Satellite altimeter calibration and validation using GPS buoy technology

By

Christopher S. Watson, B. Surv (Hons) UTAS

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

Centre for Spatial Information Science
University of Tasmania

July 2005
Declaration

This Thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the Thesis, and to the best of the candidate’s knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the Thesis.

Christopher S. Watson
Authority of Access

This Thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Christopher S. Watson
Supporting Publications

A number of publications have been produced while undertaking this Thesis. Where parts of these publications have been reproduced in this Thesis, the work is my original contribution to the publication. Dr Neil White is acknowledged with undertaking the initial data processing of the oceanographic moorings, and extracting the altimeter GDR data. The publications include:

To A.R. Gear
Abstract

Satellite altimeters have become an important tool for the study of global and regional mean sea level change, offering near global coverage and unprecedented accuracy. Issues of calibration and validation remain central to their ability to determine estimates of change at accuracies of better than 0.5 mm/yr. This Thesis provides an absolute calibration of the TOPEX/Poseidon (T/P) and Jason-1 satellite altimeters, undertaken in Bass Strait, Australia. The research provides a contribution to the international calibration effort, with the Bass Strait site situated as the only one of its kind in the Southern Hemisphere.

A unique in situ absolute calibration methodology is presented, reliant on the episodic deployment of GPS equipped buoys at an offshore comparison point. In contrast to other calibration studies, data from the GPS buoys are used to solve for the absolute datum of an offshore oceanographic array (incorporating a pressure sensor, temperature and salinity recorders and a current meter array). Combined with data from a coastal tide gauge and a regional GPS network, the methodology enables the cycle-by-cycle computation of absolute bias, without the necessity of estimating a marine geoid. Emphasis within this Thesis is given to the design and development of the GPS equipped buoys, in addition to the standardisation requirements of the geodetic analysis. The GPS buoy design is applied to both the altimeter calibration problem, in addition to a near shore application involving the calibration of tide gauges in the Antarctic and Sub-Antarctic. The attention to standardisation ensures comparable estimates of in situ and altimeter sea surface height. Differences at the 9 mm level for the pole tide displacement and ±15 mm for the solid Earth tide displacement are revealed when using the GAMIT GPS analysis suite. The implications of non-standardisation are further illustrated with the presentation of time series analysis from various continuous GPS datasets.

Absolute bias and 1-sigma uncertainties from a formal error budget are 0 ± 14 mm for T/P and +152 ± 13 mm for Jason-1 (for the GDR POE orbits, computed over the calibration phase, 18 Jan 2002 – 14 Aug 2002). Results over the duration of the T/P mission confirm a dependence on the choice of Sea State Bias (SSB), with the overall mean absolute bias not statistically different from zero. Extending the comparison period between Jason-1 cycles 1 to 101 (18 Jan 2002 – 06 Oct 2004) reduces the Jason-1 mean absolute bias by approximately 10 mm and reveals a significant slope of -7.6 ± 5.6 mm/yr. Whilst the cause for the significant absolute bias remains unexplained, the source of the drift appears attributable to the microwave radiometer, observed to be measuring drier over time (-5.9 ± 2.1 mm/yr). Drift of the POE orbit relative to the JPL GPS orbit is shown to account for the remaining trend observed at the Bass Strait site. After considering geographically correlated errors, absolute bias results show excellent agreement with other international calibration studies. These results aid in understanding the performance of both the T/P and Jason-1 altimeters, further underscoring calibration and cross calibration of altimeters as essential for the study of low frequency oceanographic processes, including regional and global mean sea level change. The inference of geographically correlated orbit errors, and the significant unexplained Jason-1 absolute bias emphasises the need for maintaining globally distributed verification sites and makes it clear that further work is required to improve our understanding of the Jason-1 instrument and its algorithm behaviour.
Table of Contents

DECLARATION..I
AUTHORITY OF ACCESS... II
SUPPORTING PUBLICATIONS.. III
ABSTRACT.. V
TABLE OF CONTENTS.. VI
ACKNOWLEDGEMENTS... X
LIST OF FIGURES.. XII
LIST OF TABLES .. XVI

Chapter 1

INTRODUCTION... 1
1.1 Overview .. 1
1.2 Satellite Altimetry .. 4
1.2.1 Review .. 4
1.2.2 The Altimeter Measurement System ... 7
 1.2.2.1 Range Determination ... 9
 1.2.2.2 Orbit Determination ... 11
 1.2.2.3 Path Length and Other Corrections .. 12
 1.2.2.4 Error Budget ... 15
1.3 The Problem – Altimeter Calibration ... 16
 1.3.1 Dedicated Absolute Calibration Sites .. 17
 1.3.2 Tide Gauge Network Calibration .. 20
 1.3.3 The Jason-1 Calibration Plan ... 22
1.4 Thesis Aims and Outline ... 23

Chapter 2

GPS BUOY DEVELOPMENT... 26
2.1 Introduction .. 26
2.2 Water Level Measurement using GPS ... 27
 2.2.1 Initial Research ... 27
 2.2.2 Lightweight Buoy Development ... 30
 2.2.3 Autonomous ‘Oceanic’ Buoy Development .. 35
 2.2.4 Miscellaneous Water Level Applications ... 38
 2.2.5 Summary ... 39
2.3 UTAS GPS Buoy Development ... 41
 2.3.1 Mk I Design .. 41
 2.3.2 Mk II Design ... 42
2.4 Mk II Operational Considerations ... 45
 2.4.1 Antenna Height Determination... 45
 2.4.2 Phase Centre Variation ... 47
 2.4.2.1 TEQC Analysis ... 51
 2.4.2.2 SNR Analysis .. 53
 2.4.2.3 Short Baseline Analysis ... 55
Chapter 3

WORKING AT THE 1 CM LEVEL ... 66

3.1 Introduction .. 66
3.2 Reference Frames for Geodetic Positioning ... 68
 3.2.1 Limitations .. 69
3.3 Computational Considerations ... 74
 3.3.1 Solid Earth Tide .. 76
 3.3.2 Pole Tide .. 82
 3.3.3 Mass Loading Deformations .. 84
 3.3.3.1 Ocean Tide Loading ... 84
 3.3.3.2 Atmospheric Loading .. 86
 3.3.3.3 Hydrological Loading ... 87
 3.3.4 Summary .. 89
3.4 Geodetic Analysis at the Bass Strait Calibration Site 90
 3.4.1 Overview .. 90
 3.4.2 GPS Reference Stations ... 91
 3.4.2.1 Local Area GPS Reference Stations 91
 3.4.2.2 Regional GPS Reference Stations ... 95
 3.4.3 GPS Analysis Methodology and Computational Standards 96
 3.4.3.1 The GAMIT Analysis ... 97
 3.4.3.2 The GLOBK Analysis ... 99
 3.4.3.3 Limitations Caused by the Tide Model 102
 3.4.4 Error Analysis ... 104
3.5 GPS Time Series Analysis ... 108
 3.5.1 Noise Structure in Geodetic Time Series 108
 3.5.2 Time Series Selection .. 111
 3.5.3 Analysis Strategy .. 111
 3.5.3.1 Spectral Analysis ... 112
 3.5.3.2 Wavelet Analysis ... 113
 3.5.3.3 Maximum Likelihood Estimation of Noise Structure 114
 3.5.4 Results ... 115
 3.5.4.1 Bass Strait (BUR1) Site Velocity .. 115
 3.5.4.2 Mis-modelling the Solid Earth Tide in Bernese 119
 3.5.4.3 The Effect of Noise Structure on Velocity Uncertainty 120
 3.5.4.4 The Influence of Ocean Tide Loading 121
 3.5.4.5 Velocity Differences between Solutions 127
3.6 Summary ... 129
Chapter 4

ABSOLUTE CALIBRATION IN BASS STRAIT... 131

4.1 Introduction ... 131
4.2 Absolute Calibration Methodologies .. 133
4.3 The Bass Strait Calibration Site ... 138
 4.3.1 Site Details.. 138
 4.3.2 Calibration Methodology... 139
 4.3.3 Instrumentation ... 143
 4.3.3.1 GPS Buoys and Reference Stations.................................... 143
 4.3.3.2 Oceanographic Mooring Array.. 144
 4.3.3.3 Tide Gauge .. 145
4.4 Data Processing .. 146
 4.4.1 Mooring Data Processing .. 146
 4.4.2 GPS Data Processing .. 147
 4.4.2.1 Kinematic GPS Analysis.. 147
 4.4.2.2 Filtering and Transformation... 149
 4.4.2.3 Mooring SSH Datum Solution and Error Analysis 151
 4.4.3 Tide Gauge Data Processing ... 154
 4.4.4 Altimeter Data Processing ... 159
 4.4.4.1 TOPEX/Poseidon... 159
 4.4.4.2 Jason-1.. 160
 4.4.4.3 TMR and JMR Land Contamination 161
 4.4.4.4 Comparison Point Geometry and Interpolation...................... 163
 4.4.4.5 Cross-Track Geoid Gradient .. 165
4.5 Error Budget... 168
4.6 Results .. 170
 4.6.1 Absolute Bias Results ... 170
 4.6.1.1 TOPEX/Poseidon and Jason-1: Calibration Phase 170
 4.6.1.2 Jason-1: All Available Cycles .. 173
 4.6.1.3 TOPEX/Poseidon: Side A and Side B 177
 4.6.1.4 Comparison with other Calibration Sites 179
 4.6.2 Radiometer Calibration Results ... 180
4.7 Summary... 184

Chapter 5

TIDE GAUGE VERIFICATION
TASMANIA, THE SUB-ANTARCTIC AND THE ANTARCTIC..................................... 187

5.1 Introduction ... 187
5.2 Tide Gauge Technologies .. 189
 5.2.1 Acoustic Tide Gauges .. 190
 5.2.2 Pressure Gauges ... 191
 5.2.3 Emerging Technologies ... 192
5.3 Tide Gauge Calibration Methodologies ... 193
 5.3.1 GPS Buoy Based Verification Methodology 194
 5.3.1.1 Instrumentation ... 194
 5.3.1.2 GPS Data Processing ... 196
 5.3.1.3 Tide Gauge Data Processing .. 198
 5.4 Gauge Verification at the Bass Strait Calibration Site 199
 5.4.1 The Burnie Tide Gauge .. 199
Chapter 6

CONCLUSIONS ... 242

6.1 The Bass Strait Calibration Site ... 242
6.2 GPS Buoy Development... 244
6.3 Future Implications and Research Directions... 244
6.4 Final Conclusions... 247

BIBLIOGRAPHY ... 248

Appendices

Appendix A ... A-1
Appendix B ... B-1
Appendix C ... C-1
Appendix D ... D-1
Acknowledgements

I can not escape a feeling of selfishness by writing just one name on the cover of this Thesis. Many people are to be thanked for their contribution, both professionally and personally.

Firstly, I sincerely thank Richard Coleman for his supervision, guidance and friendship so generously given both before and throughout my candidature. I can’t imagine a better mentor, and I have no doubt this Thesis would not be what it is without Richard’s untiring involvement. John Church and Neil White also deserve special thanks for their significant contribution to the fieldwork, analysis, and persistence in answering so many questions. It has been a delight to work as part of a team and be considered an equal with these people.

Peter Morgan and Tony Sprent have also provided significant assistance throughout this project. I thank Peter for sharing his knowledge of satellite geodesy, particularly the intricacies of the GAMIT/GLOBK software suite. Peter also generously provided his time series for analysis in this Thesis. Tony came up with the GPS buoy design and provided numerous answers to practical questions along the way.

Roger Handsworth and the Australian Antarctic Data Centre team are thanked for their assistance in the field work undertaken at Macquarie Island and in Antarctica. Thanks to John Hunter for providing his tidal analysis software and answering questions in relation to the tide gauge work. The CSIRO Marine Research mooring group are thanked for undertaking the setup, deployment and retrieval of the mooring array.

Numerous individuals and groups must be thanked for providing funding and data for this study. The CSIRO Earth Observation Centre (EOC) provided funding for main component of this study. I was supported by an Australian Postgraduate Award and CSIRO scholarship for which I was very grateful. Bob Twilley and the Geoscience Australia team maintain the data from the BUR1 GPS installation and also operate the Australian Regional GPS Network (ARGN). The National Tidal Facility (NTF) operates and maintains the Burnie tide gauge with the assistance from the Burnie Ports Corporation. Neil Adams from the Australian Bureau of Meteorology provided atmospheric pressure information. Veronique Dehant and Leonid Petrov generously provided their solid Earth tide routines. Bob King and Tom Herring answered many questions in relation to the GAMIT/GLOBK and Track software suites. Altimetry products were obtained from the Jet Propulsion Laboratory (JPL) PO.DAAC and Centre National d’Études Spatiales (CNES) AVISO archives. Bruce Haines, Pascal Bonnefond, Phil Callahan and other members of the TOPEX/Poseidon and Jason-1 SWT/OSTST provided valuable responses to numerous technical questions. Bruce Haines was particularly patient in answering my many questions and also providing the GPS reduced dynamic orbits. Michael and Bradley Hardy operated the boat in Bass Strait and provided assistance during the buoy deployment campaign. Thanks to all these people for their valuable contributions.
I would like to thank my colleagues within CenSIS and my wider group of friends for making the last three and a bit years an enjoyable time. The regular coffee group has done a fine job in keeping my caffeine levels at their optimum best.

Before I make my final acknowledgement, I would like to thank my parents, Janne and Stephen. It is a great privilege to be in the position to undertake academic research, and I thank my parents for providing the opportunities to learn and explore, enabling me to do now what I so much enjoy.

I reserve my final thankyou to Rachael for sharing in the successes and struggles that this work represents. Rachael has comforted and motivated during the difficult times and celebrated and congratulated during the good times. I look forward to the next phase in our lives together.
List of Figures

