Open Access Repository
Towards improved estimates of sea-ice algal biomass: experimental assessment of hyperspectral imaging cameras for under-ice studies






|
PDF
116484 final.pdf | Download (486kB) | Preview |
Abstract
Ice algae are a key component in polar marine food webs and have an active role in large-scale biogeochemical cycles. They remain extremely under-sampled due to the coarse nature of traditional point sampling methods compounded by the general logistical limitations of surveying in polar regions. This study provides a first assessment of hyperspectral imaging as an under-ice remote-sensing method to capture sea-ice algae biomass spatial variability at the ice/water interface. Ice-algal cultures were inoculated in a unique inverted sea-ice simulation tank at increasing concentrations over designated cylinder enclosures and sparsely across the ice/water interface. Hyperspectral images of the sea ice were acquired with a pushbroom sensor attaining 0.9 mm square pixel spatial resolution for three different spectral resolutions (1.7, 3.4, 6.7 nm). Image analysis revealed biomass distribution matching the inoculated chlorophyll a concentrations within each cylinder. While spectral resolutions >6 nm hindered biomass differentiation, 1.7 and 3.4 nm were able to resolve spatial variation in ice algal biomass implying a coherent sensor selection. The inverted ice tank provided a suitable sea-ice analogue platform for testing key parameters of the methodology. The results highlight the potential of hyperspectral imaging to capture sea-ice algal biomass variability at unprecedented scales in a non-invasive way.
Item Type: | Article |
---|---|
Authors/Creators: | Cimoli, E and Lucieer, A and Meiners, KM and Lund-Hansen, LC and Kennedy, FC and Martin, A and McMinn, A and Lucieer, V |
Keywords: | sea ice, Antarctica, hyperspectral imaging, remote sensing, ice algae, ice tank, under-ice environment |
Journal or Publication Title: | Annals of Glaciology |
Publisher: | Int Glaciol Soc |
ISSN: | 0260-3055 |
DOI / ID Number: | https://doi.org/10.1017/aog.2017.6 |
Copyright Information: | Copyright 2017 The Author. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ |
Related URLs: | |
Item Statistics: | View statistics for this item |
Actions (login required)
![]() |
Item Control Page |