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The work presented in [5] details a method designed specif-
ically for detecting change in periodic, non-stationary time se-
ries, not limited to land cover. It operates by using Gaussian
process regression to make a probabilistic forecast of the next
sample. Once the next sample is available, its z-score under the
forecast distribution is calculated. By repeatedly applying this
forecasting method, a time series of z-scores is produced. Given
the model is working correctly, the resulting time series of z-
scores should be Gaussian independent identically distributed
(IID). A series of samples that deviate significantly from the
forecast will result in a change in distribution of the series
of z-scores. This is detected using an exponentially weighted
moving average control chart. The kernel for the Gaussian pro-
cess was a periodic exponential allowing for modeling of pe-
riodic functions. The parameters for the kernel were fit at the
start of the signal and then held constant. The computational
performance and scalability of the method is improved upon
in [11].

In [3], a parametric model comprised of a bias, linear trend,
and periodic seasonal component is used to make predictions.
Three periodic terms are included in the model, a fundamental
frequency equal to one cycle per year and two additional harmon-
ics. This model is extrapolated into the future and the moving
sum (MOSUM) of residuals over a finite lookahead window is
monitored for deviation from the fitted model. The probability
of observing a particular MOSUM with respect to the time series
noise level is derived and a change alarm is triggered when it
exceeds some significance level.

A parametric model-based method is also applied in [7]. The
authors take the approach of fitting a triply-modulated cosine
and bias to land cover time series over a sliding window. The
time series of parameters from each sliding window step is mon-
itored for change. It is suggested that the bias parameter of the
model should remain constant during a period of no-change and
deviate when the land cover experiences change. The bias pa-
rameters series is converted to a series of z-scores by estimating
parameters from its historical values. Change is declared when
six out of ten previous z-scores exceed some threshold.

The work presented in [8] applies a parametric model identical
to that of [3]. In this case, residuals from the model over the entire
series are converted to z-scores and this time series is directly
monitored for outliers. z-scores exceeding a given significance
level are considered indicative of a change point. While this
method uses a similar approach to those mentioned earlier, it
cannot be considered as an online approach as it requires the
entire dataset data in order to fit the parametric model and thus
can only discover changes in the past.

The method we propose combines the ideas of the works given
in [3] and [5] of using the prior samples of a time series to make a
forecast with ideas of [6] and [9] of considering samples of other
time series in the same region to estimate a baseline from which
to detect change. Under our unified framework, a collection of
similar time series from the same region are used to estimate
the joint distribution of the time series over a temporal window.
This is conditioned on previous observations of a signal in order
to make a prediction and calculate z-scores. The time series of
z-scores is then monitored for change.

II. BACKGROUND

A. Stationary of Land Cover Time Series

A stochastic process can be said to be strictly stationary if the
joint distribution of any combination of values is time invariant.
For a strictly stationary process, {Xt}, we can say for any set of
time indices {t1, . . . , tk}, the joint distribution

Pr(Xt1+τ , . . . Xtk+τ ) (1)

is identical regardless of the time shift τ . A special case of sta-
tionary is IID. As the name suggests each sample is indepen-
dently drawn from the same distribution. In this case, the joint
distribution may be factorized as

Pr(Xt1+τ , . . . Xtk+τ ) =

k∏

i=1

Pr(Xti+τ ). (2)

A process is said to be cyclo-stationary if the process obtained
by sampling at integer multiples of some period T exhibits sta-
tionarity. Formally

Pr(Xt1+T+τ , . . . Xt1+nT+τ ), n ∈ Z (3)

remains identical for any value of t1 and τ and for some
period T .

Several factors combine to make remotely sensed land cover
time series fail to meet these stationarity assumptions. Most land
cover is vegetated and this results in the dominant source of
non-stationarity in the signal. It is well documented that the
reflectance of vegetation varies approximately periodically in
a yearly cycle [1]. In many cases, this may result in cyclo-
stationarity however the magnitude and bias of the oscillations
is often non-constant between years due to inter-annual climatic
changes such as droughts. In many cases, trend components are
present in vegetated time series that suggest either long term
non-periodic change or change on a cycle much longer than the
time span of available data.

III. CHANGE DETECTION BY FORECASTING

Let us consider an estimator that is able to produce forecasts
of the next value in a time series under no-change conditions. We
denote the forecast at time t as x̂t. The residual of the forecast
is defined as rt = xt − x̂t. A sufficiently good estimator should
yield a series of residuals, which are uncorrelated, unbiased (i.e.,
zero mean), and Gaussian. If the estimated residuals also have
constant variance we can say the resulting time series of resid-
uals is IID. Furthermore, if the residuals do not have constant
variance but the estimator is able to produce good estimates of
the variance of each sample, σ2

t , the residuals can be converted
to z-scores by

zt =
rt
σt

(4)

and the series of z-scores will be IID unit Gaussian.
If the original time series contains a change point that is un-

foreseen to the estimator, this will induce a bias in the series of
z-scores/residuals, which can be detected by a classical change
detection method. An ideal estimator should yield a series of



OLDING et al.: FORECASTING APPROACH TO ONLINE CHANGE DETECTION IN LAND COVER TIME SERIES 1453

z-scores that is Gaussian IID under normal circumstances and
respond strongly and rapidly in the presence of a change point.
Such an estimator may take advantage of historical data, neigh-
boring pixel time series, or ancillary data in order to make its
prediction.

One such method that follows this general framework is the
GPChange method of [5] and [11]. In this case, the prediction
is made using only historical data from the same signal

Pr(Xt) = Pr(Xt | Xt−1, Xt−2, . . . X0). (5)

Motivated by these previous works, we propose a method that
takes advantage of both the previous samples in the time series
and also the time series in the surrounding region when mak-
ing a prediction. This is done by directly estimating the joint
distribution over a temporal window using a set of similar time
series. As the model is re-estimated at each time step this does
not require any assumptions of stationarity. Furthermore it does
not impose assumptions on the structure of the data as in [3],
[7], and [8].

A. Proposed Method

We propose modeling the joint distribution over the samples
in a temporal window as a multivariate Gaussian. Such a model
can capture the mean signal of the region of interest, the un-
certainty associated with the mean signal and the correlations
between samples in the time series. The resulting model can be
considered in a similar sense to a Gaussian process although
discrete and with covariance estimated directly from data rather
than predefined by a covariance function. By estimating the joint
distribution from nearby time series, it is possible to capture the
natural variations of a region. This statistical information can be
leveraged to detect when a time series moves in a way that is
inconsistent with both its own historical trajectory and that of
the surrounding region.

With access to a fitted joint distribution, it is possible to
condition on the previous observations in a signal to obtain a
univariate distribution over the last sample. More explicitly, let
x = [xt, . . . , xt−W−1]

T be a vector of time series observations

in a temporal window of size W . Let X = x(i)i=D
i=1 be a set of

D time series from a similar geographical region and ideally
containing similar land cover. We can assume that each of these
time series windows is an observation of a multivariate random
variableX = [Xt, . . . , Xt−W−1]

T ∼ N (μ,Σ). Under the mul-
tivariate Gaussian assumption, we can calculate the mean vector
and covariance matrix as

μ = E[X] (6)

and

Σ = E[(X− μ)(X− μ)T ] (7)

which can be estimated directly from the data.
For a single time series, x(i), this model can be conditioned

to calculate the univariate distribution over the last time sam-
ple given earlier observations within some temporal window,
Pr(x

(i)
t | x(i)

obs), using the standard method for conditioning a
multivariate Gaussian. If we partition the covariance matrix into

observed and unobserved variables as

Σ =

[
σ2
t σ1,2

σ2,1 Σ2,2

]
(8)

where

σ1,2 = σT
2,1 = [cov(Xt, Xt−1), . . . , cov(Xt, Xt−W−1)] (9)

and

Σ2,2 =

⎡

⎢⎣
σ2
t−1 . . . cov(Xt−1, Xt−W−1)
...

. . .
...

cov(Xt−W−1, Xt−1) . . . σ2
t−W−1

⎤

⎥⎦

(10)
the conditional distribution is univariate Gaussian with mean
and variance given by

μ̄
(i)
t = μt + σ1,2Σ

−1
2,2(x

(i)
obs − μobs) (11)

and

σ̄2
t = σ2

t − σ1,2Σ
−1
2,2σ2,1. (12)

From this probabilistic forecast, the z-score of the observation
of the ith time series can be calculated as

z
(i)
t =

x
(i)
t − μ̄

(i)
t

σ̄
2(i)
t

. (13)

Repeatedly applying this method as the sliding window is shifted
results in a time series of z-scores. The time series of z-scores
can then be monitored for persistent deviation from the standard
normal, which implies a change.

If the region contains a very diverse land cover classes, it might
be the case that the variance of the fitted multivariate Gaussian is
too high to produce useful forecasts. We suggest two alternative
methods for estimating the joint Gaussian density. The choice of
method depends on domain knowledge of the land cover types
in the region of interest. In the case that there is one single dom-
inant land cover type that should be monitored for change, the
robust estimator of [12] is well suited. This method estimates the
mean and covariance matrix using a fixed size subset of the sam-
ples. The subsample is selected from all possible combinations
as the one that yields the covariance matrix with the smallest
determinant. This is very effective at eliminating outlying time
series in the dataset.

Another possibility is that there are multiple types of land
cover type present in the region of interest. In this case, a Gaus-
sian mixture model approach can be used to simultaneously es-
timate multiple Gaussian joint densities and group similar time
series. The joint distribution of the set of time series is then
expressed as

Pr(X) =

k∑

c=1

wcN (μc,Σc). (14)

The weights, wi, and parameters of the Gaussian distributions
are estimated using the expectation maximization algorithm.
The number of components must be selected in advance us-
ing location specific knowledge. When making a forecast, the
cluster that a time series belongs to can be estimated by finding
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Fig. 1. Reflectance time series, z-score series, and CUSUM output for a no-change series and a synthetic change from the Limpopo dataset. Vertical bars indicate
the beginning and end of the linear transition. (a) No change time series. (b) Change time series.

closest component mean using the samples in the window. The
mean vector and covariance matrix from this component are then
used in (11) and (12). This is the variation we focus on in this
study.

B. Change Detection on z-Scores

Once the time series of z-scores has been produced by one
of the methods discussed earlier it can be monitored to detect
deviations from its expected distribution. Provided there are no
changes present in the time series and the forecasting algorithm
is working correctly, the z-score time series should be IID Gaus-
sian. To detect statistically significant persistent deviations from
this distribution, we apply Page’s CUSUM algorithm [10], [13].

We present the CUSUM method under the assumption that the
data are IID Gaussian with known mean and variance prior to
change, after which it experiences a change in mean of unknown
magnitude.

Let {zi}i=N
i=0 be the series of z-scores. By definition, this series

should be IID Gaussian with zero mean and unit variance. We
therefore expect under normal conditions that the CUSUM

Ci =

i∑

j=1

zi (15)

= zi + Ci−1 (16)

is a random walk with zero mean [10]. If there is a persistent bias
in the models ability to make predictions, such as the underlying
data generating distribution changing, we expect the random
walk to drift away from zero in the direction of the bias. To
improve the robustness of the method, a slack parameter, k, is
included [10]. This parameter is subtracted from the CUSUM at
each iteration and reduces the sensitivity to small mean shifts,
which can help prevent false alarms. The CUSUMs are also
split into positive and negative components with each clamped

at zero. The resulting CUSUMs are defined recursively as [10]

C+
i = max[0, zi − k + C+

i−1] (17)

C−
i = max[0,−zi − k + C−

i−1]. (18)

As we do not know how the predictor will respond to a land
cover change, we monitor both CUSUMs. When either C+ or
C− exceeds some threshold λ a change alarm is triggered and
the corresponding CUSUM is reset to zero. Fig. 1 shows the
reflectance time series, z-score series extracted using the joint
estimation method and the corresponding CUSUMs. In the time
series containing a change, it is possible to observe a negative
bias in the z-score series immediately after the change point.
This causes a strong response in C−. In the no-change series,
the corresponding z-score series should be close to IID Gaus-
sian noise and the CUSUMs of this signal will not significantly
deviate from zero.

It can be shown that if the mean and variance before and after
the change point is known and the change takes place instanta-
neously, this method is optimal for a given detection delay (DD)
[14]. This does not hold in our case as the distribution of the
z-scores post change cannot be known.

IV. STUDY AREAS AND DATA

A. Study Areas

We evaluate the methods by applying them to two applications
that require rapid and accurate change detection.

The first problem is that of detecting settlement expansion
in the Limpopo Province of South Africa. In some areas of this
province settlement, expansion is carried out ad hoc by residents
without prior planning approval. The local native vegetation of
this region is predominately Savannah, characterized by small
sparse trees and grassland [15]. Construction of settlements is
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characterized by the clearing of native vegetation and the con-
struction of small dwellings [16]. Detection of unplanned set-
tlements in this region has been the focus of several studies [6],
[17]–[19].

The second problem relates to detecting changes in areas of
native forest in New South Wales (NSW), Australia. Under the
Australian government emissions reduction fund initiative, land
owners are able to generate Australian carbon credit units in
exchange for preventing deforestation of native forest for which
a clearing permit has previously been issued. To be eligible, the
native forest must have at least 20% canopy coverage with tree
height greater than two meters [20].

At the commencement of a project, an extensive audit is un-
dertaken by an accredited third party and estimates made of
the appropriate number of credits to be allocated throughout
the project. A number of subsequent audits are also required
to ensure compliance throughout the project lifetime. Projects
have a permanence period of either 25 or 100 years. During this
time period, no clearing, with the exception of minimal thinning
(<5%), is permitted [20].

At the time of writing, there are approximately 400 vegetation
projects underway in Australia. A system of automated change
alarms based on remotely sensed time series has the potential
to significantly reduce the auditing workload and target it to
locations where the forest cover has changed and the project may
require reassessment. Continuous monitoring is also important
to guarantee the integrity of the carbon credit units. We apply
online change detection methods to several regions in rural NSW
which are currently generating carbon credits in exchange for
deforestation prevention.

B. Data Preparation

For both applications, we make use of time series from the
MODIS MCD43A4 product [21]. This product delivers bi-
directional reflectance distribution function corrected surface
reflectance data from both the Terra and Aqua Platforms. The
temporal resolution is eight days, with each data point selected
as the highest quality acquisition in a 16-day temporal window.
The spatial resolution is approximately 500 m. This product
has been used in numerous land cover change detection studies
mostly due to its high temporal resolution and large catalog of
data.

The dataset for the Limpopo region is comprised ofD = 2348
MODIS pixel time series over the time span of the years 2000
to 2013. Each was classified by an expert analyst as vegetation
- 997 ( 42%), settlement ( 53%) - 1235, and change - 116 ( 5%)
by visual inspection of high resolution imagery. A pixel was
labeled as change if it transitioned from vegetation to settlement
within the time span of interest. The exact time of change is
not known. A comprehensive description of the dataset can be
found in [19]. This type of change is classified as a land cover
conversion. To quantify the DD of the methods in this study, it
was necessary to create synthetic change time series where the
exact time of change can be controlled. To generate synthetic
change time series, we follow a similar approach to [18]. Two
time series of different land cover types are linearly blended over

a period of six months. This slow transition between land cover
types aims to imitate the gradual conversion that is expected in
the construction of a settlement.

The dataset for NSW is comprised ofD = 1994MODIS pixel
time series located within regions assigned to a project which is
currently earning carbon credits in exchange for avoided defor-
estation. These time series span the years 2008 to 2018. Each
time series has a corresponding pair, which is closely located
and contains a similar type of land cover but at a lower density.
As no real change was observed within the designated time span,
only synthesized change series were considered. These change
series were created by linearly blending over a period of six
months between a pixel and its lower density pair. This aims to
simulate the partial and gradual clearing of vegetation. Fig. 3
shows the study region and an example of two nearby pixels of
differing densities. This problem is an example of within-class
change detection [1].

