Dk_ka}) \quad (4)
\]

otherwise

\[
\text{if } Z_k = I, \quad \text{then } V_{ka} = X_{k-1} + (X_{k-1} \ast Y_{Ika}) \quad (5)
\]

otherwise

\[
\text{if } Z_k = MI, \quad \text{then } V_{ka} = X_{k-1} + (X_{k-1} \ast Y_{MIk_ka}) \quad (6)
\]

Final results were plotted as the average virtual abundance per decade with its corresponding upper and lower standard deviation. I used the standard deviation as a measure of the model variance and level of agreement. A third-order polynomial trend line was fitted to observe smoothed changes in virtual abundance per decade.

I validated the model efficiency by comparing my VAC model results for hammerhead, Galapagos and whitetip reef sharks with available abundance information from Pelagic Fish surveys (Hearn A/CDF-UCD-DPNG, unpublished data) and Reef Fish surveys (Banks S/Charles Darwin Foundation, unpublished data) carried out within the GMR. In addition, I used published information from Cocos Island (White et al., 2015), which is 700 km from the GMR, and Malpelo Island (Soler et al. 2013), which is 1200 km from the GMR. Both MPAs are the closest to the GMR and held the most similar shark and fish assemblages. I standardized the abundance data from Cocos,
Malpelo and GMR Pelagic surveys as the natural logarithm of the counted sharks per dive plus one, following Friedlander et al. (2012). Data from the Galapagos Reef fish surveys is presented as the number of individuals per square meter (Edgar et al. 2004). The two datasets from Galapagos (reef fish and pelagic surveys) represent the averaged relative abundance for all the monitored sites across the GMR, in order to be consistent with the spatial scale used in the questionnaires.

### 3.4 Results

Twenty-five of 35 identified guides completed and returned questionnaires suitable for inclusion. The other divers preferred not to participate in this survey, did not properly fill out the questionnaires or had less than the minimum required experience. The average age of divers was 43 years old (Table 3.2). The maximum time divers had been operating was 30 years, and the minimum was five years (as the chosen cut off). The number of divers who have actively worked increased from 4 in the 1980s to 25 in the last two decades with the addition of more divers with correspondingly less experience. The spatial distribution of diver experience in three experience groups was relatively homogeneous for the north, south and central bioregions. In the less experienced group (5-10 years), only one diver did not have any experience in the north, one lacked experience in the central area, and four lacked experience in the west. The medium experience group (10-20 years) had the most homogeneous distribution across bioregions, with only one diver lacking experience in the north, and two in the west. For the most experienced group (20-30 years), one diver lacked experience in the south, one in the central, and three in the west region.
The majority of interviewed divers (82%) perceived changes in the abundance of shark species during their career. Overall, 67% observed changes they perceived as “negative” in all species, 24% perceived changes as “positive” across all species, and the remaining 9% perceived changes that varied between species. Factors that negatively affected shark trends were primarily perceived as driven by local and external fishing operations (70% of answers). Other factors that were perceived to affect shark population were tourism-related activities (8%), such as navigation and excessive use of diving sites, as well as changes in the oceanographic conditions (7%) due to climate change and ENSO events.

Despite the majority of divers indicating that they observed negative changes, detailed analysis showed that perception varied according to the species and decade (Figure 3.2). The $X^2$ goodness of fit test showed that for all species, except whale sharks, there are significant differences in the observed frequency of categorical scores per decade (p<0.03 for those five species; Table 3.3). For blacktip sharks, the most common perception score was “stable” during the 1990s and 2000s, with increasing positive scores (I and MI) towards the 2010s. For the Galapagos shark, negative trend scores (MD and D) were the most common answers from 1980s to 2000s, with stable trend scores becoming the most frequent answer for 2010s. Hammerhead shark had the highest number of negative trend scores across all decades, although positive and stable scores increased for the last two recorded years.

### Table 3.2 Number of divers per decade and bioregion grouped according to their dive experience.

<table>
<thead>
<tr>
<th>Years of experience</th>
<th>N</th>
<th>Age of divers</th>
<th>Active divers per decade</th>
<th>Active divers per bioregion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aver.</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>5-10</td>
<td>7</td>
<td>41</td>
<td>56</td>
<td>31</td>
</tr>
<tr>
<td>10-20</td>
<td>11</td>
<td>44</td>
<td>60</td>
<td>36</td>
</tr>
<tr>
<td>20-30</td>
<td>7</td>
<td>45</td>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>44</td>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>

The X^2 goodness of fit test showed that for all species, except whale sharks, there are significant differences in the observed frequency of categorical scores per decade (p<0.03 for those five species; Table 3.3). For blacktip sharks, the most common perception score was “stable” during the 1990s and 2000s, with increasing positive scores (I and MI) towards the 2010s. For the Galapagos shark, negative trend scores (MD and D) were the most common answers from 1980s to 2000s, with stable trend scores becoming the most frequent answer for 2010s. Hammerhead shark had the highest number of negative trend scores across all decades, although positive and stable scores increased for the last two recorded years.
decades. Scores for silky sharks were predominantly negative in the 1980s, while stable scores were more common in the 1990s and 2000s. Whitetip reef shark were mostly scored as stable in the first two decades, with trends becoming increasingly negative.

![Graphs showing trend scores for different shark species across decades. Positive category includes the obtained frequency of increase and major increase scores; and, Negative, decrease and major decrease scores.]

**Figure 3.2** Obtained trend scores summarizing shark populations based on divers’ perception of abundance change. *Positive* category includes the obtained frequency of increase and major increase scores; and, *Negative*, decrease and major decrease scores.

While there was variability in the categorical trend scores, I found no effect of diver’s level of experience on the trend scores or in the perceived percentage of abundance change. Logistic regression models did not show evidence for complete dependence on the level of experience with the decade and trend scores across sharks (*p*=0.29 for three-way interaction; Table 3.3). Also, there was no evidence of association in the minimal adequate models for this data set in the interactions between the level of experience and decades (*p*=0.8 for two-way interaction) and the level of experience and trend (*p*=0.27 for two-way interaction). The one-way ANOVA showed no
significant differences (for all categories ANOVA $p=0.38, df=2$) in the perceived percentage of abundance change across the levels of experience (Table 3.4).

**Table 3.3** $X^2$ goodness of fit and log-linear model deviance test results for the categorical data obtained from the divers interviews. LoE: level of experience.

<table>
<thead>
<tr>
<th>Species</th>
<th>Chi-Squared</th>
<th>Log-linear models</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Three-way interactions</td>
<td>Two-way interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decade x Trend</td>
<td>LoE x Decade x Trend</td>
<td>Decade x Trend</td>
<td>LoE x Decade</td>
<td>LoE x Trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X^2$</td>
<td>$p$</td>
<td>LRT</td>
<td>$p(X^2)$</td>
<td>LRT</td>
<td>$p(X^2)$</td>
</tr>
<tr>
<td>Blacktip shark</td>
<td>8.14</td>
<td>0.02</td>
<td>0.73</td>
<td>0.865</td>
<td>0.80</td>
<td>0.939</td>
</tr>
<tr>
<td>Galapagos shark</td>
<td>6.86</td>
<td>0.03</td>
<td>1.88</td>
<td>0.598</td>
<td>0.80</td>
<td>0.977</td>
</tr>
<tr>
<td>Hammerhead shark</td>
<td>8.54</td>
<td>0.01</td>
<td>4.65</td>
<td>0.969</td>
<td>1.79</td>
<td>0.938</td>
</tr>
<tr>
<td>Silky shark</td>
<td>7.79</td>
<td>0.02</td>
<td>3.75</td>
<td>0.290</td>
<td>2.23</td>
<td>0.816</td>
</tr>
<tr>
<td>Whale shark</td>
<td>2.14</td>
<td>0.34</td>
<td>1.48</td>
<td>0.831</td>
<td>1.52</td>
<td>0.911</td>
</tr>
<tr>
<td>Whitetip reef shark</td>
<td>8.10</td>
<td>0.02</td>
<td>3.40</td>
<td>0.494</td>
<td>2.31</td>
<td>0.805</td>
</tr>
</tbody>
</table>

**Table 3.4** Differences in the perceived percentage of abundance change values per categorical score (stable was not included in this analysis), level of diver experience, and the one-way ANOVA test results for comparing differences between the levels of diver experience per categorical score.

<table>
<thead>
<tr>
<th></th>
<th>MD</th>
<th>D</th>
<th>I</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall results</td>
<td>0.20</td>
<td>0.10</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>Min</td>
<td>0.20</td>
<td>0.10</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>Max</td>
<td>0.70</td>
<td>0.50</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>Mean</td>
<td>0.53</td>
<td>0.27</td>
<td>0.29</td>
<td>0.51</td>
</tr>
<tr>
<td>Mode</td>
<td>0.50</td>
<td>0.30</td>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td>Level of Experience</td>
<td>0.60</td>
<td>0.29</td>
<td>0.29</td>
<td>0.60</td>
</tr>
<tr>
<td>Low (5-10yrs)</td>
<td>0.60</td>
<td>0.29</td>
<td>0.29</td>
<td>0.60</td>
</tr>
<tr>
<td>Whales</td>
<td>0.14</td>
<td>0.10</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>Mean</td>
<td>0.48</td>
<td>0.25</td>
<td>0.27</td>
<td>0.40</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.19</td>
<td>0.09</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>Medium (10-20 yrs)</td>
<td>0.53</td>
<td>0.30</td>
<td>0.30</td>
<td>0.52</td>
</tr>
<tr>
<td>High (20-30 yrs)</td>
<td>0.53</td>
<td>0.30</td>
<td>0.30</td>
<td>0.52</td>
</tr>
<tr>
<td>Mean</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>One way ANOVA</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$d.f.$</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$p$</td>
<td>0.716</td>
<td>0.456</td>
<td>0.822</td>
<td>0.381</td>
</tr>
</tbody>
</table>

The relationship between perceived abundance change scores and the categorical trend scores per diver were used to estimate the values of the VAC model and the variance used to test the level of agreement (Figure 3.3). The whale shark was the only species perceived to be relatively stable across time. All other species showed a
considerable reduction in their perceived abundance. In the case of the hammerhead shark and whitetip reef shark, the reduction was steady across time. For the Galapagos shark and silky shark, the decline stabilized over the three most recent decades. For the blacktip shark, the reduction was followed by an increase in the virtual abundance toward the last two decades. The model shows silky sharks as the species with the least variance across decades, followed by the hammerhead and Galapagos sharks. The whitetip reef shark and whale shark had the narrowest variance during the first two decades, which steadily increased toward the last decade (s.d.= 0.38-0.5). Finally, the blacktip shark had the highest variance across decades.

**Figure 3.3** Variation in the averaged virtual abundance change estimations across decades for the assessed shark species. Error bars represent the variability of each virtual abundance value based on the standard deviation of modelled answers; solid black line represents a fitted three-order polynomial regression trend line.
Figure 3.4 Comparison of the VAC model linear trends for hammerhead sharks (a,b), Galapagos sharks (c,d) and whitetip reef sharks (e,f) with the linear trend of the natural logarithm of the abundances recorded by the Galapagos Pelagic Census Surveys (GMR – Pelagic surveys; Hearn A/CDF-UCD-DPNG, unpublished data), Galapagos Reef Fish Surveys (GPS – Reef surveys; Banks S./Charles Darwin Foundation, unpublished data); Cocos Island’s shark abundance surveys (White et al. 2015) and Malpelo Island’s shark abundance surveys (Soler et al. 2013). The b values represent the slope value of each trend line.
I used empirical datasets from fish monitoring programs in Cocos, Malpelo and Galapagos Islands to compare the VAC model results of hammerhead, Galapagos and whitetip reef sharks (Figure 3.4). In most cases the empirical datasets showed more pronounced negative trends than the VAC, although the slope of decline varied depending on the area, method and time period. For hammerhead sharks, the VAC trend was negative and similar in slope to the three fish monitoring datasets. The whitetip reef shark was also similar, with only the dataset from Malpelo showing a slightly positive trend. In contrast, the fish monitoring data for the Galapagos shark showed slightly negative trends, which differed from the stable trend obtained with the VAC model.

3.5 Discussion

The identification of historical baselines is key in assessing whether changes in wildlife populations have occurred through time and to support assessments of their current population status (Pauly 1995). My analysis of the collective knowledge of divers in the GMR provided further evidence that formal data collection and monitoring can be supported by LEK as a viable method to evaluate population trends of iconic wildlife. I developed the semi-quantitative VAC analysis approach, as a rapid assessment tool of end-user’s (diver’s) perception of abundance trends without asking them to recall observed numbers of individuals. VAC estimates a decadal abundance indicator (termed virtual abundance) from the resulting change in abundance in previous decades instead of generating an average abundance score for each decade. I tested this approach for six shark species and identified four different shark trend scenarios that are congruent with biological surveys carried out in the
Galapagos and the ETP. The implications of these results in terms of model uncertainty and relevance for the management of the GMR are discussed below.

3.5.1 VAC approach and uncertainty

LEK research is becoming a well-established scientific approach for the assessment of ecosystems and habitats (Brook and McLachlan 2008). Yet, because the approach is based on ‘perceptions’ it can be influenced by the natural decline in human memory (Thompson 2000). According to Schacter (2002) human memories can be affected by issues such as: suggestibility, when memories are implanted by others; transience, which refers to the retention of rare events of ecological salience; misattribution, when the feature under assessment (place or species) could be mistakenly allocated to a different time, spatial or intensity scale; and individual bias, in which the personal belief or perspective alters the memory of an event. To address these potential sources of bias, I took several considerations into account to reduce the uncertainty associated with LEK analyses.

Firstly, I used questionnaires to provide divers with simplified, standardized questions that could produce quantitatively comparable answers (Huntington 2000). This is a critical step necessary for the semi-quantitative analytical framework of the VAC tool. Questionnaires were designed to be self-guided and to have neutral, unpolarised questions that avoided influencing divers’ responses with suggestions made within the text (suggestibility bias, Schacter 2002). Also, to avoid misattribution issues I designed the questionnaire to assess the six most common and charismatic shark species found in the GMR. Secondly, divers were selected in preference to fishermen to avoid potential bias from the controversial scenario linked to the exploitation of sharks in the GMR. It is critical to identify reliable LEK holders and
reduce potential individual bias, particularly if the final output of the LEK assessment could have controversial management implications (van Putten et al. 2015). Shark poaching (Carr et al. 2013; Reyes and Murillo 2007) and controversial use of longline-fishing gears inside the GMR (Altamirano and Aguiñaga 2002; Ramírez and Reyes 2015) could have compromised the results of this evaluation if fishermen LEK was explored. Thirdly, there were no records on the total number of divers who have worked in the reserve, increasing the risk of not properly identifying all the potential LEK holders. To support the adequacy of my final sample size, I included a peer-referral approach to identify all possible experienced divers, as suggested by Huntington (2000). My final sample size comprised the majority of people who were repeatedly named by interviewed divers, and was similar to other LEK studies that accurately described wildlife resource status (e.g. Neis et al. 1999; Yasué et al. 2010).

The lack of significant differences between the experience groups provided further support to consider divers a reliable source of LEK. Finally, to reduce potential issues of recalling events of ecological salience (transience bias), I asked divers to report the generalities (a perceived trend) rather than the particulars (yearly counts) of shark abundance. For example, asking divers about numerical abundances could have induced them to attempt complex mental calculations to remember and average the observed abundances. Such calculations could be likely influenced by the extreme (positive or negative) abundance conditions observed in major oceanographic events such as El Niño or la Niña (e.g. Edgar et al. 2010; Grove 1985; Wolff et al. 2012b).

In addition to this, humans have a natural tendency to assign the state of a resource they observed in the beginning of their careers/experience as baseline (Pauly 1995). The analysis of potential shifting base lines is critical to any historical trend reconstruction (Ainsworth et al. 2008), as different levels of experience among LEK
holders could produce negative (Saenz-Arroyo et al. 2005) or positive (Roman et al. 2015) changes in baselines. To ensure the abundance reconstruction of less experienced divers were consequent to those of more experienced divers, I incorporated a correction factor into my VAC model by adapting the approach of Taylor et al. (2011). I introduced this factor to estimate the remnant or surplus virtual abundance of each decade based on the perceived trend from previous decades. This approach was incorporated into the VAC model to produce a more realistic estimation of the continuous change in virtual abundance through decades, as suggested by Ainsworth et al. (2008).

While my approach attempted to provide a reliable reconstruction of virtual abundance and trends of sharks by considering the issues mentioned above, I did not obtain perfect agreement in the obtained categorical trend scores, and, consequently, in the VAC results (as shown by the standard deviations). Such degree of variation and accuracy is considered normal in light of the individual’s belief, ability to recall events (Bradburn 2000), and to the heterogeneous distribution of the assessed species across their home range (Crona 2006). Similar variation in agreement has been previously reported in LEK studies assessing the population trends of birds (e.g. Gregory et al. 2004), bears (e.g. Burghardt et al. 1972), mountain lions (e.g. Casey et al. 2005), or biodiversity baselines (e.g. Bunce et al. 2008; Taylor et al. 2011). For example, Ainsworth et al. (2008) assessed the abundance trends of keystone species using a comparable LEK analysis, and reported a variation up to two levels of magnitude in the fishermen’s agreement. Their level of agreement was remarkably similar to that obtained in my VAC results, providing further support to the use of my methodology.
3.5.2 Validation of perceived trends

The validation process suggests VAC results provided reliable approximations of the population trends for the compared species, particularly for hammerhead sharks. This species’ declining trend was consistent with the 45% reduction of abundance reported in Cocos Islands (White et al. 2015), 42% in Malpelo Islands (Soler et al. 2013), and in both GMR fish survey datasets. The reported decline of hammerhead sharks in fisheries across the ETP (Baum et al. 2007), along with wide ranging movements away from the reserve (Ketchum 2011; Ketchum et al. 2014b), suggest the VAC results could be reflecting the population changes of this species both inside and in the surrounding waters of the GMR. In the case of whitetip reef sharks, the VAC result was similar to that from Cocos Islands and the GMR fish survey datasets, but not to Malpelo Island where the trend was described as rather stable (Soler et al. 2013). It is unclear what the causes of this decline may be within the GMR, particularly since whitetip reef sharks are coastal species with reduced mobility (Barnett et al. 2012), are not targeted by poachers (Carr et al. 2013; Reyes and Murillo 2007), and are less susceptible to the local benthic fishing operations (Peñaherrera and Hearn 2008). It is possible that other mechanisms like predator-prey ecological interactions or tourism dynamics could be in play, and future research on these areas is needed to properly identify the underlining reasons of whitetip reef sharks perceived decline.

The observed LEK trend for Galapagos shark followed a declining pattern during the 1980s and 1990s, which then stabilized in the 2000s. I observed a disparity in the reported trends of Galapagos sharks in the region with my VAC data, particularly with the GMR Pelagic Surveys and White et al. (2015) datasets. For example, White et al. (2015) reported this species as generally infrequent in the dive sites of Cocos island
during early 1990s, yet its occurrence has steadily increased towards the 2010s. Contrastingly, the Malpelo dataset shows a negative trend across the 2000s, which also differs from Soler et al. (2013). These differences could be an artefact of the data standardization protocol used in my analysis, which presents the natural logarithm of the averaged annual abundance in contrast to the daily abundance data presented by Soler et al. (2013). However, these regional differences may be expected, given that Galapagos sharks display strong reef association (Compagno et al. 2005) and restricted mobility within the GMR (Hearn et al. 2014). The rather stable trend depicted by the VAC is consistent with the GMR Reef Fish surveys, which is the longest available abundance dataset for this species, suggesting a potential approximation to the trends of this species in Galapagos.

While there is no empirical dataset available to contrast the results for the other species in the GMR, the information from White et al. (2015) suggest the LEK results for blacktip and whale sharks may reflect the actual population trends for these species. Despite showing an increased variation in the standard deviation of results, the decadal averaged virtual abundance of the whale shark remained relatively stable since the 1980s. Compared to the other sharks assessed here, whale sharks display strong seasonality and site fidelity only in the north of the GMR (Acuna-Marrero et al. 2014), with sightings in other regions considered infrequent or even rare (Hearn et al. 2014). The amplitude in the decadal standard deviations could potentially reflect differences in seasonal experience among divers. Nevertheless, when summarizing the perception of all divers, the VAC model trend was similar to the trend reported from Cocos Islands (White et al. 2015). The Blacktip shark is the only species showing an increase in its virtual abundance in Galapagos. My data suggest this species may be experiencing a recovery after experiencing an abundance reduction of ~40% in the
1990’s. Although no data from Malpelo Islands exists, the reported trend for Cocos Islands suggests an increase of 33% in the occurrence of this species during the last decade (White et al. 2015). The GMR is reported to be an important nursery ground for blacktip sharks (Hearn et al. 2014). The existence of such areas could be playing a significant role in the species’ apparent recovery, especially since several of those sites are protected from extractive activities (Llerena et al. 2015).

During my analysis, I detected a possible misidentification issue between silky sharks and Galapagos sharks, given that both are similar in coloration, body shape and the first dorsal fin insertion (Compagno et al. 2005). While both species occur almost in the same habitats, divers do not often see silky sharks as they generally remain off the reef in open water areas. The large scale movements of silky sharks away from the GMR (Hearn et al. 2014), the importance of this species in artisanal (Martinez-Ortiz et al. 2015) and industrial fishing catches around the GMR (Roman-Verdesoto and Orozco-Zoller 2005), and the silky shark’s global (Bonfil 2009) and regional population trends (Soler et al. 2013; White et al. 2015), suggests an important disparity with rather conservative VAC estimates. Their movements away from the protection of the reserve makes them highly susceptible to industrial fishing operations (IATTC 2010). It is thus probable that this species is experiencing greater population reduction in the ETP, yet divers within the GMR has not accurately perceived it.

3.5.3 Implications for management and conservation of sharks

Legal protection of sharks in the Galapagos Islands started in 1989 (SRP 1989), yet proper law enforcement started years later, especially after the creation of the GMR in 1998 (Altamirano and Aguiñaga 2002). Based on this, I expected divers to describe
positive trends in the abundance of coastal sharks as a result of the management framework of the GMR. Work on trophic webs suggested that the occurrence of the ENSO and the ban of the industrial fishing in 1998 might have allowed the biomass recovery of large predatory fishes, including large pelagic and coastal-pelagic sharks (Wolff et al. 2012a). I expected blacktip, Galapagos and whitetip reef sharks to show stable or positive trends, given that all their life stages and migratory movements have been reported to occur within the boundaries of the GMR (Hearn et al. 2008; Hearn et al. 2014). However, my analysis suggests a contrasting scenario in which only blacktip sharks, and possibly Galapagos sharks, could be slowly experiencing the benefits of the reserve setting. Unexpectedly, the decline in whitetip reef sharks suggest this species might be subject to other mechanisms related to the internal management of the MPA and predator-prey ecological interactions, and conservation efforts should focus on understanding those aspects. Furthermore, I found no support for a positive effect of the reserve on the abundance of hammerhead sharks, which was suggested by Wolff et al. (2012a). The residency of hammerhead and silky sharks suggest those species use the reserve to some extent probably for feeding purposes, but it is still unclear if they use it to breed or as nursery grounds (Hearn et al. 2014). The GMR might be offering partial protection only for a certain stage of their lives, so they are still susceptible to the fishing operations outside the reserve and especially around its borders (IATTC 2010; WildAid 2010). This is of concern for hammerheads, given they are endangered worldwide and conservation efforts currently in place may not prevent their decline in the ETP. Whale sharks' strong seasonality, short term residency (Acuna-Marrero et al. 2014) and vast migratory movements (Hearn et al. 2013) suggest the reserve offers little in terms of protection for this species. On this basis, the similarities of the assessed trends for hammerhead sharks, whitetip
reef sharks, and whale sharks between the GMR and the other MPAs suggests divers LEK may serve as an alternative indicator of their population status for the GMR. Given the difficulties of assessing historical trends with conventional methods, I suggest my work should be complemented with genetic analysis on effective population size to understand the population dynamics of these species. Also, it is recommended that simple, low-cost methods of data collection (e.g. through citizen science or dive guides abundance logbooks) be adopted. These methods could greatly improve the quality of shark abundance data and provide more support regarding advantages and caveats of the VAC LEK approach. Despite being widely accepted that fisheries are the main drivers of shark decline worldwide (Dulvy et al. 2014), it is also important to compliment such species-specific studies with consideration of any changing environmental and anthropogenic conditions that could be affecting shark distributions around the reserve.
Chapter 4 Home range and habitat preferences of the scalloped hammerhead shark *Sphyrna lewini* and the blacktip shark *Carcharhinus limbatus* in the Galapagos Marine Reserve

4.1 Abstract

Spatial management through the implementation of marine protected areas is one strategy to limit the extraction of sensitive marine species. Yet, its use to protect wide-ranging marine predators is still unproven, due to species’ movements often exceeding the established boundaries of a protected area. Understanding the area used by marine life is thus a key step towards the evaluation of the management framework and efficacy of a protected area. To provide information of the protective coverage of the GMR, I assessed the habitat utilization distribution (UD) of hammerhead sharks and blacktip sharks in and around the GMR. Fifteen hammerhead sharks and 27 blacktip sharks were tagged with SPOT and SPLASH satellite tags in the north and south central regions of the GMR between 2007 and 2012. My results show important aspects of the extent and seasonality of the UD of hammerhead sharks and blacktip sharks inhabiting the GMR. Nearly 90% of hammerhead shark's UD was enclosed by the reserve boundary during the cold season (June-October), yet this progressively decreased to only ~30% with the advent of the warm season (December-April). Conversely, blacktip sharks’ UD was 100% enclosed by the reserve boundaries in all seasons. Season and depth were the most important environmental parameters defining the core UD of hammerhead sharks; whilst year and eddy kinetic energy were the most important parameters for blacktip sharks. These findings suggest the size of the GMR may result in seasonally
variable protective coverage for sharks inhabiting either pelagic or coastal-pelagic environments.

4.2 Introduction

Despite the controversy around the magnitude of species’ declines (Baum and Myers 2004; Burgess et al. 2005) and the ecological effect such declines may produce (Grubbs et al. 2016; Myers et al. 2007), it is accepted that overfishing is the major cause of population decline among shark species (Dulvy et al. 2014; Ferretti et al. 2010). Sharks are mostly caught as by-catch in fisheries targeting commercial teleost fish species, such as tuna and marlin (Barker and Schluessel 2005). As such, sharks are being harvested under management regulations more suited to species with higher intrinsic rebound potential (Au et al. 2009; Worm et al. 2013). To avoid the collapse of shark populations, management should focus on reducing fishing mortality below sharks’ natural population rebuilding rate (Worm et al. 2013). Managing fisheries to significantly reduce shark catches, or creating spatial closures, are the only available tools to halt the decline or recover shark populations (Caddy and Agnew 2005; Ward-Paige et al. 2012).

The use of improved fishing gear (Beverly et al. 2003) and anti-finning legislation (Gilman et al. 2008) are important management regulations that can reduce the incidental capture of sharks (Carlson et al. 2012). Yet, the sustainable management of shark fisheries requires appropriate monitoring, assessment and enforcement of regulations, which is often resource-demanding (Worm et al. 2013). As such, managing shark fisheries becomes impractical in areas under the jurisdiction of undeveloped countries, or in international waters where the implementation of
regulatory fishing rules requires extensive and complex international agreements (Barker and Schluessel 2005; Hooker et al. 2011).

Spatial management through the implementation of marine protected areas (MPA) is one strategy to limit the extraction of sensitive fish species and buffer the effects of fisheries in surrounding marine ecosystems (Aburto-Oropeza et al. 2011; Agardy 1994; Claudet and Guidetti 2010). There is substantial evidence supporting the implementation of MPAs in maintaining the biomass and diversity of coastal fish species (e.g. Aburto-Oropeza et al. 2011; Edgar et al. 2014; Halpern 2003), including coastal sharks (Friedlander and DeMartini 2002; Robbins et al. 2006). Yet, the potential of MPAs to protect highly mobile species is still subject of debate (e.g. Game et al. 2009; Game et al. 2010; Kaplan et al. 2010). Shark movements can be larger in extension than MPA boundaries and national jurisdictions (e.g. Block et al. 2011; Hearn et al. 2013), making them vulnerable when migrating to unmanaged open-fishing areas. If wide-ranging species are the management target, MPAs should encompass a significant proportion of their life stages and movements, with emphasis on reproducing adults (Au et al. 2009). Unfortunately, the lack of supporting evidence on the recovery of highly mobile fish species still limits a wider implementation of these reserves (Ward-Paige et al. 2012).

The Galapagos Marine Reserve (GMR) is the largest MPA in the Eastern Tropical Pacific Ocean (ETP), covering approximately 138000 km² of the pelagic environment surrounding the Galapagos Islands (Danulat and Edgar 2002). It lies in the confluence of three major currents that create complex oceanographic conditions, with marked seasonal gradients in current strength, sea surface temperature and productivity (Palacios 2004). The reserve was created in 1998 with the main aim of protecting all the coastal marine ecosystems and a significant proportion of the pelagic waters.
surrounding the archipelago (Danulat and Edgar 2002). Theoretical approaches modelling the food-web interactions in the pelagic (open-water) Galapagos ecosystems, suggested that the pelagic and coastal-pelagic shark species would be expected to have increased in biomass since the creation of the GMR (Wolff et al. 2012a). However, by contrasting the ecological knowledge of dive guides against empirical information on the relative abundance of sharks, I showed that this apparent increase might only apply to certain coastal species, such as the blacktip shark (Carcharhinus limbatis) (this study, Chapter 3). Pelagic species such as the scalloped hammerhead shark (Sphyrna lewini) are reported to have declined by 50% in their relative abundance across the GMR (this study, Chapter 3). Given the unknown spatial scale of the home range of shark species around Galapagos, there are concerns the size of the reserve may not be adequate to protect sensitive species like the endangered scalloped hammerhead shark.

This study is aimed to assess the protective coverage of the GMR over the home range of the scalloped hammerhead shark and the blacktip shark. Specifically, I aimed to i) compare the environmental preferences of hammerhead and blacktip sharks in the GMR; ii) evaluate their spatial and temporal habitat utilization in relation to the size of the GMR; and iii) characterize the factors influencing the selection of core areas (preferred habitat) within their utilization distributions.

4.3 Methods

4.3.1 Data collection

The Galapagos Marine Reserve (GMR) is located approximately 1000 km east from the continental coast of Ecuador, South America (Figure 4.1). Field trips were carried
out from 2006 to 2014 to tag hammerhead and blacktip sharks in the north (Darwin and Wolf Islands) and south central (around Santa Cruz Island) regions of the GMR.

![Figure 4.1 Geographic location of the Galapagos Marine Reserve (GMR boundary: black line).](image)

Ten hammerhead sharks were tagged in the north and five in the south central regions of the GMR between 2007 and 2012. Similarly, seven blacktip sharks were tagged in the north and 20 in the south central GMR between 2006 and 2014. All sharks were caught from a small boat using barbless circle hooks and nylon lines, with chunks of skipjack (*Katsuwonus pelamis*) or wahoo (*Acanthocybium solandri*) as bait. Once sharks were hooked, they were allowed to calm down on the line and then were slowly towed to a mother-vessel located less than 10 minutes away. Sharks were either brought on board using a sling and a hydraulic crane, or drawn onto a platform that was lowered into the water and subsequently raised above sea level. Once on the deck, sharks were immobilized, their eyes covered with a wet cloth, and
seawater was pumped continuously across their gills. Whenever a mother-vessel was not available, I approached the sharks via the side of the small boat, secured them with ropes, applied wet towels to their eyes, and pumped running seawater across the gills. All sharks were measured and sexed, after which satellite transmitters were attached to the dorsal fin with nuts and bolts. I used the fin-mount version of either SPOT 5 or SPLASH tags (Wildlife Computers – Redmond, USA). These tags were configured to opportunistically send location data to Argos satellites whenever a shark dorsal fin breached the water surface.

To eliminate inaccurate Argos satellite location information, I filtered out data using the package “argosfilter” (Freitas 2012) implemented within the R software environment (R Core Team 2015). Data was filtered to eliminate poor quality locations (Argos location classes [LC] B and A), values beyond sensor specifications (latitude and longitude), and unattainable speeds by animals greater than 2 ms⁻¹, following Weng et al. (2007) and Ketchum (2011).

Filtered relocation data was then matched with physical oceanographic data using the Spatial Dynamics Ocean Data Explorer (SDODE) interface (Hartog and Hobday 2011). SDODE pairs the date and geographic location of each relocation of a shark trajectory with the date and grid cell of remote sensed oceanographic variable. The selected oceanographic variables were: sea surface temperature (hereafter SST) obtained from the NOAA's Optimum Interpolated Sea Surface Temperature (0.25° x0.25° resolution, ° Celsius) (Reynolds et al. 2007); Chlorophyll a data from the Moderate Resolution Imaging Spectroradiometer (Modis)-Aqua satellites (4 km · 8-day composite, mg/m³) (Maccherone and Frazier 2015); and the eddy kinetic energy (hereafter EKE) derived from the TOPEX / Poseidon and ERS-2 altimeters (0.2° spatial resolution, m²s²) (Fu et al. 1994). The EKE is a measure of the energy
associated with the turbulent flow of the ocean (Wyrtki et al. 1976). I complemented this data set by matching shark locations with the seafloor depth (hereafter depth) from a custom made bathymetric profile compiled from Chadwick (2001), Peñaherrera-Palma et al. (2013) and the 2-Minute Gridded Bathymetry and Global Relief Data (ETOPO2v2) (Smith 1997).

Tagging protocols were approved by the University of Tasmania Animal Ethics Committee (permit No. A13641), by the Institutional Animal Care and Use Committee of the University of California – Davis (permit number IACUC PROTOCOL #16022), and by the Directorate of the Galapagos National Park (research permit No. PC-60-13).

