University of Tasmania
Browse

File(s) under permanent embargo

Control of Gibberellin Levels and Gene Expression during De-Etiolation in Pea

journal contribution
posted on 2023-05-25, 23:14 authored by James ReidJames Reid, Botwright, NA, Smith, JJ, O'Neill, DP, Kerckhoffs, LHJ
Gibberellin Al (GAl) levels drop significantly in wild-type pea (Pisum sativum) plants within 4 h of exposure to red, blue, or far-red light. This response is controlled by phytochrome A (phyA) (and not phyB) and a blue light receptor. GAs levels are increased in response to 4 h of red light, whereas the levels of GA19, GA2o, and GA29 do not vary substantially. Red light appears to control GAl levels by down-regulating the expression of Mendel's LE (PsGA30xl) gene that controls the conversion of GA20 to GAl' and by up-regulating PsGA2ox2, which codes for a GA 2-oxidase that converts GAl to GAs. This occurs within 0.5 to 1 h of exposure to red light. Similar responses occur in blue light. The major GA 20-oxidase gene expressed in shoots, PsGA20oxl, does not show substantial light regulation, but does show up-regulation after 4 h of red light, probably as a result of feedback regulation. Expression of PsGA30xl shows a similar feedback response, whereas PsGA2ox2 shows a feed-forward response. These results add to our understanding of how light reduces shoot elongation during de-etiolation.

History

Publication title

Plant Physiology

Volume

128

Article number

2

Number

2

Pagination

734-741

ISSN

0032-0889

Publication status

  • Published

Repository Status

  • Restricted

Usage metrics

    University Of Tasmania

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC