Open Access Repository

Immiscible sulfide melts in primitive oceanic magmas: evidence and implications from picrite lavas (Eastern Kamchatka, Russia)

Savelyev, DP, Kamenetsky, VS ORCID: 0000-0002-2734-8790, Danyushevsky, LV ORCID: 0000-0003-4050-6850, Botcharnikov, RE, Kamenetsky, MB ORCID: 0000-0002-0417-3975, Park, J-W, Portnyagin, MV, Olin, P, Krasheninnikov, SP, Hauff, F and Zelenski, ME 2018 , 'Immiscible sulfide melts in primitive oceanic magmas: evidence and implications from picrite lavas (Eastern Kamchatka, Russia)' , American Mineralogist, vol. 103 , pp. 886-898 , doi: 10.2138/am-2018-6352.

Full text not available from this repository.

Abstract

Silicate-sulfide liquid immiscibility in mantle-derived magmas has important control on the budget of siderophile and chalcophile metals, and is considered to be instrumental in the origin orthomagmatic sulfide deposits. Data on primitive sulfide melts in natural samples, even those representing most voluminous magmatism in oceanic rifts, are very scarce due to the small size and poor preservation of incipient sulfide melt globules. Here we present the first detailed report of the crystallized sulfides melts in the oceanic picrites of the (presumably) Cretaceous age Kamchatsky Mys ophiolite complex in Eastern Kamchatka (Far East Russia). Sulfide melts are present in three forms; (1) as inclusions in olivine (87.1–89.6 mol% Fo), (2) interstitial to the groundmass minerals (clinopyroxene, plagioclase, and Ti-magnetite) of studied picrites, and (3) as daughter phases in silicate melt inclusions hosted by olivine and Cr-spinel phenocrysts. The sulfide melt inclusions in olivine and the groundmass of studied rocks are composed of several sulfide phases that correspond to the monosulfide (Fe–Ni; Mss) and intermediate (Fe–Cu–Ni; Iss) solid solutions. Several 0.5], continuously evolve with crystallization of (e.g., increasing Cu/Ni and Au/PGE) and demonstrate metal fractionation between Mss and Iss. Although the compositional systematics found in this study are consistent with those previously recorded, the compositions of individual sulfide phases are strongly affected by the noble metal (PGE, Au) “nuggets” that exsolve at subsolidus temperatures and form during serpentinization of the rocks. We conclude that the budget of noble metals in the studied picrites is controlled by sulfides, but the abundances of Pt and Au are influenced by mobility in post-magmatic alteration. Our data can be also used for modeling sulfide saturation at crustal pressures and understanding behavior of the noble metals in primitive oceanic magmas.

Item Type: Article
Authors/Creators:Savelyev, DP and Kamenetsky, VS and Danyushevsky, LV and Botcharnikov, RE and Kamenetsky, MB and Park, J-W and Portnyagin, MV and Olin, P and Krasheninnikov, SP and Hauff, F and Zelenski, ME
Keywords: silicate-sulfide immiscibility, mid-ocean ridge magmatism, picrite, olivine, sulfide melt, platinum-group elements
Journal or Publication Title: American Mineralogist
Publisher: Mineralogical Soc Amer
ISSN: 0003-004X
DOI / ID Number: 10.2138/am-2018-6352
Copyright Information:

Copyright 2018 American Mineralogist

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP