Open Access Repository

Biotic and abiotic retention, recycling and remineralization of metals in the ocean

Boyd, PW ORCID: 0000-0001-7850-1911, Ellwood, MJ, Tagliabue, A and Twining, BS 2017 , 'Biotic and abiotic retention, recycling and remineralization of metals in the ocean' , Nature Geoscience, vol. 10, no. 3 , pp. 167-173 , doi: 10.1038/ngeo2876.

Full text not available from this repository.


Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: That is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals.

Item Type: Article
Authors/Creators:Boyd, PW and Ellwood, MJ and Tagliabue, A and Twining, BS
Keywords: element cycles, marine chemistry
Journal or Publication Title: Nature Geoscience
Publisher: Nature Publishing Group
ISSN: 1752-0894
DOI / ID Number: 10.1038/ngeo2876
Copyright Information:

Copyright 2017 Macmillan Publishers Limited, part of Springer Nature

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page