4.3.2 Data analysis

Habitat utilization was estimated by calculating the probability utilization distribution (hereafter UD) using the Brownian Bridge kernel method (BBKM) (Bullard 1999; Horne et al. 2007) implemented in the “adehabitat” family package (Calenge 2015; Calenge et al. 2009) within the R software environment. The BBKM is an extension of the classical kernel method that uses the properties of a conditional random walk between successive pairs of locations to place a bivariate normal probability density function over each movement step (Bullard 1999). The size and final orientation of the probability density function is dependent on two parameters: i) a first parameter defining the imprecision of each relocation; and, ii) a second related to the time and space travelled by the animal (called the Brownian Motion Variance factor) (Horne et al. 2007). To estimate the first parameter in my analysis, I used the mean error radius provided by the Argos satellite telemetry location information. I estimated the mean error radius for both species and seasons.
separately. The Brownian motion variance parameter was then estimated by using a maximum likelihood approach developed by Horne et al. (2007). The analysis was placed in a grid system consisting of 25 km² cells around the GMR. The analysis was run per species and per season (cold: June-October, warm: December-April, transition: May and November). To test differences between the species’ environmental preferences and UD areas, parametric (e.g. Student’s t-test, Gosset 1942) and non-parametric tests (e.g. Kruskal-Wallis test by ranks, Kruskal and Wallis 1952; Mood’s median test, Mood 1954) were used.

The environmental preferences in probability of UDs of each shark species were assessed following Papastamatiou et al. (2013). First, I overlayed the UDs of all sharks of the same species, calculated the cumulative UD values per cell, and then transformed the cumulative UD to a fraction of 1 (by dividing each value by the maximum cumulative value obtained in the final grid). This particular analysis was aimed at characterizing the areas where all individuals from the same species coincided while migrating across the GMR. To evaluate this, a stepwise Generalized Additive Model (GAMs) was run using the UD as a response variable. GAMs were built under a Gaussian family distribution with identity links and smooth splines to model the single and additive effect of the predictive variables depth, SST, chlorophyll concentration, EKE, seasons and year. Model selection criteria were based on the adjusted Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) values to take into account differences in effective sample size and lack of fit (Guisan et al. 2002; Hastie and Tibshirani 1986).
4.4 Results

4.4.1 Summary of traversed trajectories

Information was obtained from eight hammerheads (males=6, females =2) and 18 blacktip (males= 2, females=16) sharks (Table 4.1). The hammerhead sharks varied from 1.42 to 2.35 m in total length (mean = 1.97; SD= 0.34), with males being larger in size than females. The total number of transmissions per individual ranged between 5 and 91 (mean=37; SD=30) and the average time gap between successive relocations varied from 0.1 to 4.5 days (mean=2.2 days; SD= 1.6). Blacktip sharks ranged from 1.96 m to 2.54 m in total length (mean = 2.12; SD= 0.13). The total number of transmissions averaged 129.8, with a maximum of 422. The average time gap between successive relocations ranged from 0.4 up to 4.7 days (mean=1.3 days; SD= 1.1).

Hammerhead shark travel distance from the tagging location was significantly greater than that registered for blacktip sharks (t-test $p=0.0044$). Individual hammerhead sharks covered a maximum distance of 586 km (mean=221 km, SD=191) from the tagging location, travelling to areas beyond the reserve boundaries (Figure 4.2). Blacktip sharks’ maximum distance from the tagging location reached 292.7 km (mean= 73.7; SD=76.2), yet their movements were completely circumscribed by the reserve boundary, particularly north of Santa Cruz Island. Hammerhead sharks did not migrate between the north and south of the GMR, as was observed in two blacktip sharks.
**Table 4.1** Tracked scalloped hammerhead and blacktip sharks summary data. The averaged gap refers to the average time (in days) between two consecutive relocations. Distance from tagging site refers to the linear distance (in Km) between the tagging and the farthest location sharks travelled. Tagging bioregion: N, north; SC, south-central region.

<table>
<thead>
<tr>
<th>Tag ID</th>
<th>Sex</th>
<th>Size</th>
<th>Tagging bioregion</th>
<th>Tagging date</th>
<th>Last transmission</th>
<th>Total days</th>
<th>Total transmission</th>
<th>Averaged gap (days)*</th>
<th>Distance from tagging**</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hammerhead sharks</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH1</td>
<td>M</td>
<td>2.25</td>
<td>N</td>
<td>02-11-2007</td>
<td>26-01-2008</td>
<td>85</td>
<td>55</td>
<td>1.6</td>
<td>586.9</td>
</tr>
<tr>
<td>HH2</td>
<td>M</td>
<td>1.94</td>
<td>N</td>
<td>24-07-2008</td>
<td>16-09-2008</td>
<td>54</td>
<td>13</td>
<td>4.5</td>
<td>95.8</td>
</tr>
<tr>
<td>HH3</td>
<td>M</td>
<td>1.75</td>
<td>N</td>
<td>24-07-2008</td>
<td>07-08-2008</td>
<td>14</td>
<td>5</td>
<td>3.4</td>
<td>25.9</td>
</tr>
<tr>
<td>HH4</td>
<td>M</td>
<td>2.24</td>
<td>N</td>
<td>24-07-2008</td>
<td>19-12-2008</td>
<td>148</td>
<td>58</td>
<td>2.6</td>
<td>244.3</td>
</tr>
<tr>
<td>HH5</td>
<td>M</td>
<td>2.35</td>
<td>N</td>
<td>13-03-2009</td>
<td>01-04-2009</td>
<td>19</td>
<td>6</td>
<td>3.8</td>
<td>339</td>
</tr>
<tr>
<td>HH6</td>
<td>M</td>
<td>2.18</td>
<td>N</td>
<td>14-03-2009</td>
<td>20-04-2009</td>
<td>37</td>
<td>30</td>
<td>1.3</td>
<td>310.2</td>
</tr>
<tr>
<td>HH7</td>
<td>F</td>
<td>1.42</td>
<td>SC</td>
<td>13-12-2011</td>
<td>07-01-2012</td>
<td>25</td>
<td>91</td>
<td>0.3</td>
<td>21.6</td>
</tr>
<tr>
<td>HH8</td>
<td>F</td>
<td>1.6</td>
<td>SC</td>
<td>06-02-2012</td>
<td>11-02-2012</td>
<td>5</td>
<td>39</td>
<td>0.1</td>
<td>144.4</td>
</tr>
<tr>
<td><strong>Blacktip sharks</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK1</td>
<td>F</td>
<td>2.04</td>
<td>N</td>
<td>27-07-2006</td>
<td>16-08-2006</td>
<td>20</td>
<td>5</td>
<td>4.7</td>
<td>292.7</td>
</tr>
<tr>
<td>BK2</td>
<td>M</td>
<td>2.14</td>
<td>N</td>
<td>27-07-2006</td>
<td>16-08-2006</td>
<td>20</td>
<td>7</td>
<td>3</td>
<td>258</td>
</tr>
<tr>
<td>BK3</td>
<td>M</td>
<td>2.08</td>
<td>N</td>
<td>02-08-2006</td>
<td>26-08-2006</td>
<td>24</td>
<td>15</td>
<td>2</td>
<td>19.4</td>
</tr>
<tr>
<td>BK4</td>
<td>F</td>
<td>2.21</td>
<td>N</td>
<td>06-08-2006</td>
<td>22-10-2006</td>
<td>77</td>
<td>60</td>
<td>1.5</td>
<td>35.9</td>
</tr>
<tr>
<td>BK5</td>
<td>F</td>
<td>2.1</td>
<td>SC</td>
<td>26-11-2011</td>
<td>26-12-2011</td>
<td>30</td>
<td>38</td>
<td>0.8</td>
<td>73.4</td>
</tr>
<tr>
<td>BK6</td>
<td>F</td>
<td>2.15</td>
<td>SC</td>
<td>29-11-2011</td>
<td>19-12-2011</td>
<td>20</td>
<td>12</td>
<td>2.3</td>
<td>57.4</td>
</tr>
<tr>
<td>BK7</td>
<td>F</td>
<td>2</td>
<td>SC</td>
<td>18-12-2011</td>
<td>05-01-2012</td>
<td>18</td>
<td>40</td>
<td>0.5</td>
<td>87.9</td>
</tr>
<tr>
<td>BK8</td>
<td>F</td>
<td>2</td>
<td>SC</td>
<td>01-11-2013</td>
<td>01-12-2013</td>
<td>30</td>
<td>52</td>
<td>0.6</td>
<td>64.2</td>
</tr>
<tr>
<td>BK9</td>
<td>F</td>
<td>2.54</td>
<td>SC</td>
<td>26-01-2014</td>
<td>19-06-2014</td>
<td>144</td>
<td>249</td>
<td>0.5</td>
<td>23.5</td>
</tr>
<tr>
<td>BK10</td>
<td>F</td>
<td>2.03</td>
<td>SC</td>
<td>26-01-2014</td>
<td>07-08-2014</td>
<td>193</td>
<td>409</td>
<td>0.4</td>
<td>61.6</td>
</tr>
<tr>
<td>BK11</td>
<td>F</td>
<td>2.13</td>
<td>SC</td>
<td>28-01-2014</td>
<td>31-08-2014</td>
<td>215</td>
<td>422</td>
<td>0.5</td>
<td>74.6</td>
</tr>
<tr>
<td>BK12</td>
<td>F</td>
<td>2.03</td>
<td>SC</td>
<td>28-01-2014</td>
<td>30-03-2014</td>
<td>61</td>
<td>55</td>
<td>1.1</td>
<td>32.3</td>
</tr>
<tr>
<td>BK13</td>
<td>F</td>
<td>2.13</td>
<td>SC</td>
<td>28-01-2014</td>
<td>28-06-2014</td>
<td>151</td>
<td>221</td>
<td>0.7</td>
<td>60.8</td>
</tr>
<tr>
<td>BK14</td>
<td>F</td>
<td>2.15</td>
<td>SC</td>
<td>29-01-2014</td>
<td>10-05-2014</td>
<td>101</td>
<td>106</td>
<td>0.9</td>
<td>33.9</td>
</tr>
<tr>
<td>BK15</td>
<td>F</td>
<td>1.96</td>
<td>SC</td>
<td>31-01-2014</td>
<td>24-04-2014</td>
<td>83</td>
<td>172</td>
<td>0.5</td>
<td>58.1</td>
</tr>
<tr>
<td>BK16</td>
<td>F</td>
<td>2.29</td>
<td>SC</td>
<td>01-02-2014</td>
<td>13-03-2014</td>
<td>40</td>
<td>34</td>
<td>1.2</td>
<td>30.4</td>
</tr>
<tr>
<td>BK17</td>
<td>F</td>
<td>2.13</td>
<td>SC</td>
<td>01-02-2014</td>
<td>28-06-2015</td>
<td>512</td>
<td>288</td>
<td>1.7</td>
<td>37.5</td>
</tr>
<tr>
<td>BK18</td>
<td>F</td>
<td>2.03</td>
<td>SC</td>
<td>05-02-2014</td>
<td>21-05-2014</td>
<td>105</td>
<td>151</td>
<td>0.7</td>
<td>24.9</td>
</tr>
</tbody>
</table>
Figure 4.2 Hammerhead sharks (above) and blacktip sharks (below) trajectories in and around the GMR. Black circles denote the locations cut-off where two tags (one hammerhead and one blacktip shark) started constant daily transmissions with high-speed movements (>2 ms⁻¹) and linear trajectories.
4.4.2 Environmental preferences

The traversed environmental conditions significantly differed between species (Table 4.2). In general, hammerhead sharks spent most time in waters with an average depth of 1560 m, SST of 25.1°C, relatively low chlorophyll $a$ concentration (mean 0.336 mg m$^{-3}$) and relatively high eddy kinetic energy (mean 132.2 m$^2$s$^2$). Conversely, tagged blacktip sharks preferred areas with average depths of 140 m, SST of 25.7°C, chlorophyll $a$ concentrations of 0.682 mg m$^{-3}$ and eddy kinetic energy of 34.7 m$^2$s$^2$.

Seasonal environmental conditions also varied between individuals of the same species. In the case of hammerhead sharks, significant differences were obtained for all environmental variables except EKE (Table 4.3). This result was produced by an increased variability in the environmental conditions (depth, SST and chlorophyll) traversed by hammerhead sharks while moving away from the tagging locations during the warm season. Transition and colder season relocations were characterized by more stable environmental conditions. Despite most relocations from blacktip sharks being around Santa Cruz Island, the traversed environmental conditions per season significantly varied for all environmental variables (Table 4.3).

Table 4.2 Global descriptive statistics (mean ± standard deviation) and significance tests (Kruskal-Wallis) of the differences in environmental preferences of satellite tracked hammerhead sharks (HHS) with blacktip sharks (BKT). Bold numbers indicate significant differences of $p<0.05$.

<table>
<thead>
<tr>
<th>Species</th>
<th>Average ± S.D</th>
<th>Kruskal-Wallis</th>
<th>$p$</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Depth</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHS</td>
<td>-1581 ± 927</td>
<td>67.10</td>
<td>&gt;0.01</td>
</tr>
<tr>
<td>BKT</td>
<td>-436 ± 268</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>SST</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHS</td>
<td>25.1 ± 1.8</td>
<td>344.10</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>BKT</td>
<td>25.7 ± 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Chlorophyll</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHS</td>
<td>0.336 ± 0.23</td>
<td>25.50</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>BKT</td>
<td>0.682 ± 0.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>EKE</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHS</td>
<td>132.2 ± 190.8</td>
<td>14.70</td>
<td>&gt;0.01</td>
</tr>
<tr>
<td>BKT</td>
<td>34.7 ± 15.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.3 Summary descriptive statistics (mean ± standard deviation) and significance tests (Kruskal-Wallis) of the seasonal environmental preferences of satellite tracked hammerhead sharks and blacktip sharks. Bold numbers indicate significant differences of \( p < 0.05 \).

<table>
<thead>
<tr>
<th></th>
<th>Cold</th>
<th>Transition</th>
<th>Warm</th>
<th>( \chi^2 )</th>
<th>( p )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hammerhead sharks</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>-1937 ± 745</td>
<td>-2213 ± 546</td>
<td>-1371 ± 1017</td>
<td>25.80</td>
<td>&lt;0.00</td>
</tr>
<tr>
<td>SST</td>
<td>25.8 ± 0.6</td>
<td>24.4 ± 1.0</td>
<td>25.0 ± 2.0</td>
<td>23.30</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>0.248 ± 0.02</td>
<td>0.174 ± 0.02</td>
<td>0.341 ± 0.24</td>
<td>12.40</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>EKE</td>
<td>119.9 ± 134.4</td>
<td>66.7 ± 34.2</td>
<td>144.0 ± 213.1</td>
<td>2.60</td>
<td>0.26</td>
</tr>
<tr>
<td><strong>Blacktip sharks</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>-188 ± 455</td>
<td>-59 ± 184</td>
<td>-151 ± 299</td>
<td>62.00</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>SST</td>
<td>24.9 ± 0.9</td>
<td>25.7 ± 1.8</td>
<td>25.9 ± 1.1</td>
<td>467.70</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>1.497 ± 1.50</td>
<td>0.153 ± 0.15</td>
<td>0.483 ± 0.48</td>
<td>39.80</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>EKE</td>
<td>42.3 ± 30.4</td>
<td>33.0 ± 7.8</td>
<td>33.1 ± 9.7</td>
<td>11.10</td>
<td>&lt;0.01</td>
</tr>
</tbody>
</table>

4.4.3 Habitat utilization

The estimated UD area was significantly greater for hammerhead sharks than for blacktip sharks (Mood median test \( p < 0.01 \); Figure 4.3). Hammerheads individual UD area varied from 912 to 21868 km\(^2\) (median 6110), whilst blacktips’ estimated UD area varied from 754 to 11155 km\(^2\) (median 1993). Estimations of seasonal UD area did not yield significant differences within the same species (for hammerhead sharks, Mood test \( p > 0.74 \); for blacktip sharks, Mood test \( p < 0.12 \)).

![Figure 4.3](image.png)

Figure 4.3 Estimated area of utilization distribution of hammerhead sharks and blacktip sharks for all tracked individuals and between seasons (cold, transition and warm).
Figure 4.4 Hammerhead sharks (left column) and blacktip sharks (right column) full tracks (top) and seasonal (middle and lower) utilization distribution areas in relation to the GMR boundary (dashed lines).
The area used by hammerhead sharks was confined around Darwin and Wolf Islands during the cold months, and extended away from the GMR boundaries in warmer seasons (Figure 4.4). Approximately 90% of the UD of hammerhead sharks was confined within the GMR during the cold season, 65% in the transition period, and 30% in the warm season. Conversely, blacktip sharks’ UD was completely confined within the reserve across all seasons (Figure 4.4). Tagged blacktip sharks were more active and yielded larger UD areas during the colder months than in any other season (Figure 4.3 and 4.4).

Season, year, depth and chlorophyll $a$ were the only environmental predictors that statistically influenced ($p<0.01$) the probability of the UD of hammerhead sharks (Table 4.4). The best-fit model explained 51.7% ($R^2 0.493$) of the total deviance and was obtained from the additive effects of depth, season, year and SST. Depth and season were the most important factors, followed by the year and SST. Despite the importance of chlorophyll $a$ as a single factor, it did not have a major additive effect in the final model. Partial response curves suggest hammerhead sharks aggregate during the colder months (June – October) in areas shallower than 1000 m where SST is lower than 25°C (Figure 4.5). In the case of blacktip sharks, all environmental predictors had a statistically significant influence on their probability of UD, yet not all contributed to the top-fitted models (Table 4.4). The best-fit model for this species explained 64.7% ($R^2 0.493$) of the total deviance and was built with four variables. Year and EKE were the most important factors influencing the model, followed by SST and season. Partial response curves suggest blacktip sharks were more active during 2006 to 2012, but stayed closer to the core UD area towards 2015. GAM results suggest that core UD area of this species is characterized by EKE lower than 50 m$^2$s$^{-2}$, seafloor depth lesser than 500m and temperatures lower than 22°C (Figure 4.6).
Table 4.4. Model results from the generalized additive models for the effects of environmental covariates on the utilization distributions of hammerhead and blacktip sharks around the GMR. Chl: Chlorophyll a; SST: seas surface temperature; EKE, eddy kinetic energy; GCV: Generalized cross validation criteria. Stars (*) indicate significant single predictors. Bold fonts, best fit models.

<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>BIC</th>
<th>Smoothing criterion</th>
<th>$R^2$</th>
<th>Explained deviance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hammerhead sharks</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Season*</td>
<td>-191.7</td>
<td>-177.0</td>
<td>0.030</td>
<td>0.265</td>
<td>27.0</td>
</tr>
<tr>
<td>Depth*</td>
<td>-154.1</td>
<td>-121.8</td>
<td>0.035</td>
<td>0.179</td>
<td>19.8</td>
</tr>
<tr>
<td>Year*</td>
<td>-139.1</td>
<td>-117.0</td>
<td>0.036</td>
<td>0.128</td>
<td>14.0</td>
</tr>
<tr>
<td>Chl*</td>
<td>-134.2</td>
<td>-105.3</td>
<td>0.027</td>
<td>0.176</td>
<td>20.8</td>
</tr>
<tr>
<td>EKE</td>
<td>-106.7</td>
<td>-91.1</td>
<td>0.041</td>
<td>0.022</td>
<td>2.9</td>
</tr>
<tr>
<td>SST</td>
<td>-105.1</td>
<td>-89.0</td>
<td>0.041</td>
<td>0.016</td>
<td>2.4</td>
</tr>
<tr>
<td><strong>Top models</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth + Season + Year</td>
<td>-289.1</td>
<td>-232.8</td>
<td>0.022</td>
<td>0.490</td>
<td>51.3</td>
</tr>
<tr>
<td><strong>Depth + Season + Year + SST</strong></td>
<td>-289.7</td>
<td>-230.0</td>
<td>0.022</td>
<td>0.493</td>
<td>51.7</td>
</tr>
<tr>
<td>Depth + Season + Year + EKE</td>
<td>-289.7</td>
<td>-228.7</td>
<td>0.022</td>
<td>0.494</td>
<td>51.9</td>
</tr>
<tr>
<td>Depth + Season + Year + SST + EKE</td>
<td>-290.0</td>
<td>-225.5</td>
<td>0.022</td>
<td>0.495</td>
<td>52.2</td>
</tr>
<tr>
<td>Full model</td>
<td>-213.6</td>
<td>-137.6</td>
<td>0.018</td>
<td>0.509</td>
<td>56.9</td>
</tr>
<tr>
<td><strong>Blacktip sharks</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year*</td>
<td>-1979.0</td>
<td>-1938.7</td>
<td>0.025</td>
<td>0.495</td>
<td>49.6</td>
</tr>
<tr>
<td>EKE*</td>
<td>-1358.2</td>
<td>-1297.0</td>
<td>0.033</td>
<td>0.335</td>
<td>33.8</td>
</tr>
<tr>
<td>SST*</td>
<td>-990.2</td>
<td>-928.5</td>
<td>0.038</td>
<td>0.230</td>
<td>23.3</td>
</tr>
<tr>
<td>Depth*</td>
<td>-809.8</td>
<td>-770.1</td>
<td>0.041</td>
<td>0.167</td>
<td>16.9</td>
</tr>
<tr>
<td>Season*</td>
<td>-584.2</td>
<td>-561.2</td>
<td>0.046</td>
<td>0.082</td>
<td>8.2</td>
</tr>
<tr>
<td>Chl*</td>
<td>-328.2</td>
<td>-293.1</td>
<td>0.048</td>
<td>0.033</td>
<td>3.6</td>
</tr>
<tr>
<td><strong>Top models</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year + EKE + Depth</td>
<td>-2643.5</td>
<td>-2506.3</td>
<td>0.019</td>
<td>0.619</td>
<td>62.2</td>
</tr>
<tr>
<td><strong>Year + EKE + Depth + SST</strong></td>
<td>-2764.8</td>
<td>-2579.3</td>
<td>0.018</td>
<td>0.639</td>
<td>64.4</td>
</tr>
<tr>
<td>Year + EKE + Depth + Season</td>
<td>-2676.2</td>
<td>-2527.1</td>
<td>0.019</td>
<td>0.625</td>
<td>62.8</td>
</tr>
<tr>
<td>Year + EKE + Depth + SST + Season</td>
<td>-2782.0</td>
<td>-2584.8</td>
<td>0.018</td>
<td>0.642</td>
<td>64.7</td>
</tr>
<tr>
<td>Year + EKE + Depth + SST + Chl</td>
<td>-1906.3</td>
<td>-1724.3</td>
<td>0.018</td>
<td>0.643</td>
<td>65.0</td>
</tr>
<tr>
<td>Full model</td>
<td>-1924.6</td>
<td>-1724.8</td>
<td>0.018</td>
<td>0.632</td>
<td>64.0</td>
</tr>
</tbody>
</table>
Figure 4.5 Generalized additive models (GAMs) showing the influence of depth, SST, season and year on the utilization distributions for all hammerhead sharks. Black tick marks above the x-axis represent the distribution of empirical data.

Figure 4.6 Generalized additive models (GAMs) showing the influence of year, EKE, depth and SST on the utilization distributions for all blacktip sharks. Black tick marks above the x-axis represent the distribution of empirical data.
4.5 Discussion

Understanding the habitat utilization distribution (UD) of animals is a key step towards the evaluation of the management framework and efficacy of a protected area. My results show important aspects of the extent and seasonality of the UD of hammerhead sharks and blacktip sharks inhabiting the GMR. Nearly 90% of hammerhead sharks' UD was enclosed by the reserve boundary during the cold season (June-October), yet this progressively decreased to only ~30% with the advent of the warm season. Conversely, blacktip sharks' UD was 100% enclosed by the reserve boundaries in all seasons. Season and depth were the most important environmental parameters defining the presence of hammerhead sharks in the core areas of their UD. Year and EKE were the most important parameters for blacktip sharks. These results suggest the size of the GMR may have a seasonally variable protective coverage for sharks inhabiting either pelagic or coastal-pelagic environments.

4.5.1 Ecological aspects of utilization distribution

The scalloped hammerhead is found all year round in the GMR, particularly in higher relative abundance during the cold season (June-October) at the islands of Darwin and Wolf. Klimley and Nelson (1984) hypothesized this species uses the central refuging strategy (Hamilton and Kenneth 1970), by using oceanic islands and seamounts as a refuge, from where they can take advantage of nearby foraging areas. Long-term passive acoustic tracking has shown hammerhead sharks to display strong site fidelity to the islands of Darwin and Wolf (Hearn et al. 2010; Ketchum et al. 2014b), which together with my study further supports the importance of both islands as a central-refuging area for hammerhead sharks. My results also suggest a
strong seasonal component in the use of the GMR by hammerhead sharks, with individuals progressively leaving the protection of the reserve with the advent of the warmer months. Hammerhead sharks’ long distance migrations between MPAs of the ETP have been reported to occur also during the warm season (Ketchum et al. 2014b), yet it is still unknown which factors trigger such behaviour.

Pelagic species are known to change their geographic distribution between environmental seasons according to foraging, reproductive or parturition needs. For example, yellowfin and southern bluefin tuna shift their latitudinal distribution along the east coast of Australia in response to seasonal changes in the strength of the East Australian Current (Hartog et al. 2011; Hobday et al. 2010). Dolphin species migrate along the Eastern Tropical Pacific Ocean following the seasonal shoaling of their preferred prey along thermocline ridges (Reilly 1990). The marked seasonality in the oceanographic setting of the GMR (Palacios 2004) could be playing a major role in the spatial extension of the UD in hammerheads around the GMR by influencing the vertical and horizontal distribution of their preferred prey items. The diet of adult hammerhead sharks is mostly comprised of cephalopod species like Humboldt squid (Estupiñán-Montaño et al. 2009; Loor-Andrade et al. 2015), a species known to display climate-mediated range shifts (Stewart et al. 2014). Bessudo et al. (2012) reported the vertical behaviour of hammerhead sharks around Malpelo and Cocos Islands. Their study described hammerhead sharks undertaking deep “yo-yo” dives (>100 m) in waters away from the islands and during the warm season, whilst the same individuals mostly remained in surface waters (0-10m) near the islands during the colder season. In addition to foraging requirements, reproductive cues could also be driving hammerhead sharks away from the protection of the GMR. For example, female tiger sharks (Galeocerdo cuvier) tracked in the Hawaiian Archipelago also
display seasonal changes in distribution, mostly related to reproductive habitat preferences (Papastamatiou et al. 2013). Given that male hammerhead sharks drive gene flow dispersion, it is also possible that hammerheads departing from the GMR could do it in search of females to mate with. The lack reported nursery grounds within the GMR, and lack of genetic connectivity with identified nursery grounds on the ETP impossibilities this hypothesis to be tested.

Blacktip sharks are also a cosmopolitan species sharing similar distributions to hammerhead sharks among tropical and subtropical oceans of the world. There is a considerable amount of work available on the occurrence, demography and environmental preferences of juvenile blacktip sharks at nursery grounds in coastal and estuarine bays (e.g. Froeschke et al. 2010; Heupel and Hueter 2002; Heupel and Simpfendorfer 2002, 2005; Llerena et al. 2010). Nevertheless, there is no available information regarding adult behavioural ecology, including UD. My study presents the first description on the UD of blacktip sharks while providing evidence of a potential hot-spot for this species. One study on fisheries records suggested that females might display site fidelity (Dudley and Cliff 1993). My results confirm this, with females (and two males) displaying a strong use of shallow areas (<500 m deep) in the centre of the south-central region of the GMR. These areas are mostly characterized by waters with low EKE due to the shadowing of the islands to horizontal oceanic currents. Why they display such a strong use of this area remains unclear. One possible explanation could be the proximity of the core UD to nursery areas for blacktip sharks found in the south central GMR (Llerena et al. 2015). The repeated seasonal use of the same nursery areas by female blacktip sharks has been reported at nursery grounds in the Northwest Atlantic, Gulf of Mexico and Caribbean (Keeney et al. 2005). In those areas, females remained close and used the same nursery
grounds, while males drove genetic differentiation and gene flow between populations. While there are no genetic analyses to corroborate this, several tracked females produced relocations within reported nursery grounds around Santa Cruz. The relationship between blacktip sharks using the reported core UD and the adjacent nursery grounds should be further explored.

Prey availability could also be playing an important role in habitat selection by blacktip sharks. An important breeding colony of the Galapagos sea lion (*Zalophus wollebaeki*) lies in Mosquera Islet (centre of blacktip shark core UD) (*Salazar 2002*), which is a suggested prey of blacktip and other similar-sized shark species (*Grove and Lavenberg 1998; Villegas-Amtmann et al. 2008*). Other suggested prey items are whitetip reef shark *Triaenodon obesus*, which aggregate in areas near Mosquera Islet (*Grove and Lavenberg 1998*).

### 4.5.2 Performance of the GMR with regard to sharks

The GMR was created in 1998 to preserve its marine biodiversity and ecosystems from detrimental harvesting (*Danulat and Edgar 2002*). Unfortunately, at that time there was no information available on spatial behaviour and habitat preferences of any highly mobile species that could inform the reserve design. The selection of reserve size thus followed a precautionary approach to include all the coastal communities and a significant proportion of its pelagic surrounding ecosystems (*Danulat and Edgar 2002*). My results provide key information on the habitat selection and reserve use by hammerhead and blacktip sharks, with important implications regarding the reserve’s protection coverage. For example, the spatial extent of the UD by blacktip sharks suggests the GMR might be providing coverage to a significant proportion of the spatial distribution of blacktip sharks. The spatial
distribution of identified nursery grounds of this species in the south-central region (Llerena et al. 2015), and the perceived recovery in the abundance expressed by divers (Chapter 3) further supports this, and suggest the GMR may be also providing protective coverage to different life stages of this species.

Unfortunately, the scenario for hammerhead sharks is less promising. My results suggest the GMR might only be providing sufficient protection during the cold season (months June-October). The UD of individuals during warmer months (December-April) suggest they are more susceptible to fishing operations around the reserve. Catch records from the Ecuadorean artisanal fishing fleet provides evidence of this, where hammerhead sharks were more commonly caught during the warm season and around the northern boundaries of the GMR (Martinez-Ortiz et al. 2015). Reserve size may not be adequately covering a significant proportion of the habitat of this species, which is of particular importance given its current global threatened status (Baum et al. 2007) and the reported regional decline in abundance (Soler et al. 2013; White et al. 2015; Chapter 3). Hammerhead sharks are highly susceptible to localized depletion due to their reduced gene flow and oceanic dispersal (Duncan et al. 2006), low potential to rebuild their populations (Smith et al. 1998) and elevated hooking mortality (Gulak et al. 2015).

Despite efforts to understand the behavioural and population ecology of this species in the GMR (Hearn et al. 2014), the importance of the reserve to its different life stages is still unknown. The smaller sizes of tagged individuals in the south central region, along with few records of neonates in mangrove-fringed bays (Jaenig 2010; Llerena 2009), suggests the existence of nursery grounds for this species inside the GMR. A more in-depth analysis of this is required to determine the existence of such areas and review the protective coverage of the GMR to younger life stages of this
species. Also, although the seasonal patterns are highly probable, longer tracking would be needed to confirm this beyond reasonable doubt. The inadequacy of the reserve size to protect hammerhead sharks has been previously reviewed based on connectivity mostly inferred from acoustic telemetry. Ketchum (2011) suggested the creation of several non-take MPAs enclosed in a large special marine managed area from Galapagos to Costa Rica. This special managed area would permit reduced fishing effort and should be equal in size to the Exclusive Economic Zones of the countries with national jurisdiction in the region. Increased reserve boundaries could be beneficial to protect this and other species but also the marine ecological corridors connecting the different MPAs in the region (Shillinger 2005). Achieving this complex spatial zoning, however, would require high levels of national and international agreements and would have important economic implications for the industrial fishing operations in the area. Also, this will not avoid interactions between fisheries and hammerhead sharks whenever they leave the small non-take MPAs. Alternatively, integrating temporary, mobile seasonal spatial closures extending the current fixed GMR boundaries could reduce the susceptibility of hammerhead sharks to fishing operations. Examples of this are currently in place to manage the longline fisheries on the east coast of Australia. The near real time dynamic spatial allocation of take and non-take areas reduces the interactions between the fishing fleets and pelagic by-catch species (Hartog et al. 2011; Hobday and Hartmann 2006; Hobday et al. 2011). This management approach could be applicable to create seasonal buffer zones and increase the extension of the reserve to reduce the capture susceptibility of hammerhead sharks. The reported seasonality in fisheries catches around the GMR by Martinez-Ortiz et al. (2015) supports the feasibility of this alternative. A further in-depth evaluation of the level of overlap
between catches of commercial teleost fishes and hammerhead sharks is recommended, particularly in neighbouring waters around the GMR. Also, habitat preferences of hammerhead sharks should be evaluated with a larger number of individuals per season, as recommended when assessing the implementation of dynamic spatial closures (Hobday et al. 2010).

The long-term spatial monitoring of sharks in the GMR should be maintained to better understand their temporal distributional patterns, and assess possible changes in response to major oceanographic events, such as el Niño Southern Oscillation. Furthermore, although the seasonal patterns depicted by my research are highly probable, longer tracking periods of hammerhead sharks would be needed to confirm this beyond reasonable doubt. Ensuring the long-term resilience of sharks is not only important due to their contribution in keeping the ecological balance of seamounts and pelagic communities, but also due to the economic importance they represent for the dive tourism industry in Galapagos (Peñaherrera et al. 2013).
Chapter 5  *General Discussion*

The main aim of this thesis was to assess the population trends and spatial extent of sharks inhabiting the Galapagos Marine Reserve (GMR) and generate decision-supporting tools to improve shark management at the local and regional level. Specifically, I assessed scalloped hammerhead shark (*Sphyrna lewini*) as a study case in contrast to other commonly occurring shark species in the GMR. This species was selected based on its global endangered status ([Baum et al. 2007](#)) and iconic importance for the marine tourism in the GMR ([Danulat et al. 2003](#)). Previous to this study, research efforts aimed at understanding the behavioural ecology of shark species within the GMR. There is still limited knowledge regarding their current and historical abundance trends. This was in part due to the lack of established long-term monitoring programs and appropriate evaluation tools. My work developed methodologies to assess population size and reconstruct historical trends by bridging several methodologies using population and behavioural ecology and the social sciences. My results provided the first estimates of resident population sizes for hammerhead sharks in the GMR while providing evidence of significant abundance decline during the last few decades. The status of this species contrasts with coastal shark species, which appear to be effectively protected by the GMR. To further understand the reasons for such decline, and frame the importance of the reserve to protect shark populations, I provided evidence that the GMR size does not adequately protect hammerhead sharks in comparison to coastal species. These findings, the questions they answer, and their research and management implications are discussed in the following sections.
5.1 Summary of findings

The evaluation of the population size of the scalloped hammerhead shark at Darwin Island, north of the GMR, is described in Chapter 2. To estimate the population size of this species I applied a novel mark-resight approach by combining acoustic telemetry and visual counts. In contrast to other methods, my approach used acoustic telemetry to build up the individual encounter histories, and reduced the effect of model assumption violation in terms of replacement and availability. Field trips of short duration (up to 10 days) were carried out at Darwin Island during the cold season months (September-October) to deploy acoustic tags and conduct underwater visual surveys (UVS). A total of 10, 21 and 20 individual sharks ranging from 190 to 285 cm in TL were marked with acoustic tags in 2011, 2012, and 2013, respectively. Females ranging from 160 to 280 cm in TL constituted almost 85% to 90% of the observed schools. Body size of the marked and observed individuals suggests that schools were mostly comprised of adult and sub-adult individuals.

Replacement (double counts) and availability (detected but unseen) ratios represented almost a quarter of the counted raw abundance. Yet their combined effect represented only a 2% variation in model estimates with negligible impact on the final results. Models provided strong evidence of time- and session-dependence in resighting probabilities and individual heterogeneity. This was particularly obvious in 2012, where the temporary emigration of marked and unmarked individuals affected the estimations of resident population ($N^-$) and super-population size ($N^*$) on some days. This generated more variable estimations with wider confidence intervals for 2012 ($N^- \sim 642$ ind.; $N^* \sim 1672$ ind.) in comparison to 2011 ($N^- \sim 487$ ind.; $N^* \sim 590$ ind.) and 2013 ($N^- \sim 391$ ind.; $N^* \sim 574$ ind.). Temporary emigration of
individuals becomes increasingly likely when assessing highly mobile species with gregarious behaviour and in a highly dynamic oceanographic setting.

The reconstruction of historical abundance trends of six shark populations from local ecological knowledge (LEK) is reported in Chapter 3. To assess this I developed a LEK-based virtual abundance change (VAC) model by using the ecological knowledge of divers working for the tourism industry. The model approach evaluates the decadal deficit or surplus in shark abundance since the beginning of the dive tourism industry in the 1980s. This approach does not require divers to make numerical estimations of observed abundance but to select a category trend (decline, stable or increase). Virtual population size was then inferred by asking divers to state their personal interpretation of these trend categories in numerical terms, from 0 to 100% of the population. Data was collected during several compulsory seminars held in 2013 by the Galapagos National Park.

Whilst dive guides showed consensus for negative trends for all shark species, my analysis depicted different perceived trends for each assessed species. Scalloped hammerhead sharks and whitetip reef sharks (*Trienodon obesus*) experienced a consistent decline by 50% and 30%, respectively, over the last four decades. Silky sharks (*Carcharhinus falciformis*) and Galapagos sharks (*C. galapagensis*) were perceived to suffer an initial decline by 25% and 30%, respectively, yet later stabilized. Whale shark (*Rhincodon typus*) abundance was perceived as stable across the study, while blacktip sharks (*C. limbatus*) were the only species perceived to be experiencing abundance recovery after a 30% decline. My results were similar to empirical datasets from the GMR and other neighbouring marine protected areas (MPA) of the Eastern Tropical Pacific Ocean (ETP). These provided corroborating evidence that the dive guides’ ecological knowledge has accurately described the
abundance fluctuations of all species except silky sharks. Fisheries, either legal or illegal, were suggested as the most important factor contributing to shark decline.

The evaluation of the habitat preferences and utilization distribution of hammerhead sharks to blacktip sharks is described in Chapter 4. To assess this I used satellite telemetry to evaluate sharks’ environmental preferences, and estimate their core habitat based on their habitat utilization distribution (UD) modelled with the Brownian Bridge kernel method. Several fieldtrips were carried out from 2006 to 2014 to tag individual sharks at Darwin and Wolf Islands (north GMR), and around Santa Cruz Island (south-central GMR). A total of eight hammerhead sharks (males=6, females =2) and 18 blacktip sharks (males= 2, females=16) provided useful relocation information. This data showed that hammerhead sharks travelled significantly further from the tagging location (mean=221 km, SD=191) than those registered for blacktip sharks (mean= 73.7; SD=76.2; t-test p=0.0044). Hammerhead sharks spent most time navigating in waters with an average depth of 1560 m, sea surface temperature of 25.1°C, relatively low chlorophyll a concentration (mean 0.336 mg m\(^{-3}\)) and relatively high eddy kinetic energy (mean 132.2 m\(^2\)s\(^{-2}\)). Blacktip sharks preferred areas with average depths of 140 m, sea surface temperature of 25.7°C, chlorophyll a concentrations of 0.682 mg m\(^{-3}\) and eddy kinetic energy of 34.7 m\(^2\)s\(^{-2}\).

The UD of individual hammerhead sharks displayed a strong seasonality in comparison to blacktip sharks. Nearly 90% of hammerhead sharks’ UD was enclosed by the reserve boundary during the cold season (June-October), yet it progressively decreased to 65% in the transition months (May and November) and only a ~30% during the warm season (December-April). Conversely, blacktip sharks’ UD showed no seasonal differences and was completely enclosed by the reserve boundaries.

Generalized additive models revealed hammerhead sharks core UD is characterized
by waters shallower than 1000 m around Darwin and Wolf where SST is lower than 25°C. Blacktip sharks displayed a strong use of the waters north of Santa Cruz Island, particularly around Baltra Island. As such, their core habitat was characterized by waters of low eddy kinetic energy (<50 m²s⁻²), seafloor depth shallower than 500m and sea surface temperatures lower than 22°C.

5.2 Significance of findings

5.2.1 Methodological advances

There are two important methodological advances in this study: i) the development of a telemetry-based mark-resight approach to assess population size of highly mobile fish species (Chapter 2); and ii) the development of a tool to assess the LEK of users in respect to the abundance of wildlife (Chapter 3). Both of these tools were critical in estimating historical and current abundance baselines for hammerhead sharks in the GMR.

The rigidity of previously available estimators (McClintock and White 2012) and the constraints of visually sighting marks in underwater conditions (Griffing et al. 2014; Zeller and Russ 2000) have limited a wider application of mark-resight experiments in marine assessments. Through the use of telemetry to construct the re-sighting histories of marked individuals, I have provided an alternative experimental approach to deal with the issues of not sighting all available tags in underwater mark-resight experiments. Telemetry has been used to evaluate the sighting availability of terrestrial (for a comprehensive revision see White and Shenk 2001) and marine life (Lee et al. 2014) prior to carrying out the resight surveys. Alternatively, my approach only relies on visual observation to provide the total number of individuals in the
area, and uses telemetry as the only method to identify each mark from the observed group.

Model sensitivity was evaluated by using telemetry data to measure the effect of counting with replacement (over counting) and differential availability (under counting, individuals detected but not seen) in my estimations. My results provided evidence of over and undercounting bias cancellation, a situation also reported in the assessment of shark fisheries catch data (Punt et al. 2000), bull trout abundance from redd counts (Dunham et al. 2001; Muhlfeld et al. 2006), haddock from experimental fishing (Collie and Sissenwine 1983), or mountain goats from aerial surveys (Rice et al. 2009). My approach was tested on the scalloped hammerhead shark population inhabiting Darwin Island, in the north of the GMR. Obtaining abundance estimates of wide-ranging shark species has proven to be problematic (Griffing et al. 2014). My modelling framework provided satisfactory estimations (with narrow confidence intervals) in two of the three fieldtrips carried out. Estimates for the remaining fieldtrip (2012) were affected by the temporary emigration of individuals, which is likely to naturally occur when assessing highly mobile species in variable environmental conditions (Neal et al. 1993). These results provide support to my findings and to use this new approach using telemetry and visual counts to evaluate the population size of highly mobile marine fishes. This approach should enable abundance estimates to be determined such that more quantitative and conclusive data can be generated for appropriate management.

The development of the LEK assessment tool, called VAC, was constructed to provide a proportional measure of abundance change that could be readily matched with the abundance data collected by the GMR Pelagic Fish surveys (for full details on the monitoring program see Hearn et al. 2014). This was partially possible due to the VAC
model design which i) required divers to select standardized trend categories without asking them to state numerical abundance estimations; ii) required divers to state how much (from 0 to 100%) every trend category meant to them; and iii) followed a cascade calculation approach to estimate the decadal virtual abundance instead of averaging the abundance scores per decade. These steps were central to provide the necessary semi-quantitative analytical framework of the VAC model, and to estimate decadal virtual abundances without any potential effect of cognitive shifting baselines among divers with different years of experience.

Schacter (2002) defines seven memory bias issues, from which four are particularly relevant to this LEK research: suggestibility, when memories are implanted by others; transience, which refers to the retention of rare events of ecological salience; misattribution, when the feature under assessment (place or species) could be mistakenly allocated to a different time, spatial or intensity scale; and individual bias, in which the personal belief or perspective alters the memory of an event. To increase the reliability of these results, I took several considerations into account to reduce the uncertainty associated with memory recalling. For example, I developed self-guided questionnaires with simplified, standardized questions that avoided influencing divers’ responses (suggestibility bias, Schacter 2002). To reduce potential misattribution issues, study species were selected based on their charismatic profile, commonality and likelihood to be observed during any regular dive in the GMR. There was only one issue found regarding the ability of divers identifying between Galapagos shark and silky shark species; they are remarkably similar in coloration, body shape and first dorsal fin insertion (Compagno et al. 2005). While the validation process provided evidence of reliable results for the Galapagos sharks, there was an important disparity between my results, the global (Bonfil 2009; Clarke et al. 2006).
and regional declining trends (Soler et al. 2013; White et al. 2015) of silky sharks. This misattribution issue precluded any conclusion on the validity of divers’ LEK on regards of silky sharks.

The lack of a comprehensive database on the numbers divers who have worked in the reserve hampered the identification of all the potential LEK holders. To support the adequacy of my final sample size, a peer-referral approach was included to identify all possible LEK holders. This produced a final sample comprising the majority of people who were repeatedly named by divers, and similar to other LEK studies that accurately described wildlife resource status (e.g. Neis et al. 1999; Yasué et al. 2010).

To avoid any political and economic scenario affecting the answers of this evaluation (Ruddle 2000), I selected the reserve users (dive guides) without recorded conflicts regarding the management of the GMR (Altamirano and Aguiñaga 2002). By contrast, fishermen have historically been involved in issues regarding shark exploitation (Carr et al. 2013), which rises the uncertainty of obtaining reliable information. My selection of divers as LEK holders, and the obtained sample size is further supported by the lack of significant differences between divers with different levels of experience.

Despite these considerations, I obtained an important variation in the VAC standard deviations, evidencing different levels of agreement between divers. Similar LEK studies have reported varying levels of agreement when assessing the population trends of birds (e.g. Gregory et al. 2004), bears (e.g. Burghardt et al. 1972), mountain lions (e.g. Casey et al. 2005), or biodiversity baselines (e.g. Taylor et al. 2011). The variation in agreement is considered normal due to individual belief and ability to recall events (Bradburn 2000), and the heterogeneous distributions of species across their home range (Crona 2006). As such, this variability adds more value by
illustrating different viewpoints instead of one trend category induced by external factors.

5.2.2 Implications for the ecology of hammerhead sharks

Through the application of a combined telemetry-visual counts approach, I have provided a fishery-independent alternative to the estimation of the population size of hammerhead sharks in an oceanic aggregation area (hot-spot). The closest comparable assessment was carried out more than 25 years ago in a seamount off the coast of Baja California, Mexico, by Klimley and Nelson (1981). They reported that hammerhead shark schools were formed by 12 to 225 individuals ranging from 1 to 3.4 m TL, and estimated a daily resident population size of 525 individuals. These values are comparable to those obtained in my research, where I counted from 0 to 380 individuals per dive, ranging from 1.6 to 2.4 m TL, and with daily resident population sizes averaging 546 (min=144, max=1656) individuals (this study, Chapter 2). Despite the methodological differences, the similarities of their estimation with my best-supported models provided an important comparative reference, and suggest the existence of potential constraints limiting the size of schools at oceanic islands and seamounts.

The constraints and how they limit the number of sharks in those aggregation areas have yet to be conclusively determined. The general consensus states carrying capacity is a function of the available food in a system (Christensen and Pauly 1998), yet hammerhead sharks are known to ignore the presence of potential prey when aggregating at oceanic islands and seamounts (Klimley and Nelson 1984). A possible explanation could rely on behavioural habitat selection. Theoretical modelling by Krivan (1998) proposed that refuge systems with strong, limited density provide
more stable interactions between predator and prey in adjacent habitats with no density constraints. It is possible that hammerhead sharks’ habitat selection (open or refuge) could resemble that of a prey in Krivan’s theory to maintain low densities in the refuge. Evidence of hammerhead sharks using oceanic islands and seamounts as a central refuging system have been provided by Klimley and Nelson (1984), Hearn et al. (2010), Ketchum et al. (2014a), Ketchum et al. (2014b), and are further supported by my results from Chapters 2 and 4. First, Hearn et al. (2010) and Ketchum et al. (2014a) provided evidence of back and forth excursions into open waters and a marked preference for the up-current areas of Wolf Island. Second, my results (Chapter 4) showed a clear island-centred core utilization distribution around Wolf and Darwin Island at least during the cold season (June-October). Third, acoustically tagged hammerhead sharks generated very low resighting probability values (0-0.3 this study, Chapter 2), suggesting that despite all sharks being in the area they never gathered all together at the same time at the study site. Finally, my best-supported abundance estimations (years 2011 and 2013, Chapter 2) show that hammerhead shark resident population size averaged between 400 to 600 individuals. Given the resemblance of the above-described behaviour and the modelled refuging system described by Krivan (1998), it is possible that the schooling and refuging of hammerhead sharks is an evolutionary response to predatory pressure by other extant and extinct marine fauna. Although there is evidence of predation upon hammerhead sharks by large predatory marine megafauna (e.g. by killer whales, Sorisio et al. 2006; Visser and Bonaccorso 2003), the extent of an evolutionary predatory pressure on hammerhead sharks is difficult to evaluate.

A further revision of the mechanisms defining the carrying capacity of an aggregation hot-spot is recommended, to assess what effects they have on overall population size
in the north of the GMR. A limited carrying capacity in these areas could signify increased susceptibility to depletion, since females constituted nearly 90% of the population sampled at Darwin Island (this study, Chapter 2). Females are the most important portion of a population, and should be protected with greater emphasis to avoid the species’ collapse (Au et al. 2009). This is of special conservation concern given that this species has declined by 50% in the last 30 years (Chapter 3). Fisheries at these aggregation hot-spots could considerably affect the resilience of this species, and could be the underlining reason for the unrecovered and depleted state of hammerheads sharks reported by Baum et al. (2007) at the seamount firstly studied by Klimley and Nelson (1981).

5.2.3 Implications for the management of the GMR

The Galapagos Archipelago is known to have historically held a large shark biomass (Edgar et al. 2014; Shimada and Shaefer 1956). Previous to the creation of the GMR in 1998, hammerhead and other shark species were heavily targeted for their fins by national and international industrial fishing fleets (Camhi 1995; Camhi and Cook 1994; Merlen 1995). Concerns about shark status and the efficacy of the GMR were raised by divers and scientists (Hearn et al. 2008; Zarate 2002), in response to constant shark poaching occurring around the reserve (Carr et al. 2013; Reyes and Murillo 2007). While those events exposed the need for a revision of the population status of sharks, the lack of long-term monitoring programs in Galapagos has hampered the assessment of shark population response to the historical fishing pressure and later adopted management frameworks.

The findings in my thesis bring forward further conservation concerns on the efficacy of the GMR to protect coastal-pelagic shark species such as the scalloped
hammerhead shark. The low density in aggregation hot-spots (Chapter 2), the reserve-wide population decline (Chapter 3), seasonal movements beyond the reserve boundaries (Chapter 4), and the unknown presence of established nursery grounds (Hearn et al. 2014) suggest the GMR might not be providing enough protection for the populations of scalloped hammerhead sharks. Similar scenarios have been reported at Cocos and Malpelo Islands, neighbouring MPAs to the GMR in the ETP. In both areas, hammerhead shark movements were consistently larger than reserve size (Bessudo et al. 2012), and populations were reported to have declined by 50% in the last two decades (Soler et al. 2013; White et al. 2015). Their findings are remarkably similar to this study, suggesting the GMR does not have an overall positive effect on hammerhead sharks suggested by the models by Wolff et al. (2012a). It is probable that the industrial fishing operations in the region could be the underlining reason for hammerhead shark decline inside these MPAs. This species is often caught by industrial (IATTC 2010) and artisanal (Martinez-Ortiz et al. 2015) fisheries operating around the reserve. The seasonal and spatial use of the reserve suggests hammerhead sharks are only protected at certain times of the year, particularly during the cold season (June-October; Chapter 4). The seasonality in the occurrence of hammerhead sharks observed in catch records from the Ecuadorean artisanal fishing fleet around the GMR (Martinez-Ortiz et al. 2015) provides further evidence of this.

The evaluation of hammerhead sharks raises concerns for the reserve’s efficacy on other coastal-pelagic and pelagic shark species with similar life history traits. For example, silky sharks area coastal-pelagic species with no reported nursery grounds in the reserve, high-fidelity to certain areas within the reserve, and yet capable of broad scale movements away from the GMR (Hearn et al. 2014). If this species is not
breeding inside the reserve, its movements outside the reserve boundary make them more susceptible to overfishing by artisanal (Martinez-Ortiz et al. 2015) and industrial fisheries (Roman-Verdesoto and Orozco-Zoller 2005). Under this scenario, it is unknown to what extent the GMR will provide protection to coastal-pelagic or pelagic shark species. A further revision of this scenario is recommended, particularly to assess if any critical life stage is occurring inside the reserve. This will provide important insights into how to further improve the reserve management in relation to critical habitats for coastal-pelagic and pelagic species.

However, my findings suggest that the GMR may be adequate for protecting large coastal shark species with high levels of residency, such as the blacktip and Galapagos sharks (Chapter 3 and 4). This situation is possibly related to the reserve use of both species. For example, the habitat utilization distribution of blacktip sharks is enclosed within the reserve boundary throughout the year (Chapter 4). Their movements were particularly concentrated around Santa Cruz island, where important nursery grounds have been reported for this species (Llerena et al. 2015). While there is less data for Galapagos sharks, preliminary findings also suggest this species remains inside the GMR boundary in coastal areas near the islands (Hearn et al. 2014). As such, the analysis of historical baselines for this species suggests populations have been relatively stable since the 1990s, or even in potential recovery as perceived for the blacktip shark (Chapter 3). Similar trends have also been observed at Cocos Islands (White et al. 2015) and Malpelo Island (Soler et al. 2013). The reports provide further support that the GMR provides adequate coverage and protection for Galapagos, blacktip and other similar large coastal shark species.

Unexpectedly, the perceived decline in whitetip reef sharks raises questions as to whether this species is experiencing a negative rather than positive effect of the
creation of the reserve. This species is not targeted by poachers in Galapagos (Carr et al. 2013; Reyes and Murillo 2007), and is less susceptible to the local coastal fishing operations (Peñaherrera and Hearn 2008). It is possible that other mechanisms like predator-prey ecological interactions or tourism dynamics could be in play. For example, the biomass of small sized-predator species is modelled to decline in response to an increase in biomass of larger predatory fish in the GMR (Wolff et al. 2012a). Important predators of whitetip reef sharks are tiger sharks, Galapagos sharks and possibly blacktip sharks (Randall 1977), all naturally occurring in coastal areas of the GMR (Grove and Lavenberg 1998), and all possibly experiencing positive effects of reserve setting (Chapter 3). Also, excessive use of diving sites by the tourism industry could also affect the observed abundance. Whitetip reef sharks were reported to avoid approaching divers in at least 45% of encounters (Cubero-Pardo et al. 2011). The decline of whitetip reef sharks could therefore either be a result of increased predation from larger shark species, and/or by habitat displacement to avoid encounters with divers or large predators.

5.3 Management recommendations and future studies

Currently, there are important advances in the implementation of a special no-take zone around Darwin and Wolf islands, inside the northern portion of the GMR. While artisanal fisheries are allowed inside the GMR, the special no-take zone could reduce the pressure from artisanal fisheries in that area, and provide further protection to the reproductive populations of hammerhead sharks while foraging in the north of the reserve. It is recommended to further expand the evaluation of the population size of hammerhead sharks to include both Darwin and Wolf as a single unit of analysis. The newly developed methods will allow to estimate a baseline of the
population size in the north of the GMR, which is essential to review the effect of implementing the no-take zone around both islands. While estimations of population size can be carried out on an annual basis, the application of the VAC approach should be carried out in a timeframe no less than 5 years to allow users to perceive any potential population trend. In addition, the establishment of citizen science programs (e.g. by tourist or dive guide logs) will benefit resource evaluation by providing additional information on shark relative abundance and a comparable basis to the mark-resight and VAC methodologies developed through my research thesis.

Furthermore, while Darwin and Wolf Islands represent a critical foraging refuge habitat for female hammerhead sharks, it is strongly recommended that the importance of the south-central region for hosting early life stages of this species be reviewed. Protecting the areas used by hammerhead sharks in their early life stages, and the corridors connecting them with the no-take Darwin and Wolf area should complement this effort. This will allow the protection of different life stages occurring in the GMR but also the potential recovery of important historical aggregations of hammerhead sharks once found in the south-central region (Matthias Espinoza and Jonathan green, pers. comm.). A revision of the importance of the south-central region for other shark species is also recommended, as these areas could be a potential aggregation hot-spot for blacktip sharks as reported in Chapter 4.

It is important to note that any conservation inside the reserve should be complemented with long-term monitoring and research focused on diminishing the vulnerability of hammerhead sharks to fisheries operating outside the GMR, especially within the marine corridors between Galapagos, Cocos and Malpelo Islands. The implementation of dynamic spatial zoning should be reviewed to reduce the area overlapping between their core habitat and fisheries. Such zones may be
most important during warmer months when these sharks are less tied to the reserve area. Examples of such dynamic fishing zones are discussed by Hobday et al. (2010).

This project contributes to the management of the GMR by providing baseline population ecological data and evaluation tools that can be easily applied to monitor the implementation of new management strategies. The developed methods in this study can be easily transferred to the assessment of any aggregation hot-spot of hammerhead sharks, or other fish species with similar behavioural traits.
References


Davidson, L.N.K., Krawchuk, M.A., Dulvy, N.K., 2015. Why have global shark and ray landings declined: improved management or overfishing? Fish and Fisheries, n/a-n/a.


Denkinger, L. Vinueza (Eds.), Galapagos Marine Reserve: a dynamic socio-ecological system. Springer, pp. 23-59


Ketchum, J., 2011. Movement patterns and habitat use of scalloped hammerhead sharks (Sphyrna lewini) in the Galapagos Islands: Implications for the design of marine reserves. University of California - Davis, Davis, California, USA.