1-1 Schematic view of the altimeter measurement system. ... 8
1-2 TOPEX range correction determined from the combined dual frequency range calibration. .. 10
1-3 The Harvest platform dedicated calibration site (NASA) for T/P and Jason-1. ... 19
2-1 Schematic view of the CCAR wave rider GPS buoy (adapted from Key et al., 1998). .. 31
2-2 CNES/CERGA buoy designs. ... 32
2-3 Multiple wave rider designs from the Institut d’Estudis Espacials de Catalunya (IEEC), CSIC Research Unit, Barcelona, Spain. ... 33
2-4 Wave rider ‘life preserver’ buoy designs. .. 34
2-5 Offshore buoys developed for continuous operation. ... 36
2-6 Tsunami monitoring buoy deployed offshore from the Sanriku coast in Japan. 37
2-7 The UTAS Mk I buoy design. .. 41
2-8 Schematic view of the UTAS Mk II buoy design... 42
2-9 Schematic view of the internal layout of the Mk II capsule..................................... 43
2-10 Photograph of the completed buoy in operation. .. 44
2-11 GPS Buoy in deployment configuration in a saline pool. 45
2-12 Schematic view of the surfaces involved in the determination of the antenna ARP height above the mean water level. ... 46
2-13 SCIGN short dome shown with the choke ring antenna surface superimposed over the dome. .. 49
2-14 Antenna mounts on the UTAS physics building. ... 50
2-15 The GPS dome apparatus attached to the Leica AT504 antenna on Pillar 2. 50
2-16 Daily comparison of multipath (MP1 and MP2) and total cycle slips for the dome OFF and dome ON cases. ... 51
2-17 T EQC multipath analysis. ... 52
2-18 L1 SNR Analysis. .. 54
2-19 L2 SNR Analysis. .. 55
2-20 Dome ON and OFF short baseline component analysis. 56
2-21 LC Up component of the HOB2 Baseline analysis (~14.2 km). 57
2-22 Buoy deployment configuration for coastal applications. 59
2-23 Video footage and corresponding GPS Rinex data from buoy ‘B1’ deployed in Bass Strait during the passage of a large (~2 m) steep swell front. 60
2-24 Exaggerated schematic view of an improved tethering system. 61
2-25 Wave tank tether analysis. .. 62
2-26 Positions of the upper (top panels) and lower targets (bottom panels) relative to their positions at rest for both Case 1 and Case 2 trials. 63
3-1 Solid Earth tide at the BUR1 GPS site. .. 78
3-2 Differences in modelled solid Earth tide displacement in the UP component at sites DARW, ALIC, CEDU, HOB2, MAC1 and CAS1 (DOY 110-130, 2003). 79
3-3 Tidal surfaces used in geodetic analyses. ... 81
3-4 Pole tide displacement in the vertical component at the Bass Strait
comm比较点。..83
3-5 Continuously operating GPS station (BUR1), collocated with the Burnie
tide gauge. ..92
3-6 Sky-plot from the BUR1 Antenna showing the azimuth and elevation of
the breakwater wall, hand rail, met sensor mast and mesh security fence.93
3-7 Data availability at the BUR1 GPS site. ...93
3-8 Table Cape (TBCP) and Rocky Cape (RKCP) GPS reference stations94
3-9 The Australian Regional GPS Network (ARGN) and the Bass Strait
calibration site reference stations. ...95
3-10 GAMIT nrms from the seven episodic solutions of the regional network.98
3-11 GAMIT 1-sigma uncertainties in the radial component at the BUR1,
TBCP and RKCP sites. ..99
3-12 ARGN, IGS1, IGS2 and IGS3 networks used in the GLOBK analysis.100
3-13 Forward χ2/f statistic for the GLOBK combination of the various networks. ..101
3-14 Burnie (BUR1) and Hobart (HOB2) GPS time series.105
3-15 Long-term and episodic BUR1 absolute height time series.106
3-16 Mortlet wavelet and the centre frequency based approximation.113
3-17 Continuous wavelet analysis of the test dataset.114
3-18 Vertical time series at the BUR1 site (PJM solution).116
3-19 Burnie GPS and tide gauge installation showing the steel beam used to
support both instruments. ..118
3-20 Vertical time series at the BUR1 site (GA solution).119
3-21 Latitudinal dependence of the vertical velocity uncertainty and the spectral
index as determined using the CATS software. ..120
3-22 Power spectra for the vertical component at the KARR site, for the JPL,
SOP and PJM solutions. ..122
3-23 Vertical time series from the KARR site for each solution.123
3-24 Detail in the level 3 wavelet decomposition (period ~14 days) for the JPL
and SOP solutions at the KARR site (vertical component).123
3-25 Wavelet power for the high frequency components of the KARR vertical
time series. ...124
3-26 Power spectra at the KARR site for the period when no OTL was applied
in the JPL and SOP solutions. ..125
3-27 Differences in vertical velocity between solutions plotted against latitude.127
4-1 Location of the Bass Strait calibration site on descending T/P and Jason-1
pass 088. ...133
4-2 The Bass Strait Calibration Site. ..139
4-3 Calibration methodology and associated instrumentation at the Bass Strait
calibration site. ..140
4-4 Mooring array placed along the altimeter ground track from Burnie to the
comparison point location. ...144
4-5 Burnie Tide Gauge and GPS location. ..145
4-6 An example taken from the kinematic analysis of Buoy2 from the TBCP
reference station. ..150
4-7 Mooring datum determination. ..152
4-8 Example rTtg, SSHMooring, SSHEx and SSHPredicted Diff data taken over three
typical days in March 2002 ...155
4-9 Low passed sea surface heights and currents at the Burnie and offshore
comparison point locations ...157
4-10 18.0 GHz TMR and 18.7 GHz JMR footprint (~40 km) at the Bass Strait
Calibration site ..162
4-11 Typical TMR wet delay profiles across Bass Strait162
4-12 Example geometry at the comparison point (CP) taken from Jason-1 cycle
042 on the 01/03/2003 ..164
4-13 GSFC00.1 and KMS01 MSS models at the Bass Strait Site166
4-14 AUSGeoid98 and CLS01 models at the Bass Strait Site167
4-15 Absolute bias results for the formation flight period of the T/P and Jason-1
missions, computed against the SSHMooring series171
4-16 Jason-1 absolute bias over the formation flight period computed using a)
POE orbits, and b) JPL GPS orbits. ..172
4-17 Jason-1 absolute bias using the POE orbit and standard GDR SSB model
(cycles 1-101) ..173
4-18 Jason-1 absolute bias using the JPL reduced dynamic GPS orbit and
standard GDR SSB model (cycles 1-101). ...174
4-19 Differences in Jason-1 POE orbit and the JPL reduced dynamic GPS orbit
(POE - GPS) ..174
4-20 Geographically correlated orbit errors present between the GDR POE
orbits and the JPL GPS orbits for all descending passes for the first 20
months of the Jason-1 mission ...176
4-21 Absolute bias for T/P Side A (cycles 001-235) and T/P Side B (cycles 236-
365). ...177
4-22 Difference in the JMR and TMR extrapolated wet delays (JMR – TMR).180
4-23 TMR vs BUR1 GPS wet delay ...181
4-24 TMR – BUR1 GPS wet delay difference time series182
4-25 JMR – BUR1 GPS wet delay difference time series183
5-1 Schematic view of three modern tide gauge technologies including the
bottom mounted pressure gauge, acoustic gauge and radar gauge.189
5-2 Schematic view of the GPS buoy tide gauge verification methodology194
5-3 Burnie port complex, tide gauge and GPS station locations199
5-4 The Burnie tide gauge and co-located GPS installation200
5-5 Datum differences between the collocated Burnie tide gauge and
continuously operating GPS reference station201
5-6 Variability (1 standard deviation) of the residual time series (filtered buoy
– tide gauge), for various averaging durations of the GPS buoy data202
5-7 Burnie verification results using temperature corrected tide gauge data203
5-8 Burnie GPS buoy and tide gauge regression ..207
5-9 Macquarie Island tide gauge and GPS station locations212
5-10 Photograph of the tide gauge and GPS station locations looking to the
northeast ...212
5-11 The Macquarie Island acoustic tide gauge site214
5-12 Schematic diagram of the inclined acoustic tide gauge at Macquarie Island..215
5-13 Variability (1 standard deviation) of the residual time series (filtered
buoy – tide gauge), for various averaging durations216
5-14 Macquarie Island verification results. ...218
5-15 Scenario 1 regression analysis assuming a correct observed inclination angle. ..220
5-16 Scenario 2 regression analysis assuming an unknown inclination angle.222
5-17 Residual difference between the filtered GPS buoy data and the tide gauge data reduced using the derived angle of inclination of 32° 32' 50". ...223
5-18 90 seconds of GPS buoy 1 Hz SSH data revealing swell with a range of 0.9 m and a period of approximately 15 seconds...225
5-19 Swell signal in the 1 Hz GPS buoy results. ..226
5-20 Band pass filtered GPS buoy SSH data between 13:00 and 13:40 revealing a dominant oscillation with a period of approximately 6.35 minutes.227
5-21 Pressure gauge mooring used at the Antarctic sites. ..230
5-22 Davis Station tide gauge and GPS reference station locations.231
5-23 Schematic illustration of the Davis time gauge installation.232
5-24 Datum connections to the submerged pressure gauges.233
5-25 GPS buoy over the Davis bottom mounted pressure gauge.235
5-26 Davis Station verification results. ...236
5-27 Davis GPS buoy and tide gauge regression. ...238
6-1 Global mean sea level from T/P and Jason-1. ...245
List of Tables

1-1 Evolution of satellite altimeter missions showing approximate range precision and radial orbit accuracy. ... 4
1-2 Jason-1 error budget (both mission specifications and actual performance) for 1 Hz GDR data (from Menard et al., 2003). ... 15
2-1 Advantages, disadvantages and applications of current GPS buoy designs. 40
3-1 Sites in the Australian region used to test the latitudinal dependence of the IERS 2003 – IERS 1992 solid Earth tide displacement differences. 78
3-2 OTL Amplitudes and phases for the Hobart VLBI and GPS site from GAMIT GPS analysis suite, stations.oct (V10.1). ... 85
3-3 Episodic GPS sessions at the Bass Strait calibration site. 91
3-4 Final sites and relative sigmas used in the frame stabilisation process. 102
3-5 ITRF2000 coordinates for BUR1, TBCP and RKCP (at epoch 2002.401) 102
3-6 BUR1 Site Velocity and Uncertainty (1-sigma). .. 117
4-1 GPS buoy deployment at the Bass Strait calibration site. 143
4-2 Tidal amplitudes and phase lags (mooring - tide gauge) for significant constituents in the SSH_{ref} tidal analysis. ... 155
4-3 Error budget for the Bass Strait calibration site during the formation flight period of the mission. ... 168