Open Access Repository

Hyperoverlap: detecting biological overlap in n-dimensional space

Brown, MJM ORCID: 0000-0003-2536-8365, Holland, B ORCID: 0000-0002-4628-7938 and Jordan, GJ ORCID: 0000-0002-6033-2766 2020 , 'Hyperoverlap: detecting biological overlap in n-dimensional space' , Methods in Ecology and Evolution , doi: https://doi.org/10.1111/2041-210X.13363.

[img]
Preview
PDF
137708 - Hypero...pdf | Download (1MB)

| Preview

Abstract

Comparative biological studies often investigate the morphological, physiological or ecological divergence (or overlap) between entities such as species or populations. Here, we discuss the weaknesses of using existing methods to analyse patterns of phenotypic overlap and present a novel method to analyse co-occurrence in multidimensional space. We propose a ‘hyperoverlap’ framework to detect qualitative overlap (or divergence) between point data sets and present the HYPEROVERLAP R package which implements this framework, including functions for visualisation. HYPEROVERLAP uses support vector machines (SVMs) to train a classifier based on point data (such as morphological or ecological data) for two entities. This classifier finds the optimal boundary between the two sets of data and compares the predictions to the original labels. Misclassification is evidence of overlap between the two entities. We demonstrate the theoretical and practical advantages of this method compared to existing approaches (e.g. single-entity hypervolume models) using the bioclimatic data extracted from global occurrence records of conifers. We find that there are instances where single-entity hypervolume models predict overlap, but there are no observations of either entity in the shared hypervolume. In these instances, hyperoverlap reports nonoverlap. We show that our method is stable and less likely to be affected by sampling biases than current approaches. We also find that hyperoverlap is particularly effective for situations involving entities with a small number of data points (e.g. narrowly endemic species) for which single-entity models cannot be reliably constructed. We argue that overlap can be reliably detected using HYPEROVERLAP, particularly for descriptive studies. The method proposed here is a valuable tool for studying patterns of overlap in multidimensional space.

Item Type: Article
Authors/Creators:Brown, MJM and Holland, B and Jordan, GJ
Keywords: ecospace, hyperoverlap, hypervolume, machine learning, morphospace, overlap, support vector machines
Journal or Publication Title: Methods in Ecology and Evolution
Publisher: Wiley-Blackwell Publishing Ltd
ISSN: 2041-210X
DOI / ID Number: https://doi.org/10.1111/2041-210X.13363
Copyright Information:

© 2020 British Ecological Society. This is the peer reviewed version of the following article, Brown MJM, Holland BR, Jordan GJ. Hyperoverlap: Detecting biological overlap in n-dimensional space. Methods Ecol Evol. 2020;00:111. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article has been published in final form at:

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP