Open Access Repository

Determining the site of action of strigolactones during nodulation

Downloads

Downloads per month over past year

McAdam, EL ORCID: 0000-0001-7921-5773, Hugill, C, Fort, S, Samian, E, Cottaz, S, Davies, NW ORCID: 0000-0002-9624-0935, Reid, JB ORCID: 0000-0003-4317-0977 and Foo, E ORCID: 0000-0002-9751-8433 2017 , 'Determining the site of action of strigolactones during nodulation' , Plant Physiology, vol. 174, no. 3 , pp. 1-16 , doi: 10.1104/pp.17.00741.

[img]
Preview
PDF
McAdam et al 20...pdf | Download (1MB)

| Preview

Abstract

Strigolactones (SLs) influence the ability of legumes to associate with nitrogen-fixing bacteria. In this study we determine the precise stage at which SLs influence nodulation. We show that SLs promote infection thread formation, as a null SL-deficient pea (Pisum sativum) mutant forms significantly less infection threads than wild type plants and this reduction can be overcome by the application of the synthetic SL GR24. We found no evidence that SLs influence physical events in the plant before or after infection thread formation, since SL-deficient plants displayed a similar ability to induce root hair curling in response to rhizobia or lipochito-oligosaccharides (LCOs) and SL-deficient nodules appear to fix nitrogen at a similar rate to wild type plants. In contrast, a SL receptor mutant displayed no decrease in infection thread formation or nodule number, suggesting SL-deficiency may influence the bacterial partner. We found this influence of SL-deficiency was not due to altered flavonoid exudation or ability of root exudates to stimulate bacterial growth. The influence of SL-deficiency on infection thread formation was accompanied by reduced expression of some early nodulation (ENOD) genes. Importantly, SL synthesis is down-regulated by mutations in genes of the Nod LCO signalling pathway and this requires the downstream transcription factor NSP2 but not NIN. This, together with the fact that the expression of certain SL biosynthesis genes can be elevated in response to rhizobia/Nod factors suggests that Nod LCOs may induce SL biosynthesis. SLs appear to influence nodulation independently of ethylene action, as SL-deficient and ethylene insensitive double mutant plants display essentially additive phenotypes and we found no evidence that SLs influence ethylene synthesis or vice versa.

Item Type: Article
Authors/Creators:McAdam, EL and Hugill, C and Fort, S and Samian, E and Cottaz, S and Davies, NW and Reid, JB and Foo, E
Keywords: strigolactone, nodulation, infection thread, pea, hormone
Journal or Publication Title: Plant Physiology
Publisher: Amer Soc Plant Biologists
ISSN: 0032-0889
DOI / ID Number: 10.1104/pp.17.00741
Copyright Information:

Copyright 2017 American Society of Plant Biologists

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP