Spatial organisation & habitat selection patterns of three marsupial herbivores within a patchy forestry environment

by

Kirsten le Mar B.Sc. (Hons. I)

Submitted in fulfilment of the requirements for the Degree of

Doctor of Philosophy

School of Zoology
and
Cooperative Research Centre for Sustainable Production Forestry

University of Tasmania
July 2002
Declaration

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due acknowledgment is made in the text of the thesis.

Signed: [Signature]
Date: 07/07/02

Authority of Access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act, 1968.

Signed: [Signature]
Date: 07/07/02
Abstract

In order to understand the ecology of a species, it is important to know how animals use their environment. This information can be determined at a range of spatial and temporal scales, and results may vary accordingly. The habitats that animals use determine resources available to them for different purposes (e.g. feeding and resting), and risks of predation to which they are exposed. Consequently, patterns of behaviour in relation to the environment are likely to influence survival and fitness. In Tasmania, Australia, three common and widely distributed native marsupial herbivores are the red-necked or Bennett's wallaby (*Macropus rufogriseus*), the red-bellied pademelon (*Thylogale billardierii*) and the common brushtail possum (*Trichosurus vulpecula*). Information on the behaviour of these species in relation to their environment is largely unavailable.

This thesis describes the abundance, spatial organisation and habitat selection patterns of these three species, within a patchy forestry landscape. The five major habitat types within this environment were: (1) a prepared site that was planted with commercial *Eucalyptus nitens* seedlings during the study (referred to as 'young plantation'); (2) 5-7 year old *E. nitens* plantation; (3) grassland; (4) native forest; and (5) harvested uncleared land.

Patterns of habitat use and selection were examined at three sequential spatio-temporal scales, within a hierarchy of decisions. These were: (1) location of home-range within the landscape, (2) feeding area within the home-range, and (3) vegetation consumed within one habitat, the young plantation. A radio-telemetry study of Bennett’s wallabies, pademelons and possums was used to examine Scales 1 and 2 at the individual animal level. Animal surveys were carried out to examine Scale 2 for the entire herbivore community at the population level. These data were also used to estimate herbivore densities for the overall area and individual habitats. Fenced and unfenced vegetation plots, located within the young plantation, a highly used habitat, were monitored over time to examine Scale 3.

As part of this research, modifications to common line-transect sampling methods were made. These enabled methods that are usually applied to daytime surveys in open habitat, to be used in nocturnal surveys in densely vegetated habitats. Accuracy testing of the radio-telemetry system is also described, as the patchiness of the landscape required careful interpretation of results.

Results showed that, at night, wallabies and pademelons used all habitats, but consistently selected for open habitats (young plantation and grassland) across spatio-temporal scales. The use of these open habitats for feeding was confirmed by the large biomass of grass and forbs consumed by herbivores in a detailed study of vegetation on the young plantation. These patterns are consistent with their feeding strategies of grazer or mixed-feeder.

During the day, the two macropod species avoided open habitats and showed strong selection for closed habitats. Wallabies selected for older plantation, while pademelons selected for native forest. This difference reflects their respective predator avoidance strategy (crypsis for pademelons) or escape response (flight for wallabies). Although shelter habitat was important to the two macropod species, their lack of selection at the home-range scale was suggested to reflect the fact that resting animals require little space.

Patterns of habitat use and selection were difficult to interpret for possums, because results varied between the spatio-temporal scales. Spotlighting data showed that at night, possums selected for native forest, young plantation and particularly grassland at the population level. Radio-collared animals selected only for native forest. Older *E. nitens* plantations were avoided by possums at every level, and appeared to represent a biological desert to this species.

High overall densities of wallabies and pademelons (0.3 and 1.5 animals.ha$^{-1}$, respectively), and small, round, home-ranges (61.6 ha and 22.3 ha, respectively) suggested that these
species benefited from the patchiness of this environment. This is attributed to the highly heterogeneous habitats, providing complimentary resources in the absence of ecotones or transitional flora zones, existing side by side, over a small spatial scale. In contrast, extremely low possum population density (0.04 animals ha\(^{-1}\)) and very large home-ranges (39.1 ha) suggested that resources, presumably den sites and/or food, were limited within this forestry environment.

Results on the ecological aspects of the three herbivore species, described above, are put in the context of the Tasmanian forestry industry, particularly in relation to management of herbivore browsing damage to planted seedlings. Based on this work, I suggest that future management strategies could involve: (1) reducing fragmentation of the natural environment, which supports small home-ranges and high macropod densities, by designing larger, rounder plantations; (2) considering the placement of plantations in relation to the proximity of open (feeding grounds) and closed (shelter) habitats; (3) reducing or removing windrows from newly established plantations to restrict pademelons to the plantation edge; (4) deliberately retaining groundcover or using cover crops to provision herbivores with an alternative food source, as grasses and herbaceous dicots are eaten in preference to *Eucalyptus nitens* seedlings; (5) recognising that wallabies and pademelons remove a large biomass of groundcover and therefore, could play a positive role in weed control, reducing the need to herbicide plantations; (6) monitoring newly planted plantations at short and regular time intervals so that damage caused by insects versus mammals can be differentiated; and (7) avoiding planting in winter when macropods may have little alternative food to eat on newly established plantations.
Acknowledgments

I would like to thank my supervisor Dr Clare McArthur for her guidance, support and enthusiasm throughout this project. Dr Mick Statham is thanked for his assistance with trapping animals, the use of radio-tracking equipment, and valuable discussion of forestry issues. I am extremely grateful to Dr Colin Southwell for his advice on the design and analysis of the spotlighting data.

Thanks to many Gunns Ltd (formerly North Forest Products) staff who became involved with the study. This project owes much of its success to Ian Blanden, who is thanked for his support and flexibility with my often logistically difficult requests. Dr David de Little is thanked for his help with implementing this study. Various operations staff were extremely helpful in their assistance with numerous forestry operations, in particular Calton Frame, Trevor Docking and Alex Lindsay. Trevor Dick and Andrew Walker conducted the 1080 operation and are thanked for their time and patience with my endless questions about this lethal control method. I am incredibly grateful to Christine Mann for providing aerial photos of the site and the use of GPS units. James Dick and Jeremy Wilson are thanked for their generous time and assistance with digitising data into the GIS. Without these photos and maps, much of the habitat analysis work would not have been possible. I am also extremely grateful to Lawrence White for his help with all things mechanical (particularly the radio-tracking towers), his general carpentry and plumbing skills, and for generously allowing us to borrow his tools. Tony Rae and the guys at the workshop are also thanked for their help with maintaining field gear. Greg Holtz kindly provided climate data. I thank Gunns Ltd (formerly NFP Burnie) for the use of 'Hampshire Lodge' during the two years of fieldwork. Having accommodation so close to the field site made it possible to have such an intense fieldwork component to the study. The security guards at Hampshire Mill are thanked for their help with making the field site and house secure, and for making my time at Hampshire a pleasant one.

Thanks to those technical staff who assisted with the fieldwork. Miles Lawler and Stuart Millen are thanked for their great work, energy and humour during rather trying working conditions. I am particularly grateful to Miles for his assistance with setting up the field site (including the installation of 5000 garden stakes for the spotlighting transects), and the general smooth running of fieldtrips. I am also grateful to Julianne O'Reilly and Stephen Turner for their assistance with site preparation.

I would like to thank the numerous people that helped to collect the radio-tracking data. This component of the study required a team of highly skilled, hard-working, and extremely patient radio-trackers. Needless to say, sitting in a cold, dark hut for hours on end, listening to the dreaded 'beeps' is not glamorous science, and extremely tedious. Consequently, I am forever in the debt of Melissa Sharpe, Lisa Meyer and Helen Otley, who formed a core team of highly skilled trackers. Despite our confused body-clocks, and constant battle with sleep deprivation, there were lots of good times and laughter. I also thank Meika von Samorzewski, Janette Smithurst, Simon Whittock, James Bulinski, and David Taylor and for their help with collecting data.

Thanks to the Zoology staff. I am particularly grateful to Barry Rumbold for his assistance with shipping field gear between Hobart and Burnie. Di Moyle and Cindy Hull also provided radio-tracking equipment in emergency situations.

Dr Corey Bradshaw, Mark Morffew, Dr Eleanor Bruce and Robert Anders are thanked for their help with GIS.

Thanks to the CRC for Sustainable Production Forestry staff. I am extremely grateful to the CRC for allowing me to use a vehicle for the length of the fieldwork. Shelley Caswell is thanked for administrative help, Vin Patel and Stephen Paterson assisted with occasional fieldwork.
Dr’s David Ratkowski, Leon Burmota and Glenn McPherson are thanked for assistance with statistical issues. Dr Roger Martin (Monash University) is thanked for dart-gunning the animals. The Astronomical Society of Tasmania kindly provided lunar and solar timetables.

I would like to thank my colleagues for their friendship and support over the years: Kerrie Swadling, Lynda Bellchambers, Naomi Parker, Martina Doblin, Louise Wynen, James Bulinski, Julianne O’Reilly, Jenny Skerrat, Phillip Tracey, Hugh Fitzgerald, Fiona Hume, Mary-Anne Lea, Cindy Hull, Karin Beaumont and Karen Evans. I am also eternally grateful to Lynda and Mart for giving me somewhere to live between all the fieldwork.

Finally, I thank my parents for their never ending encouragement, love and support over the years.

This project was funded by the Co-operative Research Centre for Sustainable Production Forestry, North Forest Products (Burnie), the Browsing Animal Research Council and the School of Zoology of the University of Tasmania. Animals were caught and radio-collared under Parks and Wildlife Permit # FA96071 and FA97006, and the University of Tasmania Animal Ethics Permit # 95052.
Table of Contents

Chapter 1. General Introduction

1.1 Landscapes and Habitat Quality 1
1.2 Habitat Use and Selection by Herbivores 2
1.3 The Tasmanian Forestry Landscape and its Herbivores 2
1.4 Impact of Herbivores on Forestry 3
1.5 Project Design 4
1.6 Thesis Aims 5
1.7 Thesis Structure 6

Chapter 2. Study Site & Animals

2.1 Study Site 7
2.1.1 Geographic Information System 7
2.1.2 Forestry operations on the young plantation 15
2.2 Study Animals 16
2.2.1 Bennett’s wallaby 16
2.2.2 Red-bellied pademelon 19
2.2.3 Common brushtail possum 19

Chapter 3. Population Surveys: Spotlighting Methods

3.1 Introduction 21
3.2 Materials and Methods 22
3.2.1 Study site 22
3.2.2 Transect lines 24
3.2.3 Survey 25
3.2.4 Data analysis 26
3.3 Results 27
3.4 Discussion 29
3.4.1 Assumption 1: Objects on the line are detected with a probability close to 1 29
3.4.2 Assumption 2: Objects are detected at their initial location before any movement in response to the observer 30
3.4.3 Assumption 3: Perpendicular distances are measured accurately 30
3.4.4 Differences in sightability within species and between habitats 31
3.4.5 Sample size 32
3.4.6 Logistics 32
3.4.7 Management implications 32

Chapter 4. Population Surveys: Density & Habitat Selection

4.1 Introduction 35
4.2 Materials and Methods 35
4.2.1 Data collection 35
4.2.2 Line-transect analysis 36
4.2.3 Overall density 36
4.2.4 Biomass density 36
4.2.5 Habitat selection 36
4.2.6 Temporal change 37
4.2.7 Macropod distribution on the young plantation 37
4.2.8 Herbivore densities before and after planting 38
4.3 Results
4.3.1 Overall density
4.3.2 Habitat selection
4.3.3 Distribution of macropods on the young plantation
4.3.4 Densities of animals before and after planting
4.4 Discussion
4.4.1 Overall density
4.4.2 Habitat selection
4.4.3 Distribution of macropods on the young plantation
4.4.4 Herbivore densities before and after planting

Chapter 5. Population Surveys: 1080-Poisoning Operation
5.1 Introduction
5.2 Materials and Methods
5.2.1 Study site
5.2.2 1080 poisoning operation
5.2.3 Density estimates
5.2.4 Data analysis
5.2.5 Overall density
5.2.6 Habitat use
5.3 Results
5.4 Discussion
5.4.1 Pademelons
5.4.2 Wallabies
5.4.3 Possums and rabbits
5.4.4 Wombats
5.5 Conclusion

Chapter 6. Radio-Telemetry: Accuracy of the System
6.1 Introduction
6.2 Materials and Methods
6.2.1 Test points
6.2.2 Radio-tracking system
6.2.3 Calculating error
6.3 Results
6.4 Discussion

Chapter 7. Radio-Telemetry: Home-Range
7.1 Introduction
7.2 Materials and Methods
7.2.1 Capture of animals
7.2.2 Radio-telemetry
7.2.3 Data collection
7.2.4 GIS
7.2.5 Data analysis
7.3 Results
7.3.1 Data set
7.3.2 Home-range
7.4 Discussion
7.4.1 Macropods
7.4.2 Possums
7.4.3 Intersexual differences in home-range