Open Access Repository

Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO2 and warming conditions

Downloads

Downloads per month over past year

Sett, S, Schulz, KG, Bach, LT ORCID: 0000-0003-0202-3671 and Riebesell, U 2018 , 'Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO2 and warming conditions' , Journal of Plankton Research, vol. 40, no. 4 , pp. 391-406 , doi: 10.1093/plankt/fby018.

[img]
Preview
PDF (Published version)
133674 - Shift ...pdf | Download (1MB)

| Preview

Abstract

An indoor mesocosm experiment was carried out to investigate the combined effects of ocean acidification and warming on the species composition and biogeochemical element cycling during a winter/spring bloom with a natural phytoplankton assemblage from the Kiel fjord, Germany. The experimental setup consisted of a “Control” (ambient temperature of ~4.8 °C and ~535 ± 25 μatm pCO2), a “High-CO2” treatment (ambient temperature and initially 1020 ± 45 μatm pCO2) and a “Greenhouse” treatment (~8.5 °C and initially 990 ± 60 μatm pCO2). Nutrient replete conditions prevailed at the beginning of the experiment and light was provided at in situ levels upon reaching pCO2 target levels. A diatom-dominated bloom developed in all treatments with Skeletonema costatum as the dominant species but with an increased abundance and biomass contribution of larger diatom species in the Greenhouse treatment. Conditions in the Greenhouse treatment accelerated bloom development with faster utilization of inorganic nutrients and an earlier peak in phytoplankton biomass compared to the Control and High CO2 but no difference in maximum concentration of particulate organic matter (POM) between treatments. Loss of POM in the Greenhouse treatment, however, was twice as high as in the Control and High CO2 treatment at the end of the experiment, most likely due to an increased proportion of larger diatom species in that treatment. We hypothesize that the combination of warming and acidification can induce shifts in diatom species composition with potential feedbacks on biogeochemical element cycling.

Item Type: Article
Authors/Creators:Sett, S and Schulz, KG and Bach, LT and Riebesell, U
Keywords: ocean acidification, ocean warming, phytoplankton
Journal or Publication Title: Journal of Plankton Research
Publisher: Oxford Univ Press
ISSN: 0142-7873
DOI / ID Number: 10.1093/plankt/fby018
Copyright Information:

© The Author(s) 2018. Published by Oxford University Press.This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP