Sauermilch Isabel (Orcid ID: 0000-0003-4639-6699)
Whittaker Joanne M (Orcid ID: 0000-0002-3170-3935)
Jokat Wilfried (Orcid ID: 0000-0002-7793-5854)

Tectonic, Oceanographic, and Climatic Controls on the Cretaceous-Cenozoic Sedimentary Record of the Australian-Antarctic Basin

I. Sauermilch¹, J.M. Whittaker¹, P.K. Bijl², J.M. Totterdell³, and W. Jokat⁴

¹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.
² Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands.
³ Geoscience Australia, Canberra, Australia.
⁴ Alfred Wegener Institute for Polar and Marine Sciences, Bremerhaven, Germany.

Corresponding author: Isabel Sauermilch (Isabel.Sauermilch@utas.edu.au)

Key Points:
- Consistent seismo-stratigraphic framework across the Australian-Antarctic basins using all available seismic reflection and drilling data
- Late Cretaceous deltaic sedimentation along the Australian and Antarctic margins, dominated by large onshore river systems
- Strengthening ocean currents cause Paleocene/Eocene contourite drifts and Mid-Late Eocene winnowing along both margins
Abstract

Understanding the patterns and characteristics of sedimentary deposits on the conjugate Australian-Antarctic margins is critical to reveal the Cretaceous-Cenozoic tectonic, oceanographic and climatic conditions in the basin. However, unravelling its evolution has remained difficult due to the different seismic stratigraphic interpretations on each margin and sparse drill sites. Here, for the first time, we collate all available seismic reflection profiles on both margins and use newly available offshore drilling data, to develop a consistent seismic stratigraphic framework across the Australian-Antarctic basins. We find sedimentation patterns similar in structure and thickness, prior to the onset of Antarctic glaciation, enabling the basin-wide correlation of four major sedimentary units and their depositional history.

We interpret that during the warm and humid Late Cretaceous (~83-65 Ma), large onshore river systems on both Australia and Antarctica resulted in deltaic sediment deposition offshore. We interpret that the onset of clockwise bottom currents during the Early Paleogene (~58-48 Ma) formed prominent sediment drift deposits along both continental rises. We suggest that these currents strengthened and progressed farther east through the Eocene. Coevally, global cooling (<48 Ma) and progressive aridification led to a large-scale decrease in sediment input from both continents. Two major Eocene hiatuses recovered by the IODP site U1356A at the Antarctic continental slope likely formed during this pre-glacial phase of low sedimentation and strong bottom currents. Our results can be used to constrain future paleo-oceanographic modelling of this region and aid understanding of the oceanographic changes accompanying the transition from a greenhouse to icehouse world.

1 Introduction

The Australian-Antarctic Basin (Fig. 1) has formed since the Cretaceous. Although continental rifting was initiated in the Mid-Late Jurassic (Bein and Taylor, 1981; Fraser and Tilbury, 1979; Willcox and Stagg, 1990), slow seafloor spreading likely commenced in the Late Cretaceous (~94/83 Ma in the western/central part; Cande and Mutter, 1982), undergoing a significant change in direction and increase in spreading rate at ~47-45 Ma (Close et al., 2009; Whittaker et al., 2007). Coevally, there were drastic climatic and oceanographic changes. Global climate changed from hot ‘Greenhouse’ conditions in the Late Cretaceous, through warm Early Eocene, to cold ‘Icehouse’ conditions starting with first occurrences of Antarctic ice sheets during the Mid-Late Eocene (e.g. Carter et al., 2017; Gulick et al., 2017; Scher et al., 2014) and large-scale Antarctic glaciation at the Eocene/Oligocene boundary (e.g. Bohaty et al., 2012; Zachos et al., 1994).

Before 50 Ma, the closed tectonic gateways between Antarctica and other continents - Drake Passage and Tasmanian Gateway - caused a circulation featuring two disconnected clockwise gyres: one in the South Atlantic-Indian Ocean, which penetrated into the Australian-Antarctic Basin forming the Proto-Leeuwin-Current, and one in the Pacific Ocean (Huber et al., 2004; McGowran et al., 1997; Sijp et al., 2014). The opening of the Drake Passage remains controversial, and age estimates range from about 49 Ma (Livermore et al., 2005) to ~17 Ma (Barker, 2001). Although, the development of the Tasmanian Gateway is better constrained, uncertainties about its evolving paleodepth remain (e.g. Scher et al., 2015). From 50 Ma onwards, the shallowly open Tasmanian Gateway allowed penetration of the westward-flowing Tasman Current into the southern parts of the Australian-Antarctic Basin (Bijl et al., 2013a; Sijp et al., 2016) starting to connected both gyres. With the continuous widening and deepening of the Tasmanian Gateway, the Proto-Leeuwin Current started to flow into the SW Pacific, leading to the onset of the Antarctic Circumpolar Current.
The exact timing of onset and evolving strength of the ACC is still debated. Evidence for rapid deepening of the Tasmanian Gateway around 35.5 Ma suggests the formation of the ACC from ~35 Ma (Bijl et al., 2013a; Sijp et al., 2011; Stickley et al., 2004). However, Scher et al. (2015) propose a tectonic northward shifting of the already deep Tasmanian Gateway into a stronger wind system around 33.5 Ma, triggering the onset of the ACC ~30 Ma. Recent studies suggest that the ACC did not reach its present-day vigour before ~11 Ma (Bijl et al., 2018a; Sangiorgi et al., 2018).

The thick sediment succession along the conjugate Australian-Antarctic continental margins is strongly controlled by these tectonic, climatic and oceanographic processes and so provides a detailed archive for unravelling the evolution of ocean basins and adjacent onshore areas. Most previous workers have investigated the sedimentary architecture on either the Australian or Antarctic margin. Offshore Antarctica, seismic surveys undertaken by different nations have not all been publicly accessible in the past, and so interpretations have been made on separate data collections. Recently, most of these datasets became available through SCAR’s Seismic Data Library System (SDLS, Wardell et al., 2007), enabling a much more integrated seismic-stratigraphic interpretation work. In addition, new sites were drilled on the East Antarctic margin by the Integrated Ocean Discovery Program (IODP; Leg 318; Escutia et al., 2011; Fig. 1a), which for the first time provided key constraints on the age and composition of Eocene and younger sediments (e.g. Bijl et al., 2013b, 2018b; Tauxe et al., 2012), while new biostratigraphic information helped to refine the interpretation of existing drill cores (ODP sites 269 and 739; Houben et al., 2011, 2013; Passchier et al., 2014). Here, we capitalise on the newly available Antarctic seismic and geological information and develop a consistent seismic stratigraphic interpretation for both conjugate Australian-Antarctic margins.

2 Stratigraphic Framework

2.1 Antarctica

Seismic reflection profiles have been collected offshore Wilkes Land since the 1980s. Early stratigraphic interpretations were undertaken based on relatively sparse seismic data mostly in the eastern sectors (Fig. 1c) and using constraints from Deep Sea Drilling Project (DSDP) Leg 28 (e.g. Eittreim and Hampton, 1987; Eittreim et al., 1995; Tanahashi et al., 1997; Tsumuraya et al., 1985; Wannesson et al., 1985; Fig. 3). These early studies identified a prominent unconformity dividing the sedimentary column into glacial and non-glacial sequences based on characteristic glacial structures, such as channel levees, turbidites, sediment waves, debris flows (e.g. Donda et al., 2003, 2007; Escutia et al., 2002, 2003). The lowermost unit with strong faulting was interpreted as syn-rift material (Fig. 3; Figs. 4-6: equal to S1).

In the late 1990s, 100’s of kilometres of multichannel seismic reflection data with deeper signal penetration were collected offshore Wilkes Land (Fig. 1a). All margin-wide seismic stratigraphic interpretations (Close et al., 2007; Colwell et al., 2006; Leitchenkov et al., 2007, 2012; Stagg et al., 2005) consistently interpreted a lower prominent reflection as the “breakup” unconformity consistent with initial interpretations (Fig. 3; Figs. 4-6: equal to U1). Despite a lack of stratigraphic control, most authors consider the timing of the lower unconformity to be Turonian offshore the western and central Wilkes Land, and
Maastrichtian offshore Terre Adélie and George V Land (e.g. Close et al., 2007; Leitchenkov et al., 2007, 2012; Fig. 3).

However, significant differences exist regarding interpretations of a younger prominent unconformity and its formation, which we interpret as two separate unconformities (Figs. 3, 4-6: U2/U3). This (typically interpreted as) Eocene unconformity features both in margin-wide interpretations, and also in interpretations focused on younger strata and/or particular sectors of the Antarctic margin (e.g. Brancolini and Harris, 2000; De Santis et al., 2003; Donda et al., 2003; Escutia et al., 1997, 2002).

Eittreim et al. (1995) and Escutia et al. (1997) proposed the onset of widespread continental glaciation, and associated erosion, ~34 Ma as the mechanism driving the formation of this unconformity (Fig. 3). Close et al. (2007) described a single unconformity extending along the margin due to prominent onlapping pattern of the overlying sediment. Based on the presence of a similar unconformity offshore the conjugate Australian margin, they excluded glaciation as a possible formation process. Instead, they argue for a major erosional event at ~45 Ma (Fig. 3), caused by the initiation of strong, deep ocean currents enabled by an increasing seafloor spreading rate and synchronous, rapid subsidence of both margins.

Leitchenkov et al. (2007, 2012) extended the interpretation of this unconformity past the Wilkes Land region to almost the entire East Antarctic margin, which excludes a specific tectonic formation process within the Australian-Antarctic sector. They observed a more complex structure of this Eocene formation, interpreting two high-amplitude reflections, which split at a number of locations along the margin. Leitchenkov et al. (2012) propose that a drastic global sea level drop of about 70 m caused wide-scale erosion of the southern Australian and the East Antarctic margins at ~42 Ma (based on Miller et al., 2005) forming the lower horizon. The onset of continent-wide glaciation ~34 Ma is proposed as the driver of the second major erosional event (upper horizon; Leitchenkov et al., 2012; Fig. 3).

In 2010, IODP Site U1356 (Leg 318, Figs. 1a, 6a) was the first geological site offshore East Antarctica to drill through this prominent reflection pattern. This continental rise site (~4,003 mbsl) between the Adélie Rift Block and continental slope, intersected two hiatuses, coinciding with the prominent Eocene unconformity. These hiatuses were constrained to 51.9-51.06 Ma and 47.9-33.6 Ma (Bijl et al., 2013b; Escutia et al., 2011; Tauxe et al., 2012). The younger hiatus was interpreted to have formed at ~33.6 Ma via widespread erosion of existing sediments, when the first coastal glaciation led to glaciers grounding on the shelf, erosive downslope bottom currents and coinciding sea level changes (Escutia et al., 2011; Stocchi et al., 2013). Evidence for abundant reworked Eocene microfossils detected in the lowermost Oligocene sediments at Site U1356 (Bijl et al., 2018b; Houben et al., 2013), and Eocene material in dredge samples offshore the Mertz Glacier (Truswell, 1982) support this interpretation. Escutia et al. (2011) interpreted the older hiatus (51.9-51.06 Ma) to have formed due to an increased rate of seafloor spreading, as originally proposed by Close et al. (2007).

In summary, all studies propose that massive erosional events formed the younger and/or the older hiatuses by removing 200–600 m of sediment (Close et al., 2007; Eittreim et al., 1995; Escutia et al., 2011; Leitchenkov et al., 2012). The Eocene unconformity is found across wide areas of the East Antarctic (and Australian) margin, which implies that a large amount of eroded sediment would have been re-deposited somewhere along the margins. Although the Oligocene sediments at IODP Site U1356 contain reworked Eocene microfossils, the highest abundance is concentrated in the lowermost ~16 m (Houben et al., 2013) which would not be
enough to account for ~200-600 m of eroded sediment. To date, no evidence for such large amount of re-deposited sediments has been detected in geophysical or geological data.

2.2 Australia

Geologically, the Australian conjugate is much better constrained than the Antarctic margin, by numerous petroleum exploration wells (Fig. 1a; Totterdell et al., 2014) and scientific drilling expeditions (DSDP Leg 29 - South Tasman Rise, Sorell Basin, Kennett et al., 1974; Ocean Drilling Program (ODP) Leg 182, Feary et al., 2000, and IODP 369 - Great Australian Bight (GAB), Huber et al., 2018; Leg 189 - Tasman Region, Exon et al., 2001). Early studies based on first well and seismic data led the initial seismo-stratigraphic interpretations of the Bight and Otway basins in the 1970s (e.g. Boeuf and Doust, 1975; Deighton et al., 1976; Fraser and Tilbury, 1979; Hayes et al. 1975). Stagg et al. (1990) subdivided the southern Australian margin into major Mesozoic sedimentary basins that formed during the long rift phase (Fig. 1b). These basins are largely overlain unconformably by a thin Cenozoic carbonate platform (e.g. Stagg et al., 1990). Comprehensive overviews of each of the basins along the margin, with focus on the shelf and upper slopes, have been undertaken (e.g. Bradshaw, 2005, Bremer Sub-basin; Totterdell et al., 2000, GAB; Krassay et al., 2004, Otway Basin; Stacey et al., 2013, Otway and Sorell basins). Although some studies use constraints from neighbouring basins, only a few margin-wide seismic correlations have been made across all basins. However, helpful syntheses can be found in Blevin and Cathro (2008) and Totterdell et al. (2014).

Although the tectonic evolution of the Bremer, Bight, Otway and Sorell basins did not occur simultaneously, their overall evolution was similar. Each basin exhibits the transformation from a small, isolated non-marine and fluvio-lacustrine intracratonic rift to a complex marine passive margin system (Fig. 2; Blevin and Cathro, 2008). From the Bremer Sub-basin in the west to the Sorell Basin in the east, all depocentres contain thick syn-rift non-marine, fluvio-lacustrine sediment units deposited from about the mid-Late Jurassic (Bremer Sub-Basin, central GAB, western Otway Basin) to Early Cretaceous (Otway and Sorell basins; Bradshaw, 2005; Krassay et al., 2004; Stacey et al., 2013; Totterdell et al., 2000; Totterdell and Bradshaw, 2004). During the Aptian-Albian, increased marine influence is observed in the Bight and Otway basins (based on lithological observations at drill and dredge sites; Fig. 2). In most regions, this was followed by the development of thick Late Cretaceous deltaic successions with deposition controlled by both growth faulting and thick-skinned extensional faulting (Robson et al., 2016; Totterdell and Krassay, 2003b). A relatively thin cover (max. ~1700 m in the Duntroon Sub-basin; Totterdell et al., 2000) of Cenozoic marine, dominantly carbonate, sediment is observed (Fig. 2).

At the eastern end of the Australian southern margin is the continental South Tasman Rise, containing small isolated sedimentary basins (e.g. Hill and Moore, 2001). This region was partly influenced by different tectonic processes, and therefore, the sediment-stratigraphic evolution shows differences to the rest of the southern Australian margin. However, the same transition from shallow to open marine sedimentation can be observed from the Mid-Late Eocene (Hill and Moore, 2001; Fig. 2).

Some links between the Australian and Antarctic seismic structures have previously been made (e.g. Ball et al, 2013; Close et al., 2007; Colwell et al., 2006; Espurt et al, 2012; Gillard et al., 2015; Lane et al, 2012). Most of these studies were limited to the central GAB and conjugate Wilkes Land, focusing on the detailed comparison of tectonic structures detected in crustal basement and syn-rift sediments which formed during lithospheric thinning and/or
early breakup (Ball et al., 2013; Espurt et al., 2012; Gillard et al., 2015; Lane et al., 2012). Broader comparisons between the overall character of seismic units were made by Close et al., 2007; Colwell et al., 2006; and Leitchenkov et al., 2015.

2.3 Uncertainties

Uncertainties in the seismo-stratigraphic interpretation covering such a large region (this and previous studies) are inevitable in certain areas, due to a lack of geological constraints, decreased resolution of seismic signal in deeper profile sections, different acquisition and processing parameters between seismic surveys, deformation of characteristic older sediment structures due to compaction by thick overlying material, or reflections onlapped or truncated on bathymetric obstacles hampering correlation.

Some areas, particularly along the Antarctic margin, are affected by these factors. As IODP Site U1356 provides the only robust, but stratigraphically limited, geological constraints for pre-glacial Cenozoic material along this margin, uncertainties increase with distance from this site. The elevated Adélie Rift Block (Fig. 6a) causes thinning of sediment units or onlapping of prominent reflections which leads to some uncertainty. In the George V Sector, submarine volcanoes and seismic profiles with shallow signal penetration cause uncertainties. Farther west along the Antarctic margin, strong structural similarities and margin-parallel tie profiles provide high confidence in the stratigraphic correlation. However, some deeper structures can be strongly compressed by thick overlying material, making the determination of underlying unconformities difficult.

The stratigraphic interpretation offshore southern Australia is better constrained by various geological sites along the shelves, but stratigraphic uncertainty increases basinward where fewer wells have been drilled. In addition, sample coverage decreases towards the foot-of-slope and the lack of margin-parallel seismic profiles causes some uncertainty.

3 Data and Methods

3.1 Multichannel seismic reflection data

Along both Australian and Antarctic margins, about 500 seismic reflection lines (~60 000 km) are analysed and stratigraphically interpreted in this contribution (Fig. 1a). SCAR’s Seismic Data Library System (SDLS, Wardell et al., 2007) provides all existing profiles collected offshore Antarctica from 1980s to 2006. Datasets from seismic surveys acquired offshore Australia are provided by Geoscience Australia (Surveys AGSO 137, 199, 202, 224, S280, 2012 Acreage Release seismic data package) and Spectrum Geo Ltd. (Petrel Roving Survey 1973). The seismic interpretation work was undertaken using IHS Kingdom software (version 2015.0). All seismic profiles are stored and displayed in two-way travel time (s, TWT).

On the Antarctic margin, a comprehensive coverage of margin-crossing profiles (distance ranges between ~10-150 km, Fig. 1a), and in particular margin-parallel profiles ensures the consistency and accuracy of the stratigraphic interpretation. On the Australian margin, sub-basins are not as well linked by seismic profiles, so prominent key reflections and units with strong similar structures and amplitude characteristics are linked together with the aid of geological constraints (Figs. 4-6).
3.2 Depth conversion and plate tectonic reconstruction

The interpreted horizons are exported and used to compute interpolated 0.5° grids in TWT (s). For each key horizon, velocity grids are computed using the interval velocities from in total 1143 sonobuoy and ocean bottom seismometer (OBS) stations (after Whittaker et al., 2013b; Fig. 1a) as a function of TWT. The interval velocities of the sedimentary units cover the following ranges: a) S1 from 2.0 to 5.0 km/s, b) S2 from 2.0 to 4.0 km/s, c) S3 from 1.6 to 3.5 km/s, and d) S4 from 1.6 to 2.5 km/s. The velocities depend strongly on the thickness of overlying sediments due to compaction, which causes wide ranges in velocity within each unit (e.g. high S3 velocities (3.5 km/s) offshore parts of Antarctica with thick overlying S4 unit (Fig. 10), and lower values (1.6 km/s) for most parts offshore Australia).

Horizon grids in depth (km), sediment thickness (“isopach”) grids and volumes for each unit are calculated and reconstructed back in geological time (Fig. 7 – 67 Ma, Fig. 9 – 43.8 Ma) using GPlates 2.0 and the plate model of Whittaker et al. (2013a).

3.3 Geological data

For our seismic stratigraphy, geological constraints are taken from various drill, piston core and dredge sites along both margins (Fig. 1a). The correlation between seismo-stratigraphic interpretation and geological data is crucial to infer ages and depositional environment of the sedimentary units.

Along the Antarctic margin, key constraints are obtained from IODP Leg 318 (Terre Adélie; Escutia et al., 2011), DSDP Leg 28 (Wilkes Land/Terre Adélie; Hayes et al., 1975) and ODP Leg 183 (Kerguelen Plateau; Coffin et al., 2000). For this study, IODP Site U1356 and U1360 (Leg 318) provide the key constraints on pre-glacial sediments on the Antarctic margin (Eocene, <54 Ma, Tauxe et al., 2012). Piston cores (Fig. 1a) recovered Eocene/Paleocene shelf material (Sabrina Coast Sector; Gulick et al., 2017) and Cretaceous shelf sediments (George V Sector; Domack et al., 1980). However, both locations cannot be directly correlated to the seismic stratigraphy of the continental slope, due to the lack of seismic profiles in this area at the time of this study.

Along the southern Australian margin, key geological data are obtained from scientific drilling: ODP Leg 182 (Eyre Sub-basin, Feary et al., 2000); ODP Leg 189 (offshore Tasmania, Exon et al., 2001); DSDP Leg 29 (offshore Tasmania, Kennett et al., 1974). Further constraints are obtained from 15 industry wells: Jerboa-1 (Eyre Sub-basin); Eucla-1, Eyre-1 (onshore Eucla Basin); Platypus-1, Potoroo-1, Greenly-1, Borda-1, Gnarlyknots 1 and 1A (Ceduna Sub-basin); echidna-1, Duntroon-1 and Vivonne-1 (Duntroon Sub-basin); and Morum-1, Amrit-1, Somerset-1 (Otway Basin). A biostratigraphic summary of the well sites in the Great Australian Bight (GAB) is provided by Morgan et al. (1995). Additional geological information from the continental slope is provided by dredge samples collected in the GAB (BMR Survey 66; Davies et al., 1989). In the Bremer Sub-basin, dredge samples were collected along deep-cutting canyons (Survey 265; Monteil et al., 2005).

3.4 Magnetic isochrons

Key seismic horizons more distant from the slope onlap onto oceanic crust which provides constraints on their maximum depositional age, as sediment can only be deposited onto oceanic crust that has already formed. For this age correlation, we use magnetic anomaly identifications by Tikku and Cande (1999) and Whittaker et al. (2007).
For consistency, all ages determined from seafloor spreading anomalies and geological data were converted to the GTS2012 time scale (Gradstein et al., 2012; Fig. 2), where possible.

4 Results and Interpretation

As the Australian and Antarctic margins share a similar tectonic, and likely climatic, evolution from initial rifting until the Eocene/Oligocene icehouse transition (plate tectonic reconstructions, see Figs. 7, 9), strong similarities can be observed in structural patterns, seismic characteristics and boundary horizons of the sedimentary units. Here, we develop a consistent seismo-stratigraphic framework and identify/interpret four major sedimentary units (S1-S4; Figs. 4-6) and three key horizons (U1-U3) along both conjugate margins.

4.1 Sedimentary Unit S1

S1 is the oldest sedimentary unit that can be consistently observed along both margins. Extensive high-angle normal fault structures are most characteristic (Figs. 4-6, black lines) and control extensional depocentres across the basins of both margins. Widespread and large-scale gravity-driven growth faults can be observed, particularly in the central GAB (Fig. 5b). These structures have been described in detail, by e.g. Totterdell et al. (2000). At some locations, truncations of internal reflections are detected within S1, indicative of the locally complex structural and depositional history encompassed in this succession (Fig. 4b, Bremer Sub-basin).

The top boundary of this unit is a prominent high-amplitude reflection which can be easily detected along both margins (Figs. 4-6, red horizon U1). U1 marks the top of the extensive faulting (Figs. 4-6). Only some faults in the GAB progress into sequence S2 but show a different direction pattern indicating that they have been re-activated (see chapter 4.2). In some locations, U1 forms the top of the truncation of the underlying S1 (Fig. 4b (5)). In most seismic profiles, the resolution in the deeper sections does not allow consistent detection of the lower boundary of S1, the crustal basement reflection (Figs. 4-6, yellow horizon B). At locations where the basement can be identified, fault structures are observed extending through S1 into the basement (Fig. 4b, Bremer Sub-basin). Due to the difficulty in interpreting the basement, the S1 thickness cannot be determined based on the seismic reflection profiles.

Along the southern Australian margin, horizon U1 is dated as Late Santonian (~83 Ma, based on spore-pollen and dinocyst biozonation; Totterdell et al., 2000) in its central and eastern part (Ceduna, Eyre, Duntroon Sub-basins, and Otway Basin; Fig. 2). In the Sorell Basin, U1 is early Campanian (~80 Ma, based on spore-pollen biozonation; Stacey et al., 2013; Fig. 2). In the Bremer Basin, dredge samples recovered slightly older material immediately below U1 which are dated to Cenomanian (~94 Ma, based on dinoflagellate biozonation; Monteil et al., 2005; Fig. 2). However, possible incomplete sampling with dredging may cause an inherent uncertainty for age estimates. Along the Antarctic conjugate, no drill sites have penetrated material of similar age. However, previous studies (e.g. Close et al., 2009; Eittreim et al., 1995; Leitchenkov et al., 2007, 2012; Wannesson et al., 1985) inferred a Turonian age for horizon U1 due to the perceived seismic similarities to the Australian margin, but which is slightly older than the GAB dating (Fig. 3). Sedimentary unit S1 on both margins underlying U1 is widely agreed upon to have been deposited during the long-lasting rifting phase between Australia and Antarctica since the Mid-Late Jurassic. In the central and western
Australian margin, the oldest S1 sediment overlying the basement is dated to Callovian-Kimmeridgian (~165 Ma, based on spore-pollen biozonation; Monteil et al., 2005). In the Otway Basin, the oldest dated material is of Valanginian age (~140 Ma, spore-pollen biozonation), with the basal, undrilled sediments likely to be Berriasian or older (Krassay et al., 2004).

Our interpretation of horizon U1 conforms with previous studies on the Australian margins (Monteil et al., 2005; Stacey et al., 2013; Totterdell et al., 2000). As the age can be determined directly on sediment samples, we infer the same ages (Figs. 2, 3). As no drill sites provide U1 age constraints for the Antarctic margin, we imply the Australian U1 ages directly to the Antarctic conjugate leading to a slightly different U1 age determination compared to previous studies (Fig. 3). We determine an U1 age of ~94 Ma in the west (Bruce, Knox sectors); ~83 Ma in the centre (Sabrina Coast, Banzare Coast, Adélie sectors); ~80 Ma in the east (George V Sector).

4.2 Sedimentary Unit S2

Unit S2 exhibits a complex internal structure. In most places, fault structures extend through the entire S2 unit (Figs. 4a, 5b, 6; black lines). Particularly in the central GAB (Fig. 5b), many of these faults originate from underlying fault systems in S1, however follow a slightly different pattern indicating that they have been selectively reactivated. After Totterdell and Krassay (2003b), Maastrichtian-Early Paleocene flexure of the margin caused this reactivation process. Additionally, distinctive fault systems and partial décollement surfaces are visible (Fig. 5b (5)), and, in places, toe-thrust structures are present on the lowermost slope (Figs. 5b(3), 6b(4)). In most parts of the margins, S2 is also characterized by a progradational architecture (Figs. 5b, 6). On the western portion of the Australian margin, where S2 is markedly thinner (<0.6 km, Fig. 7), faults and progradational geometries are less common. Here, internal reflections are continuous and typically sub-parallel to the underlying topography (Fig. 4b).

Horizon U1 represents the lower boundary of S2. Towards the abyssal plain along both margins, sedimentary unit S2’s internal reflections become more flat-lying and pinch out onto the underlying basement (yellow horizon, Fig. 4a, 5, 6a). The top boundary of S2, horizon U2, is a prominent high-amplitude reflection (Figs. 4-6, green horizon) which marks the top of the prominent fault structures in the central and eastern sector of the margins. Across the central shelves, U2 forms a characteristic angular unconformity (Fig. 5b). Farther basinward and particularly in the west, U2 is a prominent disconformity with high amplitudes (Fig. 4a, b). On the lower continental slope, U2 can be easily detected by the onlapping pattern of the overlying internal reflections of sedimentary unit S3 (Fig. 5, 6), and by truncation of underlying S2 reflections in the middle continental slope (Fig. 5, 6a).

The thickness of sedimentary unit S2 varies significantly along both margins (Fig. 7). Offshore Australia, S2 is thickest in the Ceduna, eastern Recherche and outer Duntroon sub-basins, as well as in the Otway Basin (Fig. 7, up to 5 km). Offshore Antarctica, thickest S2 deposition is observed offshore the Sabrina, Frost and Astrolabe subglacial sediment basins (Fig. 7, up to 3 km). In contrast, S2 is very thin or entirely absent in the Australian Eyre and inner Duntroon sub-basins as well as on top of the Antarctic Adélie Rift Block and Bruce Rise (Fig. 7).
Our interpretation of horizon U2 is identical to previous interpretations along the Australian margin (Figs. 2, 3). Ceduna Sub-basin drill sites record an Early-Mid Paleocene hiatus between ~65-59 Ma which is correlated to U2 (based on spore-pollen and foraminifera biozonation; Totterdell et al., 2000). In the Bremer Sub-basin, numerous dredge samples did not recover any material datable to ~65-59 Ma, which indicate the presence of a similar hiatus (based on dinoflagellate biozonation; Monteil et al., 2005). Drill sites in the adjacent Eyre and Inner Duntroon sub-basins reveal that sedimentary unit S2 is absent leading to the merging of horizons U1 and U2, corresponding to a break in the stratigraphic record of ~24 Myrs (~83 Ma-59 Ma, based on spore-pollen and foraminifera biozonation; Totterdell et al., 2000; Fig. 2). In the Otway and Sorell basins, U2 is dated by drill sites to latest Maastrichtian-early Paleocene (~65 Ma; based on spore-pollen biozonation; Krassay et al., 2004; Boreham et al., 2002; ~67 Ma onshore in the Otway Basin; Frieling et al., 2018; Fig. 2). Consequently, sedimentary unit S2 was likely deposited between ~94-65 Ma in the Bremer Sub-basin, ~83-65 Ma in the central Ceduna, eastern Recherche, outer Duntroon sub-basins and offshore the Otway Basin, and ~80-65 Ma in the Sorell Basin. S2 is not present in the Eyre and Inner Duntroon sub-basins.

On the Antarctic margin, the age and stratigraphic interpretation of horizon U2 varies between previous studies (Fig. 3), as no drill sites have penetrated U2 or S2. Our interpreted horizon U2 is most similar to the Antarctic horizon “WL1”/ “WL2” interpreted by Leitchenkov et al. (2007, 2012), who determined U2 as a 67 Ma “Otway Basin breakup unconformity” and extended the interpretation along the Wilkes Land margin. They suggest a depositional age for sedimentary unit S2 of ~67-43 Ma. Here, we make a slightly different comparison to the U1 and U2 age determinations published for the Australian margin and suggest that S2 along Antarctica was deposited from ~94-65 Ma in the Bruce, Knox sectors (similar to the Bremer Sub-basin); from ~83-65 Ma in the Sabrina Coast, Banzare Coast, Adélie and western George V sectors (similar to the conjugate Ceduna Sub-basin and Otway Basin); and from ~80-65 Ma in the eastern George V Sector (similar to the Sorell Basin). On top of the Adélie Rift Block and Bruce Rise, S2 is very thin or entirely absent, similar to the Eyre and the inner Duntroon sub-basins (Fig. 2, 7).

4.3 Sedimentary Unit S3

Unit S3 represents a shorter time-span and is significantly thinner than the underlying sedimentary units on both conjugate margins. The top and lower boundaries, horizons U3 (blue) and U2 (green), merge into one reflection band and/or a very thin layer beneath the middle continental slope and diverge again towards the upper slope and towards the base of the continental slope (Figs. 4–6, 9). This means that sedimentary unit S3 is split into two main locations, one thinner deposit along the paleo shelves (maximum ~0.7 km) and one thicker deposit along the base of the continental slope (maximum ~1.2 km).

Along the base of the continental slopes in the centre and east, the internal reflections of S3 onlap onto the lower boundary U2 (Figs. 4-6). The top boundary is the high-amplitude horizon U3, which is also the uppermost layer onlapping onto older reflections (Figs. 4–6). At the central and eastern foot-of-slope along both margins (Figs. 5, 6 - zoom-ins), horizon U3 is easily detectable by onlapping internal reflections of overlying sedimentary unit S4 onto U3. In the western part of the Australian-Antarctic margins (Fig. 4), both boundary horizons U2 and U3 are mostly sub-parallel to the overlying S4 reflections and the seafloor.

Along the Australian shelves, our interpretation of horizon U3 is identical to previous studies (Figs. 2, 3). U3 is dated to ~50 Ma in the western Bremer Sub-basin (based on dinoflagellate
biozonation; Monteil et al., 2005), ~48 Ma in the central Eyre, Ceduna and Duntroon sub-basins (based on foram and spore-pollen biozonation; Totterdell et al., 2000) and ~45 Ma in the eastern Otway and Sorell basins (based on spore-pollen biozonation; Krassay et al., 2004). Therefore, on the Australian shelves, S3 was deposited between ~59-50 Ma (Bremer Sub-basin), ~59-48 Ma (central GAB), ~65-45 Ma (Otway, Sorell basins). Dredge samples from the eastern GAB’s foot-of-slope recovered Early-Mid Eocene age material (~54-44 Ma) from the foot-of-slope’s S3 (based on nannofossil biozonation; Shafik, 1992; Fig. 9). On the Antarctic margin, our U3 interpretation corresponds to the Eocene hiatus, from ~47.9-33.6 Ma, observed in IODP site U1356 (based on dinoflagellate and nannofossil biozonation, Tauxe et al., 2012). The older age of this hiatus is similar to the constraints from the central part of the Australian conjugate. At U1356, a second hiatus (~51.9-51.06 Ma) follows directly below U3 (~70 m) which we interpret to be imaged by an internal reflection of S3.

Along the Antarctic margin, significant differences exist between our horizon U3 interpretation and previous studies (Fig. 3). Leitchenkov et al. (2012) defines two horizons (“WL3” ~ 42/43 Ma; “WL4” ~34 Ma) which merge to one horizon in the Adélie Sector (this study: U3, close to IODP Site U1356). In most places, particularly in the Sabrina and Banzare Coast sectors, Leitchenkov et al. (2012)’s “WL4” interpretation follows a reflection which we interpret as an internal reflection of the younger S4 unit, due to the prominent channel-levee structures (see section ‘Sedimentary Unit S4’). From the Bruce to the Banzare Coast sectors, our interpretation of U3 is identical to the “eoc” (~45 Ma) horizon interpreted by Close et al. (2007). However, in the Adélie Sector, “eoc” is located much deeper than the drilled Eocene unconformity (U1356) and is equivalent to our horizon U2.

In the central GAB, Totterdell et al. (2000) interpreted that the S3 sediments at the foot-of-slope were deposited around the same time as the shelf unit. We propose that a similar sedimentation pattern also existed along other parts of the Australian margin and offshore Antarctica, based on strong seismic similarities. On both upper slopes and shelves (Figs. 4-6), sedimentary unit S3 is a thin wedge-shaped drape containing sub-parallel internal reflections with medium to high amplitudes (Figs. 4b, 5b, 6).

The foot-of-slope deposits on both margins also share similarities in overall morphology and internal seismic characteristics (Fig. 8). Here, we interpret these features as extensive contourite drift deposits (after Rebesco et al., 2014). Our interpretation is based on combining evidence from characteristic seismic structures, S3’s shape and thickness, sedimentary records and regional oceanographic context (detailed discussion, see chapters 5.2 and 5.3). As the term “contourites” has been used differently in previous studies, we follow the definition “sediments deposited or substantially reworked by the persistent action of bottom currents” (after e.g. Stow et al., 2002a; Rebesco et al., 2014).

The following foot-of-slope S3 structures are observed and interpreted:

1) Mounded drifts: At the base of the continental slopes, where the underlying topography is steeper, S3 forms elongated, slightly asymmetric, mounded features that thin towards the abyssal plain (Figs. 5b, 8a, e, f). These deposits show significant variations in amplitudes, and contain layers with more chaotic reflection patterns, onlapping onto the lower boundary reflection.

2) Channel-related drift: Within the narrow pathway between the Adélie Rift Block and the Antarctic continental slope, the sediment formed a mounded ‘channel-related drift’ (Figs. 6a/8d). Internal reflections are similar to the mounded drifts; however, they onlap onto the lower boundary reflection at both ends.
3) Mixed drifts: Some of the mounded drifts show characteristics of ‘mixed drifts’ with increases in chaotic internal reflections and partly rotated blocks, which indicate structural appearance of debris flows (Fig. 8g) or slumps (Fig. 8h). These drifts are observed in the eastern part of both margins, downslope of the Eyre and Duntroon sub-basins (Fig. 9), as well as near locations on both margins where S2 internal reflections truncate in a large scale onto horizon U2 farther upslope, indicating possible erosion followed by re-deposition as ‘mixed drifts’ downslope (Fig. 8c). These interpreted contourites are mixed with downslope mass transport deposits.

4) Sheeted drifts: Areas where the underlying topography is gentler, S3 thins and forms wide-spread sheeted layers from the mid-slope into the abyssal plain (Figs. 4a, 5a, 8b). Internal reflections are mostly sub-parallel and high amplitude.

In the central GAB, an elongated S3 unit containing both mounded and mixed drifts extend along the foot-of-slope for more than 950 km and about 130 km seawards, reaching ~1.2 km thickness (Figs. 5b, 9). Along the Antarctic conjugate, an elongated mound at the foot-of-slope at the Bruce Rise reaches ~0.9 km thickness, extends about 400 km margin-parallel and 110 km seawards (Figs. 8a, 9).

The ‘channel-related drift’ between Adélie Rift Block and continental slope extends about 400 km and fills up the depression with about 0.8 km of sediment over widths up to 130 km (Figs. 6a, 8d, 9). The ‘mixed drifts’ extend through the Otway and Sorell basins (~550 km, Figs. 6b, 8g, h) as well as in the Adélie and George V sectors of the Antarctic conjugate (~300 km). They extend about 140 km offshore, similar to the mounded drifts, and reach thickness up to 1.2 km.

‘Sheeted drifts’ are interpreted along the mid-slope to abyssal plain in the Antarctic Knox, Sabrina Coast and George V sectors (Fig. 4a, 5a, 8b, 9). They extend much farther towards the ocean than the mounded drifts (about 250-350 km); however, they only reach a thickness of about 300 m.

4.4 Sedimentary Unit S4

The uppermost sedimentary unit S4 overlies horizon U3 and shows strong differences between Australia and Antarctica. Along the Australian margin, this unit is very thin (~0-1 km thick; Fig. 10) and consists of parallel, mostly continuous high-amplitude reflections forming a wedge-shaped drape along the shelves and upper slopes (Figs. 4b-6b). This leads to exposure of underlying sedimentary units S3 and S2 along the middle continental slope offshore Australia. Hemipelagic sedimentation in the abyssal plains shows mostly sub-horizontal layering with medium to high amplitudes (Figs. 4b-6b).

In contrast, S4 shows complex internal structural variations along the Antarctic margin, including numerous mostly asymmetric channel-levee systems with continuous internal reflections and filling strata in the channels (Fig. 4a (1), 6a), progradating features, and undulating sediment waves in the uppermost parts (Fig. 4a (4)). Particularly in the central Antarctic sectors, the reflections onlap prominently onto U3 and show sub-horizontal structure with high amplitudes (Fig. 5a).

The thickness of S4 is variable along the Antarctic margin, reaching up to 4 km proximal to the Totten Glacier in the Sabrina Coast Sector, and ~2.5 km in the George V and Shackleton sectors (Fig. 10). In contrast, at parts of the Adélie Sector, S4 is less than 0.5 km thick (Fig. 10) with deep cutting canyons (Fig. 6a). Drill sites offshore Antarctica recovered glaciogenic
sediment deposits from unit S4 which have been studied in detail by various authors (e.g. De Santis et al., 2003; Donda et al., 2007; Escutia et al., 2002, 2003, 2005).

Along the Australian shelves, S4 is younger than ~50 Ma in the western part (based on nannofossil and foraminifera biozonation; Feary et al., 2000), ~48 Ma in the central part (based on spore-pollen biozonation; Totterdell et al., 2000), ~45 Ma in the eastern part (based on spore-pollen biozonation; Krassay et al., 2004; Fig. 2). Along most of the middle continental slopes offshore Southern Australia, S4 is very thin or absent (Figs. 4-6). No direct age constraints exist for the hemipelagic S4 deposit in the Australian abyssal plains; however, it may have a similar oldest age as S4 respective to their shelves. In the Antarctic Adélie Sector, the lower boundary of glacial unit S4 is dated to ~33.6 Ma (based on dinoflagellate biozonation, Tauxe et al., 2012). Younger parts of this unit are drilled at numerous places (e.g. IODP Leg 318, ODP Leg 28; see Houben et al., 2013).

Previous studies offshore Antarctica subdivided the uppermost glacial sediment package into sub-units (3 - Leitchenkov et al., 2007; 6 - De Santis et al., 2003). As no glacial deposition occurred offshore Australia, we combine these sub-units to one sedimentary unit S4.

5 Discussion

5.1 Late Cretaceous deltaic sedimentation

Offshore Australia, sedimentary unit S2 is well-recognised to have been sourced by fluvial drainage systems, with a depositional environment changing from inboard fluvial, through delta plain and prodelta, to marine setting (e.g. Hammerhead Supersequence; after Totterdell et al., 2000). Numerous drill sites offshore southern Australia have recovered thick layers of sand-rich deltaic material deposited during the Late Cretaceous due to terrigenous influx from large paleo-river systems (e.g. Feary et al., 2000; King and Mee, 2004; Krassay and Totterdell, 2003; MacDonald et al., 2010; Totterdell et al., 2000; Totterdell and Krassay, 2003a). In the central GAB, S2 reaches thicknesses up to 5 km and a volume of ~0.29*10^6 km^3, as part of the Ceduna Delta (e.g. Totterdell et al., 2000; Fig. 7).

Although the Antarctic conjugate S2 does not reach the same thickness and extent as the Ceduna Delta, some similarities in reflection characteristics and sediment architecture can be clearly detected. We propose that a similar fluvial sediment mechanism was also active in Antarctica, with onshore paleo-river systems transporting sediment from interior basins into offshore depocentres. This interpretation is supported by Cretaceous sediments recovered with a piston-corer on the eastern Antarctic shelf which are characterized as fluvial material similar to the Australian margin (Fig. 7; Site DF79-38; Domack et al., 1980).

Additionally, the Late Cretaceous climatic and tectonic setting of the nascent Australian-Antarctic Basin are realistic for such a depositional environment along both margins. Throughout the overall warm Late Cretaceous, the equator-to-pole temperature gradient was extremely low (e.g. Huber et al., 1995) and mean global precipitation rates were double those of the present day (Hay and DeConto, 1999). During this time period, the Australian-Antarctic Basin was still very narrow (max. ~330 km; Whittaker et al., 2007) and it is probable that paleoclimatic conditions prevailing in Australia were similar in Antarctica.

In the Australian case, river systems were able to transport sediments over a long distance into the offshore basins. The paleo Ceduna river system feeding the Ceduna Delta had a
Various authors have proposed that uplift of the Eastern Highlands from 100-80 Ma resulted in erosion of parts of the Bowen and Surat basins in eastern Australia, and transport of this material to the Ceduna Sub-basin (Raza et al., 2009; Totterdell and Krassay, 2003b; Veevers, 2001; Fig. 7). Another prominent delta, the Sherbrook Delta (Blevin and Cathro, 2008) is observed in the Otway Basin and was possibly fed with material eroded from the onshore Darling Basin (after Gingege and Deckker, 2005; Fig. 7). In contrast, not much sediment is deposited offshore in regions that are not connected to large drainage systems and eroding hinterlands. For instance, lower rates of denudation on the Yilgarn Craton in western Australia might be a cause for limited deltaic sedimentation in the Bremer Sub-basin (Fig. 7). In the Eyre and inner Duntroon sub-basins, possible uplift-related erosion in the Late Cretaceous resulted in the absence of S2 (Krassay and Totterdell, 2003; Totterdell et al., 2000; Totterdell et al., 2014). At the South Tasman Rise and eastern Sorell Basin, oblique extension associated with a developing transform part formed small, isolated depocentres during the Late Cretaceous which likely led to less accumulation space for deltaic material (Stacey et al., 2013).

Ancient river systems and their catchment areas are difficult to map in Antarctica because of the thick ice sheets. However, our study shows that main deposition centres along the Antarctic margin are located offshore the Sabrina, Frost and Astrolabe subglacial sediment basins (terminology after Aitken et al., 2014; Fig. 7) and reach thicknesses up to 3.0 km. Possible paleo-river catchment areas may have covered the coastal sediment basins (e.g. Sabrina, Frost and Astrolabe) or, similar to the Australian conjugate, extend farther inland to e.g. the Aurora and Vincennes sediment basins in the west, and/or the Adventure Subglacial Trough or parts of the Wilkes sediment basin in the east (Fig. 7). Aitken et al. (2016) and Gulick et al. (2017) argue for large-scale erosion of the Sabrina sediment basin during repeated advance and retreat of the East Antarctic Ice Sheet throughout glacial-interglacial cycles since the Oligocene. We suggest that this region possibly experienced significant erosion by large river systems already in the Late Cretaceous.

Previous studies (e.g. Cooper et al., 2001; Jamieson et al., 2005, 2010; Jamieson and Sugden, 2008) propose that established pre-glacial paleotopographic structures were retained by the evolving ice sheet and resulted in the present-day subglacial drainage systems. This means in turn that present-day glacial systems to a large extent reflect ancient river catchment areas. Our interpretation of possible paleo-river systems (Fig. 7, blue arrows, Antarctic side) follows the reconstruction of present-day subglacial drainage patterns by Jamieson and Sugden (2008). In particular, the modern Vanderford, Totten, Frost and Mertz Glacier drainage systems (Fig. 10; after Fretwell et al., 2012) might have been large river beds feeding the thick offshore delta deposits during the Late Cretaceous. In contrast, the eastern part of the Sabrina Coast Sector shows a thin S2 layer (<1 km) which could be related to lower denudation rates on the onshore Terre Adélie Highlands (Fig. 7).

5.2 Sedimentary unit S3 contourites

On the Australian margin, previous studies interpreted the foot-of-slope portion of unit S3 as mass transport deposits (Wobegong Supersequence; Totterdell et al. 2000). On the Antarctic conjugate, Close et al. (2010) described these features as “healed-slope and/or ponded deposits”. Leitchenkov et al. (2015) interpreted some of these features around the Bruce Rise (Fig. 8a) as contourite deposits formed by a westward flowing ocean current.
We interpret extensive contourite drifts on both foot-of-slopes as part of S3. The criteria used to determine contourite drifts, and particularly to distinguish them from turbidites, are highly debated in the literature (e.g. Hüneke and Stow, 2008; Rebesco et al., 2014; Shanmugam, 2000, 2017). Here, we combine evidence from characteristic seismic structures, thickness and shape of Sedimentary Unit S3, with characteristic features found in sediment samples and the regional oceanographic context of the basin, and conclude that the presence of contourites is most likely.

Contourites form due to long-slope bottom current activity (terminology after Stow et al., 2002a; Rebesco et al., 2014) and vary significantly in their shape, depending on the underlying topography, sediment supply and ocean current activity (e.g. Rebesco et al., 2014). Ocean currents speed up along steeper slopes and narrow pathways, eroding and redepositing sediment as “mounded drifts”. Contourite drifts transform into “sheeted drift” deposits (Fig. 8b) when the slope angle is gentler and bottom currents affect a broader region, possibly slow down, and erosion is non-focused (e.g. Faugères and Stow, 2008; Rebesco et al., 2014). The “mixed drifts” with partly internally rotated blocks are contourite drifts influenced by additional downslope movements (e.g. Mutti and Carminatti, 2011; Rebesco et al., 2014), e.g. possibly by debris flows (Fig. 8g) or slumps (Fig. 8h).

Geological characteristics which have been interpreted by numerous researchers to be typical of contouritic formations include contorted, convoluted bedding, interbeds, fining-/coarsening-upward sequences (grain size distribution is dependent on current speed; e.g. Rebesco et al., 2014; Stow et al., 1979, 2002b). Contrary to purely downslope turbidite deposits, contourites are deposited over much longer time scales, with lower sedimentation rates and extensive bioturbation (e.g. Stow and Faugères, 2008; Rebesco et al., 2014). Contourite drifts usually contain reworked microfossils.

Our interpretation of contourites is supported by drill and dredge samples on both margins. Reworked Late Cretaceous microfossil material is detected in Eocene assemblages along the entire southern Australian margin (Fig. 9), including dinoflagellates in the Bremer Sub-basin (Bradshaw, 2005; Monteil et al., 2005) and nannofossils at the GAB’s continental slope (Shafik, 1973, 1983, 1990, 1992). At the continental slope of the central GAB (Fig. 9), ODP Site 1128 recovered Early?-Mid Eocene sediment with extensive burrowing, bioturbation, low sedimentation rate (~4 m/Myr), and fining-upward sequences in the lowermost lithological unit (Feary et al., 2000).

On the Antarctic margin, at IODP Site U1356, evidence for contourite drifts exists, particularly in the upper part of sedimentary unit S3, including contorted and convoluted claystones, well stratified and clast-bearing sandstones, bioturbation, fining- and coarsening-upward sequences, relatively low sedimentation rate of about 24 m/Myr (Escutia et al., 2011; Tauxe et al., 2012). These lithological characteristics are less common in the deeper part of S3 (>49 Ma); nevertheless, Escutia et al. (2011) observed some bioturbation, ‘rare interbeds of massing or cross- and parallel-laminated fine sand- and siltstones’, one interbed of 30-cm thick layer of poorly sorted sandstone, and mica minerals which usually form during increased current activity (e.g. Rebesco and Camerlenghi, 2008; Stanley, 1993).

In some areas, the S3 unit is likely formed by a mixture of long-slope contouritic and downslope turbiditic flows coming from the upper slopes and shelves, which we determine as ‘mixed drifts’ (Figs. 8c, g, h). This is particularly the case toward the east along both margins, downslope of the Eyre and Duntroon sub-basins on the Australian margin, and...
partly downslope locations where S2 internal reflections are truncated by the overlying U2 horizon (Figs. 5, 9 - red arrows indicate downslope sediment transport). These truncations indicate gravitational instability of S2 due to its thickness (after Totterdell et al., 2000; Fig. 8c, f). At locations where horizon U2 is a prominent angular unconformity or S2 is absent, possible Late Cretaceous uplift and erosion (after Totterdell et al., 2000) may have initiated downslope mass transport. These downslope-transported sediments were picked up by margin-parallel ocean currents, and deposited as ‘mixed’ contouritic deposits (Fig. 9).

5.3 Clockwise Eocene Currents

We argue that the S3 contourite drifts were formed by currents circulating clockwise within the Australian-Antarctic Basin. The shape of the contourite drifts with respect to the continental slopes provide indications for the flow direction of the ocean currents forming them. The Coriolis force in the southern Hemisphere deflects along-slope ocean currents towards their left, leading to sediment erosion on their left (continental slope) and redeposition on their right (oceanward, Faugères and Stow, 1993). The contourite drifts detected in our seismic profiles along both margins are characterized by asymmetric mounds that thin seawards, and internal reflections onlapping at the moat side (Fig. 8). This indicates that the ocean currents forming the contourite drifts must have flown eastward along the Australian slope, most likely coming from the Indian Ocean, and westward along the Antarctic margin, forming a clockwise current system (Fig. 9), as the Tasman Gateway was still closed during the deposition of this S3 unit (~58-48 Ma).

This interpretation is supported by geological observations and numerical modelling experiments along the Australian margin. At the eastern Ceduna continental slope (Fig. 9), some dredged Late Cretaceous reworked nannofossils indicate that they have been eroded from sites farther west (Shafik, 1992), and re-deposited during the Middle Eocene, within a very narrow biostratigraphic interval (~43.5 Ma; Shafik, 1992). Based on these findings, Shafik (1992) proposed short-lived, easterly-flowing bottom currents along the southern Australian margin. We suggest that most of the S3 sediments were eroded from older S2 sediments upslope, transported downslope and re-deposited as contouritic drifts farther eastward (westward) along the Australian (Antarctic) slope (Fig. 9). This interpretation is supported by studies in the Otway Basin (Pollack, 2003) which suggest that the older deltaic material was re-mobilised by ocean currents and re-deposited as ‘shoreface sands and barriers’ via eastward longshore drift. On a broader scale, our observations are consistent with overall biogeographic patterns in dinoflagellate cysts showing influence of the low-latitude-derived Proto-Leeuwin Current on the Australian side of the basin, flowing east, and the westward flowing Proto-Antarctic Counter Current on the Antarctic Margin (Bijl et al., 2011; 2013a; Sijp et al., 2016). Considering that the Tasmanian Gateway was still very much restricted during the Eocene, these currents were most likely connected in a clockwise gyre.

It is possible that the clockwise ocean current circulation progressively extended farther east through the Eocene, which is supported by geological constraints offshore both margins. During the Early Eocene, surface water temperatures were much warmer along the central and western part of the Australian margin compared to the eastern Otway Basin (based on nannofossil records; Shafik, 1990). This phenomenon has been explained due to an influx of warm water from the Indian Ocean into the Australian-Antarctic Basin, which did not reach the eastern sector at that time (Shafik, 1990). Farther east, around the South Tasman Rise and in the Sorell Basin (ODP Site 1168, 1170) the first evidence for ocean current activity is not observed until the Late Eocene (Exon et al., 2001; Stickley et al., 2004).

© 2019 American Geophysical Union. All rights reserved.
There is evidence for strengthening ocean currents through the Eocene. We interpret this increase in current strength to have implications for the formation of unconformity U3 (details, see chapter 5.4). Nannofossil records along the Australian margin indicate an intermittent current flow with prominent phases of stronger flow in the Middle and Late Eocene, as well as in the Middle Oligocene (Shafik, 1990). Along the Antarctic margin, conjugate to the eastern GAB, IODP Site U1356 reveals Eocene sedimentary structures (S3, see chapter 5.2) that support moderate strength and/or intermittent contourites operating prior to ~49 Ma, whereas after ~49 Ma there is evidence for stronger and more continuous contourite formation. The onset of the westward flowing Antarctic Counter Current through the shallow Tasman Gateway (Bijl et al., 2013a) possibly amplified the clockwise ocean current speed.

The presence of glaucony minerals (products of cation exchange between seawater and sediment) is a strong indicator for moderately strong ocean currents (e.g. Amorosi, 1997; McRae, 1972; Odin and Matter, 1981; Odin and Fullagar, 1988; Rebesco et al., 2014). Along both margins, glauconite has been detected in Eocene shelf sediments (Houben, 2012; Sluijs et al., 2003; Fig. 9). These glauconites suggest an increase in ocean current strength progressing from west to east. Glaucyon has been observed in Middle Eocene samples from the canyons of the Bremer Sub-basin (Blevin, 2005; Bradshaw, 2005); and in Early to Late Eocene and younger rocks in the central GAB (Apollo-1 well site, Messent, 1998; ODP Site 1128, Feary et al., 2000). Late Eocene (~41-34 Ma) glauconites are detected around Tasmania (ODP Leg 189; Exon et al., 2001; Wei, 2004) and in reworked Oligocene material at IODP site U1356 (Houben, 2012).

The widening and deepening of the Australian-Antarctic Basin likely controlled the west to east progression and strengthening of clockwise ocean current circulation. The relationship between basin widening and ocean current strengthening is shown in ocean model simulations by Sijp et al. (2016). Nannofossil records indicate that the basin transformed from neritic (mainly middle shelf) to deeper marine environments from west to east, first in the GAB (~54-44 Ma) and later in the Otway Basin (~44 Ma-Late Eocene; Shafik, 1983, 1990, 1992). The Sorell Basin and the South Tasman Rise were likely isolated by the Tasmanian-Antarctic Shear Zone (NW-SE direction), which probably acted as an oceanographic barrier, leading to anoxic to poorly ventilated conditions until the Late Eocene (Exon et al., 2001; Fig. 9).

Previous studies proposed a surface-water ocean current flowing clockwise in the Australian-Antarctic Basin during the Eocene - the Proto-Leeuwin Current (e.g. McGowran et al., 1997; Shafik, 1992; Stickley et al., 2004). Contourites can form in all water depths (“deep-water” (>2000 m), “mid-water” (300-2000 m) and “shallow-water” (<300m) drift types; Stow et al., 2002b; Viana et al., 1998). Therefore, it is possible that the interpreted S3 contourites were formed by this strong gyre system. Model simulations suggest that the Australian-Antarctic Basin experienced the highest zonal velocities at the Australian side, and particularly at shallower water depths (Sijp et al., 2016). Based on the ocean models (Sijp et al., 2016) showing increased gyre strength with widening of the Australian-Antarctic Basin and considering that the water column was likely to be less well stratified during the warmer Eocene, it is possible that the depth integrated strength of the gyre may have affected the deeper seafloor. However, it is difficult to constrain with certainty whether the paleo-seafloor was sufficiently shallow to be easily affected by surface current activity, and/or if the Proto-Leeuwin Current was strong enough to affect deeper sections in the water column.
5.4 Formation of horizon U3

Along the Australian margin, the establishment of an increasingly sediment-starved environment since the early Cenozoic strongly controlled the stratigraphic character of the sediments, including Horizon U3 (e.g. Bradshaw, 2005; Krassay et al., 2004; Totterdell et al., 2000; Totterdell et al., 2014). Along most of the Australian middle and lower continental slopes, a wide-scale exposure of old sediment units (Early Eocene S3, Late Cretaceous S2, and older S1 rift sediment; Figs. 4-6) is observed. We suggest that a drastic decrease in terrigenous sediment supply led to non-deposition at these parts of the margin. Our study shows similar sedimentary structures along the conjugate Antarctic margin, overlain by the thick post-Eocene glacial sedimentary unit S4. Based on this observation, we propose that the dominant driver for the formation of horizon U3 along the Antarctic slopes was non-deposition similar to the Australian conjugate, rather than erosional processes as proposed by previous authors (e.g. Close et al., 2007; Eittreim et al., 1995; Escutia et al., 2011; Leitchenkov et al., 2012).

In general, we propose that two main processes dominated the formation of U3: decreasing terrigenous sediment supply offshore both margins, and strengthening of the clockwise ocean currents in the deeper parts.

We suggest that a significant decrease in terrigenous sediment supply into the basin on both continents during the Middle to Late Eocene played a significant role forming horizon U3. Offshore southern Australia, a very thin drape of Cenozoic sediments (S3, S4) extends over large areas along the shelves and onshore. Previous studies described that a strong decrease in terrigenous sediment supply into the Australian basins occurred earlier, around 65 Ma (e.g. Bradshaw, 2005; Feary et al., 2000; Krassay et al., 2004; Totterdell et al., 2000; Totterdell et al., 2014). Benbow et al. (1995) proposed that Late Cretaceous-Paleocene uplift in the GAB’s hinterland contributed to the reduction of sediment supply to the GAB (supported by Hall et al., 2016; Totterdell and Bradshaw, 2004). Progressive semi-aridification affecting the hinterland due to the northward shifting of the continent into the subtropical zone, and increasing warm water influx from the Indian Ocean intensified this terrigenous, clastic sediment cut-off from the Middle Eocene (e.g. Feary et al., 2000), culminating in shelfal carbonate accumulation (S4) and along-slope non-deposition, which entirely lacked terrigenous, clastic material.

Antarctica may also have aridified during the Late Eocene. After the Early Eocene Climatic Optimum (<48 Ma), the global sea surface temperatures decreased progressively (e.g. Zachos et al., 2008), leading to the onset of glaciation in Antarctica with the first arrival of glaciers at the Wilkes Land coast around 33.6 Ma (e.g. Escutia et al., 2011). Evidence exists that some Antarctic glaciation had started to form prior to the Eocene/Oligocene-Transition (e.g. Andersen et al., 2011; Carter et al., 2017; Ehrmann and Mackensen, 1992; Gulick et al., 2017; Scher et al., 2014; Strand et al., 2003), particularly during the Priabonian oxygen isotope maximum (PrOM) event (37.34 and 37.19 Ma; Scher et al., 2014). Scher et al. (2014) noted that high-latitude cooling and formation of glaciers tend to strengthen the polar high-pressure regime and produce more arid conditions. This may have led to a decrease in fluvial runoff, and less terrigenous influx into the basin as long as the glaciers do not reach the coast.

The previously discussed strengthening of ocean current activity through the Eocene likely culminated in winnowing, large-scale decreasing sediment accumulation and eventually hiatus formation in the deeper parts of the basin (after Rebesco et al., 2014). The continuous
global Cenozoic cooling (e.g. Zachos et al., 1994) may also have resulted in increasing strength of the thermohaline circulation and additional strengthening of the currents.

We do not discount that at least some sediment erosion occurred along the Antarctic shelves during the onset of glaciation around 33.6 Ma, as reworked Eocene microfossils have been detected in early Oligocene glacial sediment units at IODP Site U1356 and U1360 (Bijl et al., 2018b; Houben et al., 2013). In the Australian case, U3 transforms into a conformable horizon towards the shelves, marking the transition from thin S3 terrigenous layers to S4 carbonate platforms, without any significant hiatus formation (e.g. Totterdell et al., 2000). Similarly, a thin drape of Eocene material may have been deposited along the Antarctic shelves.

6 Summary

6.1 Mid-Jurassic to Late Cretaceous continental rifting (S1 and U1)
The oldest unit, S1, was deposited in sedimentary depocentres along both margins (Fig. 1) during a long-term lithospheric thinning phase between Australia and Antarctica, commencing in the Mid-Late Jurassic (Bein and Taylor, 1981; Fraser and Tilbury, 1979; Wilcoxon and Stagg, 1990). Across the Australian margin, a series of extensional and thermal subsidence phases, with variable extension directions (both spatially and temporally), are interpreted to have controlled sediment deposition (e.g. Blevin and Cathro, 2008; Totterdell et al., 2000). The resulting successions on both margins reflect this complex history, which culminated in continental breakup at the end of sedimentary unit S1 deposition along the western and central parts of the margins. The complex structural history of this period is demonstrated by extensional faults, folding and toe-thrust structures observed across the margins (Figs. 5, 6).

6.2 Late Cretaceous deltaic sedimentation (S2 and U2)
During the generally warm and humid Late Cretaceous-early Paleocene period (~94-58 Ma), large paleo-river systems on both continents transported terrigenous material into the narrow ocean basin, forming delta deposits, up to 5 km thick (Fig. 7). Centres of deposition are the central Great Australian Bight (Ceduna Delta) and - to a lesser extent - offshore the Antarctic Sabrina, Frost and Astrolabe Sediment Basins (Sabrina, Frost, Astrolabe Delta). The paleo-river systems on Australia are interpreted to have had catchment regions extending to areas more than 1000 km away from the offshore delta. Based on our results, we suggest that the Sabrina, Frost and Astrolabe Sediment Basins onshore Antarctica also experienced erosion in the Late Cretaceous by large river systems. It is possible that the river catchment area extended even farther inland, e.g. into the Aurora, Vincennes sediment basins in the west, and/or Adventure Subglacial Trough and Wilkes sediment basin in the east (Fig. 7).

6.3 Paleocene/Eocene clockwise ocean currents (S3)
From ~58 Ma onwards, ocean currents started to flow clockwise within the continuously widening Australian-Antarctic Basin and formed S3 contourite drifts along both margin’s mid-slope and abyssal plain (Fig. 9). The seismic character and overall morphology of these drifts indicate the same clockwise flow direction as the surface-water Proto-Leeuwin Current. Geological evidence (e.g. basin-wide glaucony and increasing evidence for current activity in drill sediments) suggest that this ocean current system strengthened and progressively penetrated farther east through the Eocene (Fig. 9).
6.4 Mid-Late Eocene decreasing sediment deposition (U3)

We propose that widespread decreasing sediment deposition, and partly non-deposition, occurred along both margins throughout the Middle to Late Eocene. Two main processes caused this strong decrease:

1) decreasing terrigenous sediment supply offshore both margins. On the Australian margin, a combination of tectonic and climatic changes resulted in a decreasing terrigenous sediment supply (e.g. Benbow et al., 1995; Feary et al., 2000; Totterdell et al., 2000). Offshore Antarctica, increasing cooling and first formation of glaciers during the Late Eocene possibly strengthened the polar high-pressure regime, producing more arid conditions (Scher et al., 2014) which may have led to decreasing fluvial runoff to the offshore basins; and

2) strengthening of the clockwise ocean currents along the continental slopes through the Eocene, likely culminating in large-scale winnowing and depositional hiatus.

6.5 Post-Eocene sedimentation (S4)

From about 34 Ma onwards, the climate and sedimentary history of Australia and Antarctica evolve very differently. The onset of continent-wide glaciation in Antarctica led to large scale offshore sedimentary deposition (Fig. 10). Thickest S4 sediments are immediately offshore and downstream of the Totten Glacier (up to 4.2 km), and to a lesser extent the Mertz and Ninnis glaciers (Fig. 10), as predicted by DeConto and Pollard (2003). Structural evidence for strong down- and along-slope current activity are present particularly in the upper part of S4, e.g. channel-levee systems, sediment waves and downslope debris flows (Fig. 4-6; after e.g. De Santis et al., 2003; Close, 2010; Donda et al., 2007; Escutia et al., 2007). At the same time, Australia became semi-arid which led to very low sediment influxes and formation of thin cool-water carbonate platforms, e.g. the extensive Eucla Basin (after Feary and James, 1998; Gallagher and Holdgate, 2000; Fig. 10).

In summary, we find that sedimentation patterns on both Australian and Antarctic margins are broadly similar in structure and thickness, prior to the onset of Antarctic glaciation throughout the Eocene/Oligocene boundary. We infer that sedimentation on both margins was dominated by large river deltas that drained into the nascent ocean basin during the warm and humid Late Cretaceous (~94-58 Ma). On the Australian margin, deposition was concentrated offshore in the Bight and Otway basins. Deposition offshore Antarctica largely matches this pattern, with depocentres offshore the Sabrina, Frost and Astrolabe sediment basins. The identification of drift deposits suggests ocean currents starting to circulate clockwise within the continuously widening Australian-Antarctic Basin from ~58 Ma onwards. We suggest that this ocean circulation strengthened and progressed farther east through the Eocene, culminating in a drastic decrease, and partial absence of sediment deposition across the basin in the Mid-Late Eocene. On the Antarctic margin, this phase ended with the onset of Antarctic glaciation in the Mid-Late Eocene. Large amounts of glacial sediments were eroded from the coast and transported into the deeper ocean since the early Oligocene. In contrast, sediment starvation continued on the southern Australian margin, leading mainly to the formation of widespread but thin carbonate platforms on the shelves.

Acknowledgments

We thank the SCAR community (Seismic Data Library System), Geoscience Australia, as well as Spectrum Geo Ltd. for providing the seismic reflection and refraction datasets. We acknowledge IHS Markit for the provision of IHS Kingdom software used in this research. Furthermore, we thank Alexey Goncharov, Howie Scher, Carlota Escutia and
Michele Rebesco for the very helpful discussions. IS was supported under Australian Research Council’s Special Research Initiative for Antarctic Gateway Partnership (Project ID SR140300001). JMW acknowledges funding from the Australian Research Council DP180102280. JMT publishes with the permission of the Chief Executive Officer, Geoscience Australia. The horizon grids presented in this study are available for download (DOI: 10.25959/5ba2cae0eb62a).

References


© 2019 American Geophysical Union. All rights reserved.


Figure 1. Regional 1-minute gravity-derived bathymetric map (ETOPO1; Amante and Eakins, 2009) illustrating the datasets used in this study (a) and main structures (b, c) of the Australian-Antarctic Basin (details, see legends; FZ - Fracture Zone). Locations of seismic profiles in Figs. 4-6 (red lines) and key dredge and drill sites: 1. Survey 265, 2. ODP 1128, 3. Jerboa-1, 4. Potoroo-1, 5. Survey 66, 6. Bridgewater Bay-1, 7. ODP 1168, 8. ODP 1170, 9. DF79-38, 10. IODP U1356, 11. Gulick et al. (2017) are shown in a. Sedimentary basins (B - Basin; SB - Sub-basin) after Totterdell and Bradshaw (2004) are shown in b. Sectors (after Stagg et al., 2004) and subglacial sedimentary basins (SSB, after Aitken et al., 2014): K - Knox SSB, Au - Aurora SSB, S - Sabrina SSB, F - Frost SSB, As - Astrolabe SSB, W - Wilkes SSB are shown in c.
Figure 2. Overview of stratigraphic sequences and depositional environment of the (c) basins Australian southern margin, (d) drill site U1356A, Antarctica, and (e) the stratigraphic interpretation (this study). (a) Geological timescale, (b) Deep-sea benthic foraminiferal oxygen-isotope curve, (f) Regional tectonic (red) and oceanic (blue) events (references, see text) are shown.
Figure 3. Horizon and sedimentary unit ages interpreted in this study, in comparison with previous key investigations along the Antarctic and Australian margins.
Figure 4 Uninterpreted (top) and interpreted (bottom) conjugate seismic reflection profiles (a. Antarctica, b. Australia) in the western Australian-Antarctic Basin (location, see Fig. 1a). Key unconformities: Basement B – yellow, U1 – red, U2 – green, U3 – blue, and sedimentary units S1 - S4. Faults - thin black lines. Interval velocity information from sonobuoy locations are shown (in km/s, white box). Magnetic anomalies are shown as red triangles (after Whittaker et al., 2007). Characteristic features described in the text are shown in zoom-ins with lower vertical exaggeration (1-5). A high-resolution (1200 ppi) version of this figure can be found in the Supplementary Material (S1).
Figure 5. Uninterpreted (top) and interpreted (bottom) conjugate seismic reflection profiles (a. Antarctica, b. Australia) in the central Australian-Antarctic Basin (location, see Fig. 1a). Legend as in Fig. 4. A high-resolution (1200 ppi) version of this figure can be found in the Supplementary Material (S2).
Figure 6. Uninterpreted (top) and interpreted (bottom) conjugate seismic reflection profiles (a. Antarctica, b. Australia) in the eastern Australian-Antarctic Basin (location, see Fig. 1a). Legend as in Fig. 4. A high-resolution (1200 ppi) version of this figure can be found in the Supplementary Material (S3).
Figure 7. Isopach map of sedimentary unit S2, deposited during the Late Cretaceous. Possible paleo-river systems are shown as blue arrows (central Australia – after Lloyd et al., 2016; eastern Australia – after Gingele and Deckker, 2005; Antarctica – this study, interpretation follows present-day ice flow directions after Jamieson and Sugden, 2008). Main depocentres are the Ceduna (CD), Sherbrook (ShD), Sabrina (SD), Frost (FD) and Astrolabe Delta (AD). Legend is shown in the figure. ARB – Adélie Rift Block, BB – Berri Basin, BR – Bruce Rise, DB – Darling Basin, Dun – Dunroon Sub-basin, LD – Law Dome, SB – Sorell Basin, STR – South Tasman Rise, TAH – Terre Adélie Highlands. Legend for subglacial sediment basins and Antarctic sectors, see Fig. 1c and Ad – Adventure Trough, Au – Aurora, V – Vincennes. Key geological sites are 1. Potoroo-1; 2. Bridgewater Bay-1; 3. Piston-Core Site DF79-38. Time of reconstruction is 67 Ma, using the plate model of Whittaker et al. (2013a).
Figure 8. Key examples of observed contourite drift deposits along the Antarctic (left, a-d) and Australian (middle, e-h) margins. The types of drifts observed in this region are shown in the right column (Rebesco et al., 2014; after Stow et al., 2002b) and determined in the figures a-h. A high-resolution (1200 ppi) version of this figure can be find in the Supplementary Material (S4).
Figure 9. Isopach map of sedimentary unit S3, deposited during the Paleocene/Early Eocene. Arrows indicate clockwise flowing ocean currents progressing eastward (legend, see figure). Red arrows show downslope sediment transport sourcing the contouritic drifts. Green stars show drill and dredge locations with Eocene glauconite occurrence. Geological age constraints of contourite (black) and glauconite (green) formation is shown in the figure. Key geological sites are 1. Dredge Survey 265, 2. ODP 1128, 3. Dredge Survey 66-102DR07, 4. Sediment samples onshore (Houben, 2012), 5. ODP 1168, 6. IODP U1356. Legend for subglacial sediment basins, see Fig. 1c. Time of reconstruction is 43.8 Ma, using the plate model of Whittaker et al. (2013a).
Figure 10. Isopach map of sedimentary unit S4, deposited post-Eocene. Offshore Antarctica, thick glacial sediment units are deposited, particularly offshore the Vanderford (VF), Totten, Mertz and Ninnis glaciers (underlined). Glacial catchment provenances (Fretwell et al., 2012) are shown: WIIL - Wilhelm II Land, DG - Denman Glacier, BG - Bond Glacier, VF - Vanderford Glacier, TG - Totten Glacier, MUG - Moscow University Glacier, FG - Frost Glacier, AC - Adélie Coast, MG - Mertz Glacier, NG - Ninnis Glacier. The Cenozoic sedimentary basins are shown after Totterdell and Bradshaw (2004). The calculated sediment volumes and the legend are shown in the figure. ARB – Adélie Rift Block, BR – Bruce Rise. Key drill sites are 1. ODP 1128, 2. IODP Leg 318, 3. ODP 268.