Open Access Repository
Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere



Full text not available from this repository.
Abstract
The extent to which water and halogens in Earth's mantle have primordial origins, or are dominated by seawater-derived components introduced by subduction is debated. About 90% of non-radiogenic xenon in the Earth's mantle has a subducted atmospheric origin, but the degree to which atmospheric gases and other seawater components are coupled during subduction is unclear. Here we present the concentrations of water and halogens in samples of magmatic glasses collected from mid-ocean ridges and ocean islands globally. We show that water and halogen enrichment is unexpectedly associated with trace element signatures characteristic of dehydrated oceanic crust, and that the most incompatible halogens have relatively uniform abundance ratios that are different from primitive mantle values. Taken together, these results imply that Earth's mantle is highly processed and that most of its water and halogens were introduced by the subduction of serpentinized lithospheric mantle associated with dehydrated oceanic crust.
Item Type: | Article |
---|---|
Authors/Creators: | Kendrick, MA and Hemond, C and Kamenetsky, VS and Danyushevsky, LV and Devey, CW and Rodemann, T and Jackson, MG and Perfit, MR |
Keywords: | seawater, lithosphere, mantle, xenon, element cycles, geochemistry, geodynamics |
Journal or Publication Title: | Nature Geoscience |
Publisher: | Springer Nature |
ISSN: | 1752-0894 |
DOI / ID Number: | https://doi.org/10.1038/ngeo2902 |
Copyright Information: | © 2017 Macmillan Publishers |
Related URLs: | |
Item Statistics: | View statistics for this item |
Actions (login required)
![]() |
Item Control Page |