Open Access Repository

Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone

Downloads

Downloads per month over past year

Begeman, CB, Tulaczyk, SM, Marsh, OJ, Mikucki, JA, Stanton, TP, Hodson, TO, Siegfried, MR, Powell, RD, Christianson, K and King, MA ORCID: 0000-0001-5611-9498 2018 , 'Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone' , Journal of Geophysical Research: Oceans , pp. 1-15 , doi: 10.1029/2018JC013987.

[img]
Preview
PDF (Accepted manuscript)
Begeman_et_al-2...pdf | Download (1MB)

| Preview

Abstract

Ocean‐driven melting of ice shelves is a primary mechanism for ice loss from Antarctica. However, due to the difficulty in accessing the sub‐ice shelf ocean cavity, the relationship between ice shelf melting and ocean conditions is poorly understood, particularly near the grounding zone, where the ice transitions from grounded to floating. We present the first borehole oceanographic observations from the grounding zone of the Ross Ice Shelf, Antarctica's largest ice shelf by area. Contrary to predictions that tidal currents near grounding zones mix the water column, we found that Ross Ice Shelf waters were vertically stratified. Current velocities at middepth in the ocean cavity did not change significantly over measurement periods at two different parts of the tidal cycle. The observed stratification resulted in low melt rates near this portion of the grounding zone, inferred from phase‐sensitive radar observations. These melt rates were generally <10 cm/year, which is lower than average for the Ross Ice Shelf (∼20 cm/year). Melt rates may be higher at portions of the grounding zone that experience higher subglacial discharge or stronger tidal mixing. Stratification in the cavity at the borehole site was prone to diffusive convection as a result of ice shelf melting. Since diffusive convection influences vertical heat and salt fluxes differently than shear‐driven turbulence, this process may affect ice shelf melting and merits further consideration in ocean models of sub‐ice shelf circulation.

Item Type: Article
Authors/Creators:Begeman, CB and Tulaczyk, SM and Marsh, OJ and Mikucki, JA and Stanton, TP and Hodson, TO and Siegfried, MR and Powell, RD and Christianson, K and King, MA
Keywords: ice-ocean interactions, ice shelf, Antarctica, double diffusion, grounding zone, ocean mixing, Ross Ice Shelf
Journal or Publication Title: Journal of Geophysical Research: Oceans
Publisher: Wiley-Blackwell Publishing
ISSN: 2169-9275
DOI / ID Number: 10.1029/2018JC013987
Copyright Information:

©2018. American Geophysical Union. All Rights Reserved.

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP