Open Access Repository

Skeletal muscle microvascular-linked improvements in glycemic control from resistance training in individuals with Type 2 Diabetes

Russell, RD ORCID: 0000-0002-1275-1472, Hu, D ORCID: 0000-0003-2654-5212, Greenaway, T, Blackwood, SJ, Dwyer, RM ORCID: 0000-0001-8361-2712, Sharman, JE ORCID: 0000-0003-2792-0811, Jones, G ORCID: 0000-0002-9814-0006, Squibb, KA ORCID: 0000-0003-0664-9305, Brown, AA, Otahal, P ORCID: 0000-0003-4042-1769, Boman, M, Al-Aubaidy, H ORCID: 0000-0001-9564-0120, Premilovac, D ORCID: 0000-0003-2770-4713, Roberts, CK, Hitchins, S, Richards, SM ORCID: 0000-0002-5988-0423, Rattigan, S ORCID: 0000-0001-6172-3040 and Keske, MA ORCID: 0000-0003-4214-7628 2017 , 'Skeletal muscle microvascular-linked improvements in glycemic control from resistance training in individuals with Type 2 Diabetes' , Diabetes Care, vol. 40, no. 9 , pp. 1256-1263 , doi: 10.2337/dc16-2750.

Full text not available from this repository.


Objective:Insulin increases glucose disposal in part by enhancing microvascular blood flow (MBF) and substrate delivery to myocytes. Insulin's microvascular action is impaired with insulin resistance and type 2 diabetes. Resistance training (RT) improves glycemic control and insulin sensitivity, but whether this improvement is linked to augmented skeletal muscle microvascular responses in type 2 diabetes is unknown.Research design and methods:Seventeen (11 male and 6 female; 52 ± 2 years old) sedentary patients with type 2 diabetes underwent 6 weeks of whole-body RT. Before and after RT, participants who fasted overnight had clinical chemistries measured (lipids, glucose, HbA1c, insulin, and advanced glycation end products) and underwent an oral glucose challenge (OGC) (50 g × 2 h). Forearm muscle MBF was assessed by contrast-enhanced ultrasound, skin MBF by laser Doppler flowmetry, and brachial artery flow by Doppler ultrasound at baseline and 60 min post-OGC. A whole-body DEXA scan before and after RT assessed body composition.Results:After RT, muscle MBF response to the OGC increased, while skin microvascular responses were unchanged. These microvascular adaptations were accompanied by improved glycemic control (fasting blood glucose, HbA1c, and glucose area under the curve [AUC] during OGC) and increased lean body mass and reductions in fasting plasma triglyceride, total cholesterol, advanced glycation end products, and total body fat. Changes in muscle MBF response after RT significantly correlated with reductions in fasting blood glucose, HbA1c, and OGC AUC with adjustment for age, sex, % body fat, and % lean mass.Conclusions:RT improves OGC-stimulated muscle MBF and glycemic control concomitantly, suggesting that MBF plays a role in improved glycemic control from RT.

Item Type: Article
Authors/Creators:Russell, RD and Hu, D and Greenaway, T and Blackwood, SJ and Dwyer, RM and Sharman, JE and Jones, G and Squibb, KA and Brown, AA and Otahal, P and Boman, M and Al-Aubaidy, H and Premilovac, D and Roberts, CK and Hitchins, S and Richards, SM and Rattigan, S and Keske, MA
Journal or Publication Title: Diabetes Care
Publisher: American Diabetes Association
ISSN: 0149-5992
DOI / ID Number: 10.2337/dc16-2750
Copyright Information:

Copyright 2017 by the American Diabetes Association

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page