Open Access Repository

High-mass starless clumps in the inner galactic plane: the sample and dust properties


Downloads per month over past year

Yuan, J, Wu, Y, Ellingsen, SP ORCID: 0000-0002-1363-5457, Evans II, NJ, Henkel, C, Wang, K, Liu, H-L, Liu, T, Li, J-Z and Zavagno, Z 2017 , 'High-mass starless clumps in the inner galactic plane: the sample and dust properties' , Astrophysical Journal. Supplement Series, vol. 231, no. 1 , pp. 1-17 , doi: 10.3847/1538-4365/aa7204.

Yuan_2017_ApJS_...pdf | Download (3MB)

| Preview


We report a sample of 463 high-mass starless clump (HMSC) candidates within -60° b μm nor strong extended emission at 24 μm. Most of the identified HMSCs are infrared dark, and some are even dark at 70 μm. Their distribution shows crowding in Galactic spiral arms and toward the Galactic center and some well-known star-forming complexes. Many HMSCs are associated with large-scale filaments. Some basic parameters were attained from column density and dust temperature maps constructed via fitting far-infrared and submillimeter continuum data to modified blackbodies. The HMSC candidates have sizes, masses, and densities similar to clumps associated with Class II methanol masers and H II regions, suggesting that they will evolve into star-forming clumps. More than 90% of the HMSC candidates have densities above some proposed thresholds for forming high-mass stars. With dust temperatures and luminosity-to-mass ratios significantly lower than that for star-forming sources, the HMSC candidates are externally heated and genuinely at very early stages of high-mass star formation. Twenty sources with equivalent radii req  0.08 g cm−2 could be possible high-mass starless cores. Further investigations toward these HMSCs would undoubtedly shed light on comprehensively understanding the birth of high-mass stars.

Item Type: Article
Authors/Creators:Yuan, J and Wu, Y and Ellingsen, SP and Evans II, NJ and Henkel, C and Wang, K and Liu, H-L and Liu, T and Li, J-Z and Zavagno, Z
Keywords: infrared: ISM, ISM: clouds, stars: formation, stars: massive, submillimeter: ISM
Journal or Publication Title: Astrophysical Journal. Supplement Series
Publisher: Univ Chicago Press
ISSN: 0067-0049
DOI / ID Number: 10.3847/1538-4365/aa7204
Copyright Information:

Copyright 2017 The American Astronomical Society

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page