New Identity of the Kimberlite Melt: Constraints from Unaltered Diamondiferous Udachnaya-East Pipe Kimberlite, Siberia, Russia

by

Maya Kamenetsky

B.Sc. Hons (Moscow State University, Russia)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Tasmania
Australia
December, 2005
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

Date:

Signature:

Authority of Access

This thesis may be made available for loan and limited coping in accordance with the Copyright Act 1968.
Abstract

This study aims at understanding parental melt compositions and evolutionary history of mantle-derived kimberlitic magmas, using unaltered Udachnaya-East kimberlite as an example.

Recent advances in theoretical, experimental and melt inclusion research strongly suggest that the mantle is highly heterogeneous on a small scale, but this heterogeneity is effectively obscured by the blended nature of most erupted magmas. Thus, the original compositions of individual mantle-derived melt batches that supposedly reflect their respective mantle sources are in fact averaged, owing to mixing of melts en route to the surface. The exception may be occasional low degree partial melts that erupt with little or no mixing with subsequent melt fractions. However, such melts are particularly prone to reaction with country rocks along the pathways to ascent, and are also very rare among erupted rocks.

Among all known erupted mantle-derived magmas, kimberlites offer the deepest probes into the convecting subcontinental mantle, derived from the lowest degrees of melting. Such origins make kimberlites most suitable for characterising primitive (undepleted by previous melting) mantle assemblages with their likely enrichment in the volatile elements, and thus with the lowest solidus temperatures. On the other hand, the large amount of lithospheric and crustal xenoliths in kimberlites and their typically high degree of alteration, can significantly affect interpretations that can be drawn from bulk rock analyses.

This study attempts to overcome such problems related to alteration of kimberlites and presents detailed petrographic, mineralogical, chemical, and isotope data on exceptionally fresh kimberlite samples from the diamondiferous Udachnaya-East pipe (Daldyn-Alakit region, Siberia). I demonstrate that the Udachnaya-East rocks have radiogenic isotopic compositions, petrographic features and major and trace element geochemistry typical of group-I kimberlites. However, unlike common kimberlites, the studied samples show no primary or secondary serpentine, and thus are essentially anhydrous (< 0.5 wt% H$_2$O), but CO$_2$-rich (10-11 wt%). In contrast with
other kimberlites worldwide, the Udachnaya-East samples are uniquely enriched in chlorine and alkalies (2.3-3.2 wt% Cl, 2.6-3.7 wt% Na, and 1.6-2.0 wt% K).

Enrichment in CO$_2$, Cl and alkalies is expressed in the essentially alkali-carbonate (shortite, zemkorite) and alkali-chloride (halite, sylvite) composition of the kimberlite groundmass. These minerals cement olivine phenocrysts and form round segregations (“nodules”). Radiogenic isotope compositions (Nd, Sr, and Pb) of the chloride, chloride-alkali carbonate, carbonate and oxide-silicate constituents in the groundmass of the Udachnaya-East kimberlite effectively show the coexistence of these phases in the closed system since kimberlite emplacement \approx347 Ma. Complementary to insights into radiogenic isotope composition of the parental mantle source of the Udachnaya-East kimberlite, my study explores stable isotope compositions of the kimberlite groundmass (O, C and S isotopes), chloride-carbonate nodules (O and C isotopes) and two populations of olivine (O isotopes).

Detailed study of zoning and composition of the groundmass olivine-II demonstrates very complex fractionation of the ultramafic primary kimberlite melt. Additional constraints are provided by olivine-hosted inclusions of cogenetic minerals, fluid and melt. The wide compositional interval shown by the cores of olivine-II (Fo$_{86-93}$) reflects either crystallisation from different melt batches, or re-equilibration (in terms of Fe-Mg) with different mantle lithologies. I report the discovery of previously unknown inclusions of high-Ca pyroxene in the olivine-II cores. They formed in the diamond stability field (45-50 kb) at temperatures of 900-1100$^\circ$C, from a melt with a trace element composition resembling that of the kimberlite groundmass. The inferred P-T conditions correspond to the lower part of lithosphere beneath the Siberian craton.

I consider that a prolonged evolution of the kimberlite magma by olivine crystallisation was responsible for a build-up of abundances of alkalies, chloride, carbonate, and sulphate components. As a result, the residual kimberlite magma acquires an essentially non-silicate composition, but high in CO$_2$, Cl, and alkalies. This magma crystallises at low temperatures (<650-750$^\circ$C), and undergoes chloride-carbonate liquid immiscibility at \sim600$^\circ$C.
I propose that significant amounts of alkali chlorides and carbonates in the Udachnaya-East kimberlite are pristine magmatic components inherited from the kimberlite parental/primary magma. This enrichment may be responsible for the kimberlite low liquidus temperatures, low viscosities, and rapid ascent.
Acknowledgments

No PhD project happens without help, support and professional expertise of many people. It has been a great pleasure working in a friendly and scientifically stimulating environment in Earth Science Department and particularly in CODES. I would like to take this opportunity to thank many different people for their special contributions, without which it would have been impossible to complete this thesis.

First and foremost I would like to express my sincere thanks to each and every member of my family for their constant source of encouragement, love and support. To my son Dima and daughter Sunny and my parents, Boris and Nina, my thanks. Special thanks go to my husband Dima for his enormous help. He has been my guide and support throughout all three and half years of research and writing. He introduced me to the fascinating world of melt inclusions, helped me to collect data and shared his ideas and expertise in many aspects of my research. Without Dima this work would have been much much harder.

I am grateful to my associate supervisor Alex Sobolev, who initiated and financially supported this project. During my stay in Max-Planck Institute, he gave me free access to the new microprobe, which allowed me to obtain numerous time-consuming elemental maps of groundmass and olivine crystals.

I wish to express my gratitude to Tony Crawford for overall supervision of this project, for his commitment, advice and review of my thesis.

I would like to thank my other associate supervisor Leonid Danyushevsky for help with LA ICPMS analyses of melt inclusions and sharing his knowledge and experience in melt inclusions study.

This work was made possible by the help and contributions of many staff members. Particular thanks are due to Simon Stephens, Phil Robinson, Sarah Gilbert, Katie McGoldrick, David Steele, Keith Harris, Christine Cook and Graham Rowbottom for assistance with analytical work.
In general I must thank all the research staff of CODES and School of Earth Sciences for contributing their time and expertise.

I wish to express my gratitude to everyone outside the University of Tasmania. In particular, I would like to thank several people who contributed to the success of this thesis and co-authored papers based on it: Roland Maas (School of Earth Sciences, University of Melbourne Australia) for his enormous help with radiogenic isotope study; Victor Sharygin and Alexander Golovin (Institute of Mineralogy and Petrography, Novosibirsk, Russia) who contributed to this project by supplying me with interesting samples, as well as helpful discussions and suggestions. Also I would like to thank them for providing me with copies of Russian papers, which are difficult to find in Australia; Nikolai Sobolev and Nikolai Pokhilenko (Institute of Mineralogy and Petrography, Novosibirsk, Russia) for providing samples; Dmitry Ionov (Max-Planck-Institut für Chemie, Mainz, Germany) and Ilya Veksler (GeoForschungsZentrum Potsdam, Germany) for helpful and constructive discussions; Rainer Thomas (GeoForschungsZentrum Potsdam, Germany), Kevin Faure (Institute of Geological and Nuclear Sciences, New Zealand), Dmitry Kusmin (Max-Planck-Institut für Chemie, Mainz, Germany), Chris Ryan and Esme van Achterbergh (CSIRO Exploration and Mining, Australia) for performing different analyses.
Table of Contents

Declaration...ii

Authority of Access ...ii

Abstract..iii

Acknowledgments ..vi

Table of Contents...viii

List of Figures..xiii

List of Tables ..xx

Chapter 1 Introduction...1

1.1 Definition and classification ...1

1.2 Mineralogy and chemistry of group-I kimberlite..4

1.3 Problems related to identification of the kimberlite melt ...5

1.3.1 Studies of aphanitic kimberlites..6

1.3.2 Experimental studies..7

1.3.3 Inclusions in diamonds ...8

1.4 Aims of this study..11

Chapter 2 Kimberlite from the Udachnaya pipe: regional and local geology......................13

2.1 Regional geology ..13

2.1.1 Short history of kimberlite discovery in the Siberian Platform..15

2.2 Local geology of the Udachnaya kimberlite pipe ...17

2.2.1 Characteristics of the Udachnaya-East pipe ..20

2.2.1.1 Petrographic characteristics ...21
2.2.1.2 Diamonds in the Udachnaya pipe kimberlite................................. 22

Chapter 3 Petrography and mineralogy of the Udachnaya pipe kimberlite 25

3.1 Porphyroclastic assemblage .. 25

3.1.1 Summary ... 37

3.2 Groundmass assemblage .. 37

3.2.1 Silicate component .. 38

3.2.1.1 Groundmass olivine-II ... 38

3.2.1.1.1 Olivine zoning: qualitative Mg-Fe relationships 38

3.2.1.1.2 Summary of groundmass olivine composition data 58

3.2.1.2 Other groundmass silicate minerals ... 61

3.2.2 Carbonate component .. 62

3.2.3 Chloride-sulphate component .. 72

3.2.4 Sulphide component ... 83

3.3 Mineral aggregates ... 92

3.4 Summary .. 105

Chapter 4 Geochemistry of the Udachnaya-East kimberlite groundmass 108

4.1 Sample preparation ... 108

4.2 Measurements and calculations ... 108

4.3 Major element composition ... 117

4.4 Trace element composition ... 121

4.5 Summary .. 124
Chapter 5 Isotope characteristics of Udachnaya-East pipe kimberlite................. 126

5.1 Radiogenic isotopes .. 127
 5.1.1 Analytical method .. 127
 5.1.1.1 Sample preparation .. 127
 5.1.1.2 Sample dissolution and leaching .. 128
 5.1.2 Results .. 128
 5.1.2.1 Trace element data ... 129
 5.1.2.2 Isotope data .. 131
 5.1.3 Pipe age ... 134

5.2 Stable isotopes .. 136
 5.2.1 Method ... 138
 5.2.1.1 Method for oxygen isotope measurement in silicates 138
 5.2.1.2 Method for oxygen and carbon isotope measurement in carbonate. 138
 5.2.1.3 Method for sulphur isotope measurements ... 139
 5.2.2 Results ... 140
 5.2.2.1 Carbon isotope compositions ... 140
 5.2.2.2 Oxygen isotope compositions ... 140
 5.2.2.3 Sulphur isotope compositions ... 141
 5.2.2.4 Isotope compositions of the chloride-carbonate nodules 144

5.3 Summary ... 144
7.1.3.2 Low-pressure crystallisation of olivine rims.. 222

7.1.4 Parental melts of the groundmass olivine.. 224

7.2 Constraints from the groundmass minerals and compositions 228

7.2.1 Chloride-carbonate enrichment of residual kimberlite magma............... 228

7.2.2 Liquid immiscibility and crystallisation of residual kimberlite magma... 234

7.3 Enrichment in alkali carbonates and chlorides: mantle vs crustal origin..... 236

7.3.1 Geological and mineralogical constraints... 236

7.3.2 Constraints from radiogenic isotope studies.. 239

7.3.2.1 Evaluation of a contribution from platform evaporites and carbonates.. 239

7.3.2.2 Evaluation of a contribution from the Udachnaya mine pit brines ... 240

7.3.2.3 How “closed” was the system ?... 240

7.3.3 Constraints from stable isotope studies.. 241

7.3.3.1 Carbon and oxygen isotopes... 241

7.3.3.2 Sulphur isotopes... 243

7.4 Concluding remarks... 244

Appendix 1 METHODS.. 247

Appendix 2 MICROPROBE DATA... 257

REFERENCES .. 263

PUBLICATIONS .. 283
List of Figures

Figure 1.1 Distribution of kimberlites worldwide ..2
Figure 1.2 Schematic cross section of kimberlite magmatic system2
Figure 2.1 Map of Siberian Platform with major kimberlitic groups16
Figure 2.2 Arial, plan and cross section views of Udachnaya kimberlite pipes19
Figure 2.3 Salt-carbonate nodules from Udachnaya kimberlite pipe24
Figure 2.4 Diamonds found in the Udachnaya kimberlite pipe24
Figure 3.1 Hand specimen and thick/thin sections of Udachnaya kimberlite26
Figure 3.2 Porphyroclastic olivine of the fist generation ...28
Figure 3.3 Minerals of porphyroclastic assemblage ...30
Figure 3.4 Back-scattered image and elemental maps of high-Ca pyroxene porphyroclast ...31
Figure 3.5 Back-scattered image and elemental maps of low-Ca pyroxene porphyroclast ...32
Figure 3.6 Back-scattered image and elemental maps of zoned garnet porphyroclast ...34
Figure 3.7 Perovskite pseudomorphs picroilmenite ...36
Figure 3.8 Types of of groundmass olivine zoning ...40
Figure 3.9 Composition of groundmass olivine of second generation44
Figure 3.10 X-Ray element maps of groundmass olivine grains. Pattern 147
Figure 3.11 X-Ray element maps of groundmass olivine grains. Pattern 248
Figure 3.12 X-Ray element maps of groundmass olivine grains. Pattern 349
Figure 3.13 X-Ray element maps of groundmass olivine grains. Ni outline bypasses around the inclusions...50

Figure 3.14 X-Ray element maps of groundmass olivine grains. Ca distribution........51

Figure 3.15 Profiles of groundmass olivine grains with more forsteritic cores than rims..54

Figure 3.16 Profiles of groundmass olivine grains of grains with less forsteritic cores than rims..55

Figure 3.17 Profiles of groundmass olivine grains. Grains with a several cores........56

Figure 3.18 Profiles of groundmass olivine grains. Grains with no distinct core........57

Figure 3.19 Compositional relationships of porphyroclast olivine of first generation (olivine-I), and groundmass olivine of second generation...60

Figure 3.20 Occurrence of phlogopite in the Udachnaya pipe kimberlite groundmass..63

Figure 3.21 Groundmass phlogopite phenocrysts and their compositional variations ...64

Figure 3.22 Monticellite in the Udachnaya pipe groundmass..65

Figure 3.23 Sodalite in the Udachnaya pipe groundmass...66

Figure 3.24 Carbonates in the Udachnaya pipe groundmass..67

Figure 3.25 Carbonates-chlorides segregations (ocelli) in the Udachnaya pipe
groundmass ...74

Figure 3.26 Interstitial chloride in different aggregates in the Udachnaya kimberlite pipe
groundmass ...76

Figure 3.27 Interstitial chloride precipitates on the polished surface due to reaction with atmospheric moisture ...77

Figure 3.28 Chloride segregations in the Udachnaya kimberlite pipe groundmass.......78
Figure 3.29 Chlorides and carbonates inside cavities, resembling miaroles.................80

Figure 3.30 Typical mineral assemblage of the matrix inside cavities, resembling miaroles ..81

Figure 3.31 Sulphates in the Udachnaya kimberlite pipe groundmass85

Figure 3.32 Sulphates in the Udachnaya kimberlite pipe groundmass – interstitial phase between olivine and Na-Ca carbonate..86

Figure 3.33 K- and Cl-bearing Fe-Ni sulfide (djerfisherite) as a pseudomorphs after pyrrhotite in the Udachnaya kimberlite pipe groundmass ..87

Figure 3.34 X-Ray elemental maps of K- and Cl-bearing Fe-Ni sulfide (djerfisherite) segregation in calcite-phlogopite groundmass ..88

Figure 3.35 X-Ray elemental maps show mineral associations, surrounded pyrrhotite-djerfisherite segregation ..89

Figure 3.36 Compositional groups of K- and Cl-bearing iron sulphides....................90

Figure 3.37 Chloride-carbonate nodules with texture resembling those produced by liquid immiscibility ..93

Figure 3.38 Chloride-carbonate nodules ...94

Figure 3.39 Chloride segregations in the chloride-carbonate nodules94

Figure 3.40 Contact between kimberlite and chloride-carbonate nodule98

Figure 3.41 Sample UV-5a-03. The nodule texture is determined by a carbonate-chloride grid ..99

Figure 3.42 Compositional variability (in wt%) across a carbonate sheet in sample UV-5a-03 ..100

Figure 3.43 Covariation of potassium and sulphur abundances in Na-Ca carbonate minerals in sample UV-5a-03 ..101
Figure 3.44 Euhedral apatite in a chloride-aphthitalite matrix cementing shortite and nortupite crystals in sample UV-2-03 ...101

Figure 3.45 Mineral and multiphase melt inclusions in shortite in sample UV-2-03 .102

Figure 4.1 Composition of Udachnaya-East groundmass in comparison with other fresh kimberlites from the Jericho and Leslie and Aaron pipes.................................119

Figure 4.2 Composition of Udachnaya-East groundmass in comparison with other fresh kimberlites from the Jericho and Leslie and Aaron pipes.................................120

Figure 4.3 Primitive mantle normalized multielement diagrams...............................123

Figure 4.1 Primitive mantle–normalized multielement diagram showing patterns for two samples (YBK-0 and YBK-3)..130

Figure 5.2 Initial isotope compositions, calculated at 367 Ma130

Figure 5.3 Rb-Sr isochron diagram for bulk, L2, and residue of both samples data135

Figure 5.4 Oxygen and carbon isotope compositions of different kimberlites and carbonatites ...142

Figure 5.5 18O vs 13C plot shows fields of kimberlite, carbonatites, carbonate nodules or inclusions in kimberlites ..143

Figure 6.1 Distribution of inclusions in groundmass olivine..151

Figure 6.2 High-Ca pyroxene inclusions in groundmass olivine.................................152

Figure 6.3 High-Ca pyroxene inclusions in the core of groundmass olivine..............153

Figure 6.4 Composition of high-Ca pyroxene inclusions in groundmass olivine.......155

Figure 6.5 Profiles of element distributions within high-Ca pyroxene inclusions in groundmass olivine ...156

Figure 6.6 Primitive mantle - normalized compositions of high-Ca pyroxene inclusions in cores of Udachnaya groundmass olivine and clinopyroxenes from diamondites,
and hypothetical melts in equilibrium with high-Ca pyroxene inclusions in the olivine..158

Figure 6.7 Crystal inclusions in groundmass olivine..161

Figure 6.8 Low-Ca-pyroxene inclusions in the groundmass olivine162

Figure 6.9 Composition of low-Ca pyroxene inclusions in groundmass olivine.....163

Figure 6.10 Heated opx inclusions with large bubble and silicate glass......................164

Figure 6.11 Spinel inclusions in groundmass olivine ...169

Figure 6.12 Elemental maps, and optical and backscattered images of the unusual ‘orthopyroxene” inclusion in the groundmass olivine ..175

Figure 6.13 Backscattered, optical and topographic images and elemental maps of the unusual high Si- C-F-N-bearing inclusion in groundmass olivine.176

Figure 6.14 Composition of unusual high Si- C-F-N-bearing inclusion in groundmass olivine...177

Figure 6.15 Fluid inclusions in groundmass olivine ..179

Figure 6.16 Large multiphase melt inclusions in groundmass olivine........................180

Figure 6.17 Relatively small, well-formed (some euhedral) multiphase melt inclusions in groundmass olivine ..181

Figure 6.18 Elemental maps of the exposed large multiphase melt inclusions in groundmass olivine and compositional variations of their alkali-rich carbonates 182

Figure 6.19 Glassy silicate melt inclusion and associated embayment of silicate melt 185

Figure 6.20 Sulphide inclusions in groundmass olivine. ...186

Figure 6.21 Heating stage experiments with multiphase melt inclusions in olivine-II.191

Figure 6.22 Heating stage experiments with multiphase melt inclusions in olivine-I..195
Figure 6.23 Dominantly carbonate-chloride melt inclusions in olivine-II from the Udachnaya kimberlite, quenched into “frosted glass” after heating to 1150°C 197

Figure 6.24 Raman spectrum of a “frosted glass” inclusion at room temperature 197

Figure 6.25 Optical images and PIXE element maps of the “frosted glass” inclusion. 198

Figure 6.26 Multiphase melt inclusion in transmitted nd reflected light 200

Figure 6.27 Compositions of olivine-hosted melt inclusions and estimated parental kimberlitic melts .. 201

Figure 6.28 Primitive mantle normalised compositions of olivine-hosted melt inclusions, analysed by LA-ICPMS and normalised to La in the Udachnaya kimberlite groundmass YBK-0 in comparison with average groundmass 201

Figure 6.29 Different types of inclusions in groundmass calcite and carbonate aggregates in groundmass anhydrite and chloride .. 204

Figure 6.30 Multiphase (crystals, aqueous fluid, vapor bubble) inclusions in Na-Ca-carbonate from chloride-carbonate nodules .. 205

Figure 6.31 Exposed multiphase inclusions in Na-Ca-carbonate 206

Figure 6.32 Multiphase carbonate-sulphate inclusion in Na-Ca-carbonate 206

Figure 6.33 Heating stage experiment with inclusion in the alkali-bearing carbonate from chloride-carbonate nodules ... 209

Figure 7.1 Olivine-II cores with oval or rounded shapes resemble those of olivine-I .. 216

Figure 7.2 NiO vs Fo contents in olivine-II cores and example of calculated distribution NiO in olivine during fractionation ... 219

Figure 7.3 Olivine-II rims show pronounced variations in Fo within 10-50 μm 225

Figure 7.4 Groundmass compositions of Udachnaya-East kimberlite in comparison with other fresh kimberlites and Siberian kimberlites .. 229
Figure 7.5 Association of carbonates and chlorides in the Udachnaya kimberlite as evidenced by nodules and melt inclusions ...233

Figure 7.6 Normalised trace element compositions of the Udachnaya-East kimberlite groundmass ...235

Figure 7.7 Fibrous phlogopite crystal aggregates in alkali carbonate and sylvite; sample UV-5a-03 ...235
List of Tables

Table 3.1 Representative average compositions of typical minerals of the porphyroclastic assemblage and their alteration products. ..33

Table 3.2 Classification of the groundmass olivine based on qualitative Mg-Fe relationships between cores and rims, and relative abundances of grains representative of each type...46

Table 3.3 Representative analyses of groundmass phlogopite...69

Table 3.4 Representative analyses of groundmass sodalite and monticellite70

Table 3.5 Representative analyses of the groundmass carbonates..71

Table 3.6 Composition of sulphate minerals and SO_4-bering silicates in kimberlite groundmass ...91

Table 3.7 Representative analyses of sulphide minerals in kimberlite groundmass......95

Table 3.8 Composition of chloride-carbonate nodule and average mineral composition of its constituents ..104

Table 4.1 Compositions of original samples of the Udachnaya kimberlite groundmass ..109

Table 4.2 Compositions of ignited samples of the Udachnaya kimberlite groundmass110

Table 4.3 Compositions of H_2O-leached samples of the Udachnaya kimberlite groundmass ..112

Table 4.4 Trace element concentrations in H_2O – leachate part of Udachnaya kimberlite groundmass. bdl- below detection limit..113

Table 4.5 Concentrations of cations and anions in H_2O – leachate part of Udachnaya kimberlite groundmass ..114
Table 4.6 Recalculated concentrations of major elements, based on chemical analysis of
H₂O – leachate component of the kimberlite groundmass in comparison with their
concentrations, obtained by other methods...114

Table 4.7 Major and trace elements concentrations of Udachnaya pipe kimberlite
groundmass. ..115

Table 5.1 Radiogenic isotope compositions of representative samples of the groundmass
and brine from the Udachnaya-East kimberlite ...132

Table 5.2 Trace element compositions of water (L1), dilute acid (L2) leachate, residue
of groundmass and brine from Udachnaya-East pit...137

Table 5.3 Oxygen and carbon isotope compositions of different components of the
kimberlite groundmass..145

Table 5.4 Sulphur isotope compositions of different components of the kimberlite
groundmass ..145

Table 5.5 Carbon and oxygen isotope compositions of carbonates from chloride-
carbonate nodules..146

Table 6.1 Compositions of high-Ca pyroxene inclusions and their host olivine165

Table 6.2 Representative analyses of phlogopite inclusions and their host olivine, phl* -
phlogopite in association with high-Ca pyroxene inclusion...............................167

Table 6.3 Representative analyses of olivine inclusions and their host olivine.............170

Table 6.4 Representative analyses of low-Ca pyroxene inclusions, their host olivine, and
associated high-Ca pyroxene and melt compositions ..171

Table 6.5 Representative analyses of spinel inclusions in groundmass olivine.........172

Table 6.6 Compositions of unidentified euhedral hexagonal crystal inclusion173

Table 6.7 Compositions of individual analytical spots of unidentified Si-C-rich
crystalline inclusion. ...174
Table 6.8 Representative analyses of different silicate and phosphate minerals in multiphase melt inclusions in groundmass olivine ...187

Table 6.9 Compositions of “glassy” melt inclusions and associated embayment of melt ..189

Table 6.10 Representative compositions of daughter minerals in melt inclusions in olivine-II ..199

Table 6.11 Compositions of group-I kimberlites and calculated parental melt of the Udachnaya pipe kimberlite ..202

Table 6.12 Composition of unexposed melt inclusions (analysed by LA ICPMS)207