The remotely sensed time series for both of these locations
contained only a few missing values (<0.1%). The missing val-
ues present were filled using linear interpolation.

We consider only MODIS band 1 (620–670 nm) and band
2 (841–876 nm). These have been shown in previous studies
[6], [19] to be most effective at detecting changes in vegetation.
We also consider the normalized difference vegetation index, a
commonly used quantity defined for MODIS as the difference
between bands 2 and 1 divided by their sum.

V. EXPERIMENTAL METHODOLOGY AND RESULTS

A. Evaluated Methods

We compare three methods for extracting time series of z-
scores that are ideally IID under no-change conditions: our pro-
posed method of directly estimating the joint distribution using
the Gaussian mixture model (Joint), a supervised univariate den-
sity estimation method similar to that of [6] (univariate) and a
parametric forecasting method similar to that of [3] (parametric).

The supervised univariate approach assumes knowledge of
the land cover class of all time series in the training set as well
as the initial class prior to change. We fit a univariate Gaussian
density for each class at each time step. At test time, z-scores
are calculated using the appropriate density at each time step
assuming the class does not change from its initial assignment.

In the parametric case, we fit a harmonic model with a bias,
seasonal oscillation component, and two higher harmonics over
a fixed length look-back window. The model is refit at each
time step as the window is shifted. The parametric model is
used to make a forecast and the difference between observa-
tion and prediction is converted to a z-score by dividing by the
standard deviation estimated from the model residuals over the
window.

Fig. 2 shows a comparison of the histogram and autocorrela-
tion of the z-score series. This was extracted by each method for
a single change and no-change time series from the Limpopo
dataset. Recall that under no change conditions an ideal z-score
series should be uncorrelated and Gaussian distributed. The es-
timated histogram and mean/variance gives an indication of
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Fig. 2. Density plot and autocorrelation plot for each of the z-score extraction methods investigated in this paper. (a) Joint (GMM Method). (b) Parametric.
(c) Univariate supervised. Evaluated on a no-change time series and a synthetic change time series from the Limpopo dataset using MODIS band 1. (a) No change
time series. (b) Change time series.

Fig. 3. Study region in New South Wales. This includes an example of two
MODIS pixels within a protected area that contain similar land cover with dif-
fering densities. This pair of pixel time series is blended together over a six
month transition to simulate the partial and gradual clearing of vegetation. (Im-
age courtesy of Google Earth, DigitalGlobe.)

the distribution of the scores. To verify if the scores are in-
dependent, we can observe the estimated autocorrelation func-
tion. A perfectly uncorrelated/independent series should have
an autocorrelation that is an impulse centered at zero lag. From
inspection of the plots for a no-change time series the autocor-
relation plot of the joint estimation methods suggest that the
series of z-scores is very close to IID Gaussian. Both the para-
metric and univariate methods appear to have a much higher
degree of correlation between samples in the z-score series.
This is expected for the parametric model approach as the small
number of harmonics limits the ability of the model to follow
fast changes leading to correlated errors. All methods show an
increase in correlation in a time series containing land cover
change.

TABLE I
RESULTS FOR DETECTION OF SETTLEMENT EXPANSION IN

LIMPOPO PROVINCE USING MODIS BAND 1

TABLE II
RESULTS FOR DETECTION OF VEGETATION THINNING IN

NEW SOUTH WALES USING MODIS BAND 1

B. Change Detection Assessment

To assess the change detection performance of the methods,
we make use of the receiver operator characteristic (ROC) curve,
which plots false alarm rate against true positive rate. This al-
lows us to compare methods irrespective of a choice of thresh-
old. Furthermore, it does not require us to arbitrarily select an
acceptable false alarm rate, which may be application specific.
We also tabulate the area under ROC curve (AUROC) and true
alarm rate at a false positive rate of 0.2 in Tables I and II. An
ROC curve gives an estimate of the correct classification rates,
irrespective of delay, when applying the methods to time series
of fixed length and assuming at most one alarm is triggered per
series.

All methods requires selection of the slack parameter, k, and
both the parametric and the joint Gaussian estimation methods
require a finite length look-back window of size W in order to
make a forecast. A larger window permits using more historical


