SMALL FORMAT DIGITAL AERIAL PHOTOGRAPHY FOR MAPPING AND MONITORING SEAGRASS HABITATS IN SHALLOW TEMPERATE MARINE WATERS

April, 2006

Richard Elliot Mount B.A (Hons)

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

Centre for Spatial Information Science,
School of Geography and Environmental Studies,
University of Tasmania

and

Marine Research Laboratories,
Tasmanian Aquaculture and Fisheries Institute,
University of Tasmania
Dedication

To my beloved Marylyn, who glows brighter than any sun glitter could ever do…
Declaration

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Richard Mount

Authority of Access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Richard Mount
Publications

Some parts of the thesis are either published or in the process of being published. Where there are multiple authors, the thesis only contains the portions of these works that were written by the author of this thesis. The following list indicates the components of the thesis that are either published or in the process of being published.

The majority of Chapters 1 and 2 is in press as:

A slightly adapted version of Chapter 3 is published as:

A slightly adapted version of Chapter 4 is published as:

Mount, R.E. (2003). The application of digital aerial photography to shallow water seabed mapping and monitoring - How deep can you see? Coastal GIS 2003: an integrated approach to Australian coastal issues, 7th - 8th July 2003, Wollongong, University of Wollongong. (Full review by two unknown peers and editor)
Abstract

Seagrasses are core components of the nearshore environment and there is sustained interest in developing mapping and monitoring techniques of their extent and condition for management purposes. An identified gap in mapping methods is the capacity to monitor at landscape scales, that is, areas that are larger than the 1 m2 quadrat and smaller than those covered by broad area mapping (approximately 5km2 or greater). Monitoring at the landscape scale is required to investigate the dynamic patterning and patchiness present in seagrass beds, as well as providing inputs and validation for predictive modelling. However, the acquisition and use of remote sensing images for these purposes provides many challenges to the practitioner. The primary aim of this thesis is to develop effective optical remote sensing techniques for mapping and monitoring seagrass habitats in shallow temperate marine waters, over depth ranges of approximately 0-10 m and spatial scales of hundreds of square metres.

Image capture is often compromised because of environmental conditions, such as sun glitter, water clarity, cloudiness and wind. Small format digital aerial photography was selected as the remote sensing platform for its flexibility and responsiveness regarding deployment when environmental conditions are favourable and its low cost, rapid access to imagery. To address the problem of sun glitter, a simplified algorithm was developed that allows the precise prediction of the extent of sun glitter on vertical, downward-looking imagery with the readily available inputs of sun elevation angle, wind speed and sensor field of view (FOV). Subsurface illumination was also investigated via the modelling of reflection and refraction at the water surface. These improvements and investigations enable more efficient and accurate image capture. Problems are also typically encountered during image interpretation, in part due to the characteristics of the seagrass habitats, including the common occurrence of uncertain boundaries and the high variability of vegetation density. Limitations on the detectability of the maximum depth limit (MDL) of seagrass were examined, with the discovery that if imagery is captured when water clarity is higher than the annual average, the limiting factor is the contrast between the seagrass and the surrounding substrate or submerged aquatic vegetation (SAV). A simple and inexpensive measurement of water clarity, Secchi depth (Z_{sd}), was found to be suitable when applying this monitoring method. These findings have substantially increased the feasibility of monitoring seagrass condition and extent via the MDL, as well as the water quality parameter of average annual water clarity (K_z).

A major challenge for image interpretation is presented by the high attenuation of light in water, which often means that spectral methods of image analysis, such as image classification, produce poor results. In response, an improved depth correction approach
was developed that uses digital bathymetry (DEM) to assist in removing the spectral attenuation of light by the water column. The method lifted the accuracy of mapping seagrass epiphyte abundance (i.e. the amount of associated algae including epiphytic and drift algae present, related to biomass) by an average 25% to an overall average accuracy of 75%, though it made no difference to the accuracy of SAV density mapping (Note: SAV density relates to the proximity and length of the SAV blades such that high density SAV obscures the substrate and creates high levels of shadowing while lower densities have less shadowing and allow the substrate to be observed.). The improved depth correction method also enabled, for the first time from aerial photography, the production of a spatially explicit map of epiphytic biomass in the form of a continuous prediction surface with values ranging from 4 to 58 g dried weight m$^{-2}$. In response to the shortcomings of the existing field observation measurements of seagrass density and cover for image interpretation purposes, a new measurement was created, called SAV structural density or SSD, which is designed to improve thematic coherence between aerial photography and field observations, such as downward-looking benthic videography or dive quadrats. This new measurement enabled the consistent discrimination of high and low density SAV with average overall accuracies of 77%, which supports the assessment of seagrass condition, particularly when complemented by the new maps of epiphyte abundance. This thesis presents methods that improve the quality of remote sensing of shallow marine habitats and provides a more reliable basis for further investigation of habitat change detection via spatial metrics and predictive modelling at landscape scales.
Acknowledgements

There are a very large number of people who have assisted bringing this thesis to fruition. I would especially like to appreciate my team of supervisors, who never once managed to contradict each other and remained exceptionally generous with their financial and intellectual support. I would particularly like to deeply appreciate my supervisor, Alan Jordan, who guided me gently but firmly through every stage of the project, yet allowed me full carriage of the intellectual content. His ability to produce resources and his willingness to support the more innovative aspects of my work are greatly appreciated.

I would like to acknowledge Richard Coleman for so readily and capably taking on the role of principal supervisor. His easy, friendly manner and astute observations coupled with his mathematical prowess always made our discussions interesting and valuable. Similarly, Jon Osborn gave freely of advice and encouragement and never failed to work through a tricky aerial photography issue and our Friday afternoon chats were always fun. I have greatly appreciated the use of the CenSIS equipment and facilities. Even though it was unfortunately somewhat truncated, I would like to acknowledge the role Eleanor Bruce (University of Sydney) played in inspiring me to take the plunge into starting a PhD. I thank Eleanor for the encouragement that her spark and drive to achieve have given, and her belief in me, including the opening up of intellectual and work opportunity vistas that came from participating in that rewarding gathering at Kioloa. I would like to thank my swimming, badminton and house-boating mate, Mick Russell, for stepping into my remote sensing world and pulling a rabbit out of the hat at just the right moment! His steady reassurance and genuine collegiality are much appreciated. Richard, Alan, Jon, Eleanor and Mick are all members of the supervision team.

My good friend Vanessa Lucieer and colleague Miles Lawler, both with the SEAMAP team at TAFI, strongly supported this project including by answering all my questions and, when the weather was “just right”, by turning out on weekends and before hours, either on the water or in the air. Their contribution to the quality and breadth of data collection is inestimable – many, many thanks. I would like to appreciate the Director at TAFI, Colin Buxton, who supported this work through the provision of a TAFI “top-up” to my existing Australian Postgraduate Award scholarship and the additional sum of $10,000 to enable a substantially higher standard and quantity of data collection.

My colleagues at the Centre for Spatial Information Science and School of Geography provided a stable and highly functional work environment, especially the office and general
staff including Darren Turner, Kate Charlesworth, Denis Charlesworth, David Sommerville, Pauline Harrowby, Moya Kilpatrick, and Rob Anders. Rob Musk was kind and thoughtfully imparted statistical knowledge and Chris Watson and Arko Lucieer provided stimulating conversations and fun – and Arko’s clarity greatly assisted Chapter 5 in particular. Yeong-Soung Bae and Tony Sprent were also very helpful with advice and problem solving. Simon Featherstone sorted out a new improved airborne navigation system and piloted the plane for a trial run.

The staff at Tasair, especially including Ralph Schwertner and John Townley, were more than helpful with flight planning, aircraft modifications, pricing and logistics. In the Department of Primary Industries, Water and Environment, I would like to particularly thank David Prince for taking a “wannabe” aerial photographer under his wing and guiding me with advice born of long experience. I also want to acknowledge the Chief Photogrammetrist, Chris Stone, and his staff for their support, including for the successful image acquisition flight over North West Bay and Middleton. I am grateful to Malcolm Lester of Lester Franks for the use of their Canon camera.

Thanks to my dad, Tony, for comments on Chapter 3 and to Chris and Kirsty for advice about the relative importance of a PhD to other things in life… Thanks to my immediate family, including Helen, for her timely insights into my “colouring in”, and finally, and most of all, to my beloved Marylyn, I thank you for the opportunity to follow my star. You have given me such long and deep support, and I honour your magnificent achievement in keeping yourself, our relationship, our family and me in such good spirits and health during a very long and, at times, arduous journey...
Table of Contents

Abstract .. v

Acknowledgements .. vii

Table of Contents ... ix

Table of Figures ... xii

Table of Tables .. xiv

Chapter 1 Background ... 1
 1.1 Study site ... 2
 1.2 Seagrass characteristics and monitoring methods ... 4
 1.2.1 Seagrass ecology in Tasmania ... 4
 1.2.2 Seagrass monitoring .. 7
 1.3 Habitat mapping with optical remote sensing in shallow marine waters 9
 1.3.1 Image capture and the optical conceptual model 10
 1.3.2 Image preparation and processing ... 14
 1.3.3 Image interpretation and analysis ... 15
 1.3.4 Accuracy assessment ... 16
 1.4 Thesis aim, research questions and structure .. 17
 1.4.1 Thesis structure .. 18

Chapter 2 The foundations of map production with digital aerial photography for seagrass monitoring .. 20
 2.1 Introduction ... 20
 2.2 Multispectral and hyperspectral remote sensing ... 21
 2.3 Remote sensing for seagrass monitoring: digital aerial photography 24
 2.3.1 Sensor developments .. 25
 2.3.2 Capturing imagery over shallow waters .. 26
 2.3.3 Image preparation and processing ... 30
 2.3.4 Image interpretation and mapping .. 34
 2.3.5 Applications development ... 35
 2.4 Conclusion ... 36

Chapter 3 Acquisition of through-water aerial survey images: Surface effects and the prediction of sun glitter and subsurface illumination 38
 3.1 Introduction ... 38
 3.2 Sun glitter .. 39
 3.2.1 Sun glitter model definition ... 40
 3.2.2 Sun glitter test case – methods .. 50
 3.2.3 Sun glitter test case – results ... 51
 3.2.4 Sun glitter – discussion ... 54
 3.3 Subsurface illumination .. 55
 3.3.1 Subsurface shadowing ... 57
References ..145

Appendix 1 Lens distortion removal code ...168
Appendix 2 Example of an aerial photography flight plan ..171
Appendix 3 Sun glitter time window table ...173
Appendix 4 Benthic video coding protocol ..174
Appendix 5 Tidal correction for single beam soundings ...178
Appendix 6 SEAMAP Tasmania JMP (SAS) tidal correction formula template180
Appendix 7 Digital camera CCD dimensions ..182
Appendix 8 Camera lens FOV comparisons ..183
Appendix 9 Imagery and benthic video tracklogs ...184
Table of Figures

Figure 1-1. Location map and Landsat image of North West Bay, Tasmania 3
Figure 1-2. Target seagrass species – H. tasmanica and H. australis 5
Figure 1-3. Effects of mooring chain on seagrass beds (North West Bay) 8
Figure 1-4. Conceptual model of pathways of light over and within a shallow water body 11
Figure 2-1. Snell’s Cone illustrating the minimum subsurface sun 28
Figure 2-2. Surface plot of modelled refraction and relief displacement 32
Figure 2-3. Nomogram of modelled relief and refraction displacement for depth and radial distance .. 32
Figure 3-1. Sun glitter obscuring sub-surface features at Lime Bay, southeast Tasmania .. 40
Figure 3-2. Angle of solar specular point in the image .. 41
Figure 3-3. The egg-shaped oval of sun glitter is shown in the northeast corner of a standard 23 by 23 cm aerial photograph ... 42
Figure 3-4. Long diameter of the sun glitter oval (Gaz) in degrees by sun angle, after Fleming (1968) .. 44
Figure 3-5. The Pathway to Heaven, illustrating the narrow width of the glitter-affected area. (Lynch and Livingstone, 1995) 45
Figure 3-6. Amount of glitter on nadir-looking images (Gd) .. 49
Figure 3-7. An illustrative graphic of sun glitter measurements in the north-east quarter of an aerial photo .. 51
Figure 3-8. Measured vs. predicted edge of the area of sun glitter closest to the image centre (Geo) ... 52
Figure 3-9. Measured vs. predicted edge of the area of the densest sun glitter closest to the image centre (Gdeo) .. 53
Figure 3-10. Global irradiance (Ki) at the sea surface for varying sun angles 56
Figure 3-11. Subsurface illumination and shadowing of seagrass plants (Heterozostera tasmanica) ... 57
Figure 3-12. Refraction of light across the air/seawater interface 58
Figure 4-1. Water clarity gradient in North West Bay .. 64
Figure 4-2. Sites where digital aerial photography and benthic video were collected for the study ... 66
Figure 4-3. Boundary locations from benthic video transect and depth contours in metres, Snug Beach ... 68
Figure 4-4. Results of match rates by contrast, depth and gradient for seagrass/sand boundaries .. 70
Figure 4-5. Comparison of the maximum perceived seagrass detection depths in the aerial imagery at 5 sites ... 71
Figure 4-6. The calculated integrated mean annual attenuation coefficient (Kz) values indicate a general north south gradient 72
Figure 5-1. An illustration of data capture techniques including quadrat-based dive transects between buoyed end markers, digital aerial photography, benthic video and Secchi disk readings. ...84

Figure 5-2. Exponential decay models fitted to 0.1 m depth bins for large numbers of pixel samples taken only over SAV from image 1528...88

Figure 5-3. Median pixel values of 70,000 samples standardised to SAV89

Figure 5-4. Profile of green and red pixel values (DN) from deep to shallow water...........91

Figure 5-5. Dense H. tasmanica from above showing bright leaf tips and large amounts of shadowing between the leaves and stems...93

Figure 5-7. Observed epiphyte abundance ranks versus abundance ranks predicted by red and green pixel values..97

Figure 5-8. Epiphyte biomass surface generated from depth corrected digital aerial photographic image..99

Figure 5-9. Quadrats of varying SAV structural density...106

Figure 5-10. Maximum likelihood classification result example:109

Figure 5-11. SVFCM classifications and associated confusion layers for three and four classes. ...110

Figure 5-12. Visual comparison display: original image compared with depth corrected image, in natural colour and with NGRI...113

Figure 5-13. Depth corrected image and an SVFCM three class classification of SAV density...114

Figure 5-14. Epsilon error bands illustration..122
Table of Tables

Table 1-1. Typical growth habits of temperate subtidal seagrass species found at the study site in southeastern Tasmania ...5
Table 1-2. Algae associated with seagrass beds in North West Bay (Sanderson, unpub.) 7
Table 2-1. Characteristics of commonly used airborne and satellite sensors (from Dekker et al., 2003) ...22
Table 3-1. Standard names and angles for camera lens angular fields of view used in aerial photography. ...41
Table 3-2. Summary of controls on image acquisition quality and optimal ranges.60
Table 4-1. Summary of deep edge boundary match results between video footage and digitised boundaries from aerial imagery, North West Bay, Tasmania, Jan-Mar, 2003. Percentages in brackets...69
Table 4-2. The integrated mean annual attenuation coefficient (K_z) calculated from the maximum depth limits of *H. tasmanica* observed in the imagery (z) based on an estimate of minimum light requirement from *Z. marina* (Carruthers et al., 2001) and listed from north to south. The Secchi Disk values (Z_{sd}) listed are from the day of image capture. 71
Table 5-1. Summary of analysis techniques. The set of techniques was applied twice, once to derive SAV density and once to derive epiphyte abundance.93
Table 5-2. Epiphyte abundance rankings converted to grams dried weight per square metre with Equation 5-5. ...97
Table 5-3. Epiphyte abundance: Accuracy assessments were applied to classed prediction surfaces that were based on depth corrected digital aerial photography. 98
Table 5-4. Summary of classifier analysis techniques. ..102
Table 5-5. Correctly and incorrectly classified pixels, cross-tabulated for two classifiers. Correctly and incorrectly classifications are determined with the same independent reference data. ...104
Table 5-6. Identification of the SAV structural density (SSD) class boundary between “high” and “low” for accuracy assessment reference data. The “high” class membership values of an FCM two class (high and low) classification was firstly plotted against the SAV structural density (SSD) reference data and then separately with a response surface consisting of SAV percent canopy cover (c) and SAV density (d). The coefficient of determination (r^2) for each of the fitted models is shown. The boundary location was determined by visual inspection..107
Table 5-7. SAV structural density class definition boundaries for accuracy assessment reference data (Note: the “none” class is sand)..107
Table 5-8. Discriminating sand versus SAV in digital aerial photography108
Table 5-9. Accuracy assessment: discriminating SAV structural density (SSD) in digital aerial photography. ...111
Table 5-10. SAV density: a comparison of depth corrected versus uncorrected imagery accuracy assessment Kappa results using McNemar’s χ^2 statistic (de Leeuw et al., 2002) when mapping SAV density with a ML classifier. If ($f_{12} + f_{21}$) is more than 20 the test works well, otherwise a binomial test is recommended.................111
Table 5-11. Accuracy assessment: discriminating epiphyte abundance in digital aerial photography with image classifiers. Classes for all analyses are “high”, “low” and “none”.

Table 5-12. Epiphyte abundance: a comparison of depth corrected versus uncorrected imagery accuracy assessment using McNemar’s χ^2 statistic (de Leeuw et al., 2002). If $(f_{12} + f_{21})$ is more than 20 the test works well, otherwise a binomial test is recommended.

Table 6-1. Spatial resolution of data sources: minimum discernible unit and minimum mapping unit.

Table 6-2. The relationship of the new measurements of SAV structural density and epiphyte abundance to seagrass monitoring.