Open Access Repository
Distinct iron cycling in a Southern Ocean eddy
Downloads
Downloads per month over past year



|
PDF
137719 - Distin...pdf | Download (923kB) | Preview |
Abstract
Mesoscale eddies are ubiquitous in the iron-limited Southern Ocean, controlling ocean-atmosphere exchange processes, however their influence on phytoplankton productivity remains unknown. Here we probed the biogeochemical cycling of iron (Fe) in a cold-core eddy. In-eddy surface dissolved Fe (dFe) concentrations and phytoplankton productivity were exceedingly low relative to external waters. In-eddy phytoplankton Fe-to-carbon uptake ratios were elevated 2–6 fold, indicating upregulated intracellular Fe acquisition resulting in a dFe residence time of ~1 day. Heavy dFe isotope values were measured for in-eddy surface waters highlighting extensive trafficking of dFe by cells. Below the euphotic zone, dFe isotope values were lighter and coincident with peaks in recycled nutrients and cell abundance, indicating enhanced microbially-mediated Fe recycling. Our measurements show that the isolated nature of Southern Ocean eddies can produce distinctly different Fe biogeochemistry compared to surrounding waters with cells upregulating iron uptake and using recycling processes to sustain themselves.
Item Type: | Article |
---|---|
Authors/Creators: | Ellwood, MJ and Strzepek, RF and Strutton, PG and Trull, TW and Fourquez, M and Boyd, PW |
Keywords: | iron, southern ocean, biogeochemistry, eddy |
Journal or Publication Title: | Nature Communications |
Publisher: | Nature Publishing Group |
ISSN: | 2041-1723 |
DOI / ID Number: | 10.1038/s41467-020-14464-0 |
Copyright Information: | © The Author(s) 2020. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/ |
Related URLs: | |
Item Statistics: | View statistics for this item |
Actions (login required)
![]() |
Item Control Page |