Open Access Repository

Regulation of microvascular flow and metabolism: An overview

Keske, MA ORCID: 0000-0003-4214-7628, Dwyer, RM ORCID: 0000-0001-8361-2712, Russell, RD ORCID: 0000-0002-1275-1472, Blackwood, SJ, Brown, AA ORCID: 0000-0002-6931-3502, Hu, D ORCID: 0000-0003-2654-5212, Premilovac, D ORCID: 0000-0003-2770-4713, Richards, SM ORCID: 0000-0002-5988-0423 and Rattigan, S ORCID: 0000-0001-6172-3040 2017 , 'Regulation of microvascular flow and metabolism: An overview' , Clinical and Experimental Pharmacology and Physiology, vol. 44, no. 1 , pp. 143-149 , doi:

Full text not available from this repository.


Skeletal muscle is an important site for insulin to regulate blood glucose levels. It is estimated that skeletal muscle is responsible for ~80% of insulin-mediated glucose disposal in the post-prandial period. The classical action of insulin to increase muscle glucose uptake involves insulin binding to insulin receptors on myocytes to stimulate glucose transporter 4 (GLUT 4) translocation to the cell surface membrane, enhancing glucose uptake. However, an additional role of insulin that is often under-appreciated is its action to increase muscle perfusion thereby improving insulin and glucose delivery to myocytes. Either of these responses (myocyte and/or vascular) may be impaired in insulin resistance, and both impairments are apparent in type 2 diabetes, resulting in diminished glucose disposal by muscle. The aim of this review is to report on the growing body of literature suggesting that insulin-mediated control of skeletal muscle perfusion is an important regulator of muscle glucose uptake and that impairment of microvascular insulin action has important physiological consequences early in the pathogenesis of insulin resistance. This work was discussed at the 2015 Australian Physiological Society Symposium "Physiological mechanisms controlling microvascular flow and muscle metabolism".

Item Type: Article
Authors/Creators:Keske, MA and Dwyer, RM and Russell, RD and Blackwood, SJ and Brown, AA and Hu, D and Premilovac, D and Richards, SM and Rattigan, S
Keywords: Microvascular blood flow, muscle metabolism
Journal or Publication Title: Clinical and Experimental Pharmacology and Physiology
Publisher: Blackwell Publishing Asia
ISSN: 0305-1870
DOI / ID Number:
Copyright Information:

Copyright 2016 John Wiley & Sons Australia, Ltd

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page