Open Access Repository
Future sea level change from Antarctica's Lambert-Amery glacial system

|
PDF
Pittard_et_al-2...pdf | Download (1MB) | Preview |
Abstract
Future global mean sea level (GMSL) change is dependent on the complex response of the Antarctic ice sheet to ongoing changes and feedbacks in the climate system. The Lambert-Amery glacial system has been observed to be stable over the recent period yet is potentially at risk of rapid grounding line retreat and ice discharge given that a significant volume of its ice is grounded below sea level, making its future contribution to GMSL uncertain. Using a regional ice sheet model of the Lambert-Amery system, we find that under a range of future warming and extreme scenarios, the simulated grounding line remains stable and does not trigger rapid mass loss from grounding line retreat. This allows for increased future accumulation to exceed the mass loss from ice dynamical changes. We suggest that the Lambert-Amery glacial system will remain stable or gain ice mass and mitigate a portion of potential future sea level rise over the next 500 years, with a range of +3.6 to −117.5 mm GMSL equivalent.
Item Type: | Article |
---|---|
Authors/Creators: | Pittard, ML and Galton-Fenzi, BK and Watson, CS and Roberts, JL |
Keywords: | ice flow, sea level change, climate change, ice sheet modelling |
Journal or Publication Title: | Geophysical Research Letters |
Publisher: | Amer Geophysical Union |
ISSN: | 0094-8276 |
DOI / ID Number: | https://doi.org/10.1002/2017GL073486 |
Copyright Information: | ©2017. American Geophysical Union |
Related URLs: | |
Item Statistics: | View statistics for this item |
Actions (login required)
![]() |
Item Control Page |