Open Access Repository

Numerical modelling of a fast pyrolysis process in a bubbling fluidized bed reactor

Downloads

Downloads per month over past year

Jalalifar, S, Ghiji, M, Abbassi, R ORCID: 0000-0002-9230-6175, Garaniya, V ORCID: 0000-0002-0090-147X and Hawboldt, K 2017 , 'Numerical modelling of a fast pyrolysis process in a bubbling fluidized bed reactor', in SH Wang (ed.), Proceedings of the 2017 International Conference on Sustainable Energy Engineering (IOP Conference Series: Earth and Environmental Science) , IOP Publishing, Inc., United Kingdom, pp. 139-145 , doi: 10.1088/1755-1315/73/1/012032.

[img]
Preview
PDF
22-CSE1014- Pap...pdf | Download (1MB)

| Preview

Abstract

In this study, the Eulerian-Granular approach is applied to simulate a fast pyrolysis bubbling fluidized bed reactor. Fast pyrolysis converts biomass to bio-products through thermochemical conversion in absence of oxygen. The aim of this study is to employ a numerical framework for simulation of the fast pyrolysis process and extend this to more complex reactor geometries. The framework first needs to be validated and this was accomplished by modelling a lab-scale pyrolysis fluidized bed reactor in 2-D and comparing with published data. A multi-phase CFD model has been employed to obtain clearer insights into the physical phenomena associated with flow dynamics and heat transfer, and by extension the impact on reaction rates. Biomass thermally decomposes to solid, condensable and non-condensable and therefore a multi-fluid model is used. A simplified reaction model is sued where the many components are grouped into a solid reacting phase, condensable/non-condensable phase, and non-reacting solid phase (the heat carrier). The biomass decomposition is simplified to four reaction mechanisms based on the thermal decomposition of cellulose. A time-splitting method is used for coupling of multi-fluid model and reaction rates. A good agreement is witnessed in the products yield between the CFD simulation and the experiment.

Item Type: Conference Publication
Authors/Creators:Jalalifar, S and Ghiji, M and Abbassi, R and Garaniya, V and Hawboldt, K
Keywords: fast pyrolysis, bubbling fluidized bed, CFD
Journal or Publication Title: Proceedings of the 2017 International Conference on Sustainable Energy Engineering (IOP Conference Series: Earth and Environmental Science)
Publisher: IOP Publishing, Inc.
ISSN: 1755-1315
DOI / ID Number: 10.1088/1755-1315/73/1/012032
Copyright Information:

Copyright 2017 The Authors. Published under Creative Commons Attribution 3.0 Unported (CC BY 3.0) licence in, Proceedings of the 2017 International Conference on Sustainable Energy Engineering (IOP Conference Series: Earth and Environmental Science) by IOP Publishing Ltd. https://creativecommons.org/licenses/by/3.0/Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP