Open Access Repository

Experimental and numerical investigation of the flow characteristics within a Solar Expanding-Vortex Particle Receiver-Reactor

Chinnici, A, Xue, Y ORCID: 0000-0003-0168-876X, Lau, TCW, Arjomandi, M and Nathan, GJ 2017 , 'Experimental and numerical investigation of the flow characteristics within a Solar Expanding-Vortex Particle Receiver-Reactor' , Solar Energy, vol. 141 , pp. 25-37 , doi: 10.1016/j.solener.2016.11.020.

Full text not available from this repository.

Abstract

The iso-thermal flow field within several configurations of a Solar Expanding-Vortex Particle Receiver-Reactor (SEVR) was investigated, using a combination of multi-plane particle image velocimetry (PIV) and Reynolds-Averaged Navier-Stokes (RANS) computational modeling, at a constant inlet Reynolds number of 12,300. The experimental and numerical results confirmed that the SEVR generates a well-established vortex flow pattern, which approaches a forced vortex near to the injection plane and a combined (free and forced) vortex in the main body of the cavity. The SEVR also features a reversed flow in the vortex core region and a complex precessing vortex core (PVC) structure, which is stronger in both the inlet and outlet regions of the cavity. The primary mechanism for particle deposition was identified as a primary recirculation zone near to the aperture that transports fluid from the main cavity through the aperture. The presence or absence of this recirculation zone was associated with the relative size of the vortex core dimension at the aperture plane and the aperture size. It was also found that the presence of a PVC at the aperture plane further increases the potential for the particle deposition onto the receiver-reactor window by generating a secondary recirculation zone in the vortex core region that transports fluid through the aperture. The use of a sufficiently long cavity or a sufficiently large cone angle can assist both in stabilising the PVC and increasing the size of the vortex core at the aperture plane. These two effects are postulated to reduce the potential for particle deposition onto the receiver-reactor window.

Item Type: Article
Authors/Creators:Chinnici, A and Xue, Y and Lau, TCW and Arjomandi, M and Nathan, GJ
Keywords: vortex flow, solar reactor, particle deposition, Precessing Vortex Core, CFD, particle image velocimetry
Journal or Publication Title: Solar Energy
Publisher: Elsevier Ltd
ISSN: 0038-092X
DOI / ID Number: 10.1016/j.solener.2016.11.020
Copyright Information:

Copyright 2016 Elsevier Ltd.

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP