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Abstract 

Nanophthalmos and posterior microphthalmos are ocular abnormalities in which both eyes are 

abnormally small, and typically associated with extreme hyperopia. We recruited 40 individuals 

from 13 kindreds with nanophthalmos or posterior microphthalmos, with 12 probands subjected 

to exome sequencing. Nine probands (69.2%) were assigned a genetic diagnosis, with variants 

in MYRF, TMEM98, MFRP, and PRSS56. Two of four PRSS56 families harboured the previously 

described c.1066dupC variant implicated in over half of all reported PRSS56 kindreds, with 

different surrounding haplotypes in each family suggesting a mutational hotspot. Individuals with 

a genetic diagnosis had shorter mean axial lengths and higher hyperopia than those without, with 

recessive forms associated with the most extreme phenotypes. These findings detail the genetic 

architecture of nanophthalmos and posterior microphthalmos in a cohort of predominantly 

European ancestry, their relative clinical phenotypes, and highlight the shared genetic 

architecture of rare and common disorders of refractive error. 
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Introduction 

Clear vision requires precise regulation of ocular growth, such that the axial length of the eye 

matches the optical focal plane created by the cornea and lens. A discrepancy between the two 

results in refractive error, which is the leading cause of visual impairment and the second leading 

cause of blindness worldwide.1 

  

Important insight into the regulation of ocular axial length has come from the study of 

microphthalmia. Nanophthalmos and posterior microphthalmos are subtypes of microphthalmia 

without other ocular malformations, associated with symmetrically reduced axial length and high 

hyperopia. Posterior microphthalmos is characterised by a shorter posterior segment of the eye, 

with the anterior segment typically of normal length.2 Conversely, nanophthalmos is characterised 

by shorter posterior and anterior segments, with a predisposition to primary angle-closure 

glaucoma.2 Posterior microphthalmos and nanophthalmos can be allelic3, suggesting both 

conditions may represent a continuum of the same phenotypic spectrum.4 Most cases are 

explained by biallelic variants in MFRP3,5 and PRSS566–8, with rare examples of monoallelic 

variants in TMEM989,10 and MYRF11. PRSS56 and TMEM98 variants have since been implicated 

in multiple independent genome-wide association studies of myopia.12 

 

Here we assembled a cohort of 13 nanophthalmos or posterior microphthalmos kindreds, 

describe their underlying genetic cause, and detail their relative clinical phenotypes. 

 

 

Material and Methods 

Subjects 

Subjects referred with a diagnosis of nanophthalmos or posterior microphthalmos were included 

if presenting with bilateral and symmetrically small eyes, with axial lengths <20mm in both eyes 
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(a threshold previously shown to account for individuals <3SD from the population mean, and 

proposed as a definition for nanophthalmos).13 Of the 13 families, 4 were sporadic, 3 suggestive 

of autosomal dominant inheritance, and 6 suggestive of autosomal recessive inheritance. Not all 

subjects had anterior chamber depth and/or fundus imaging, thus a distinction between 

nanophthalmos and posterior microphthalmos was not routinely made. Exclusion criteria included 

anterior segment coloboma, or multiple non-ophthalmic syndromic features. Ethics approval was 

granted by the Southern Adelaide Clinical Human Research Ethics Committee. 

  

Sequencing 

Exome sequencing was performed as previously described.14 Briefly, genomic DNA was 

extracted from blood or saliva, subjected to Agilent SureSelect exome capture, and paired-end 

libraries sequenced on an Illumina HiSeq. Alignment and variant calling were performed 

according to GATK best practices, with variant annotation using VEP. RNAseq data was 

generated as previously described.15 

 

 

Results 

Forty individuals diagnosed with nanophthalmos or posterior microphthalmos were recruited from 

13 families, with 69.2% of self-reported European ancestry (Figure 1A, Supplementary Table 1). 

Exome sequencing was performed on one or more members of each family, with the exception 

of NNO03, where a causative variant was identified by capillary sequencing. When including two 

previously reported pedigrees10,16, a suspected genetic cause was identified in 9/13 kindreds 

(69.2%), in genes including MYRF (1), TMEM98 (1), MFRP (3), and PRSS56 (4) (Figure 1B-E). 

All 11 unique variants were rare or absent in gnomAD, and classified as pathogenic or likely 

pathogenic by ACMG criteria in 10/11 cases, and recessive variants confirmed to be in trans by 

segregation testing (Supplementary Table 2). Of the four families without a candidate genetic 
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variant(s), two were sporadic, one suggestive of recessive inheritance, and another suggestive of 

dominant inheritance: none were found to be segregating rare coding variants in MYRF, TMEM98, 

MFRP, or PRSS56. 

 

Dominant pathogenic frameshift and missense variants were identified in MYRF 

(p.(Arg1121GlyfsTer36)) and TMEM98 (p.(Ala193Pro)) respectively, both of which were 

previously reported by our group.10,16 Recessive pathogenic variants were more common, 

identified across seven families in MFRP and PRSS56. We identified four predicted pathogenic 

variants in MFRP across three probands, including two with no previous disease association 

(p.(Ala570Val) and p.(Gly503Val)). All four probands with predicted pathogenic variants in 

PRSS56 had rare compound heterozygous or homozygous variants, including previously 

unreported essential splice (c.849+1G>T and c.97+2dupT), frameshift (p.(Ala115GlyfsTer39)), 

and missense variants (p.(Arg564Cys)), as well as two instances of the previously reported 

c.1066dupC frameshift variant. The PRSS56 c.1066dupC variant (also reported as 

c.1059_1066insC) was initially reported in multiple Tunisian families with posterior 

microphthalmos sharing a common ancestor ~1,850 years ago (Figure 2A).6,8,17 Another nine 

cases explained by the c.1066dupC variant were subsequently reported in a Saudi Arabian cohort 

of microphthalmia and nanophthalmos/posterior microphthalmos, accounting for 69% (9/13) of all 

cases with PRSS56 variants in this report4, as well as in Egyptian and Lebanese patients.18 

  

To determine the origin of the c.1066dupC frameshift variant in our Australian kindreds, we 

compared surrounding haplotypes to the previously described Tunisian founder haplotype (Figure 

2B).17 Three phased variants were genotyped in both the NNO18 proband and the Tunisian 

founder, yet the genotypes in each were divergent, suggesting that the two alleles had arisen 

independently. Similarly, the NNO02 haplotype was divergent from the Tunisian founder and 
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NNO18 proband, suggesting that all three frameshift variants arose independently on different 

haplotypes. 

 

c.1066dupC was the most frequent loss-of-function PRSS56 variant in the gnomAD database 

(Figure 2C), representing over half (58/112) of all reported PRSS56 loss-of-function variants. 

c.1066dupC variants were distributed across seven superpopulations at low frequencies, 

consistent with their independent emergence (Figure 2D). PRSS56 c.1066 was also noted to be 

multiallelic, with insertions and deletions at the same position (Figure 2C), both of which altered 

the length of an eight-nucleotide cytosine mononucleotide repeat (Figure 2E). 

 

Individuals with a single-gene diagnosis had reduced ocular axial length, with the majority also 

highly hyperopic (Figure 3A-B, Supplementary Table 3). Mean axial length was shorter in all 

groups with a genetic diagnosis compared to those without (adjusted P<0.029), with the PRSS56 

subset also having shorter mean axial length than the dominant TMEM98 (adjusted P=0.00003) 

and MYRF (adjusted P=0.00004) subsets. Mean refractive error was also higher in PRSS56 and 

MFRP groups compared to individuals without a genetic diagnosis (adjusted P<0.006), and when 

compared to the MYRF group (adjusted P<0.021). Chorioretinal folds, and/or choroidal effusions 

or retinal detachments were documented in 2/4 PRSS56 pedigrees and 1/3 MFRP pedigrees, 

with extra-ocular features (in the form of dextrocardia or congenital diaphragmatic hernia) only 

observed in 3/5 members of the MYRF pedigree (Supplementary Table 1). Within tissues of 

cadaveric human eyes, expression of the dominant genes MYRF and TMEM98 were more similar 

to one another, and higher, than the recessive genes MFRP and PRSS56 (Figure 3C), consistent 

with the known regulation of TMEM98 expression by MYRF.11 Also notable was the relatively high 

expression of PRSS56 in retina, where it is known to be derived from late retinal progenitor cells 

or Müller glia to promote elongation of ocular axial length both before and after eye opening.19 

Less is known about the tissue-specific roles of MFRP, MYRF, and TMEM98, however. 
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Discussion 

Here we present an Australian cohort of nanophthalmos or posterior microphthalmos cases in 

which 9/13 families were explained by variants in one of four genes. Mean axial length was 

shorter, and hyperopia higher, in individuals with a genetic diagnosis compared to those without. 

Recessive forms (MFRP and PRSS56) were associated with a more severe phenotype than 

dominant forms (TMEM98 and MYRF): recessive cases had a mean axial length range of 14.345-

16.88mm, with dominant cases having a non-overlapping range of 16.96-18.42mm. Affected 

individuals without a genetic diagnosis were milder still, with a mean axial length range of 18.41-

19.815mm, suggesting that these may be due to hypomorphic variants in the four known genes 

which were not detectable by exome sequencing (such as deep intronic or regulatory variants), 

or variants in genes yet to be associated with this phenotype, or alternatively may represent the 

smallest extreme of the polygenic distribution for axial length.12 

 

PRSS56 was the most commonly implicated gene in this cohort (4/13, 30.8%) and other cohorts 

of posterior microphthalmos and nanophthalmos (27.3%-61.5%).4,18,20 Including the four 

described here, at least 27 reported pedigrees have PRSS56-associated posterior 

microphthalmos or nanophthalmos4,6–8,17,18,20, with at least 15 (55.6%) sharing the c.1066dupC 

variant.8,17 Two families here harbour at least one c.1066dupC variant, on haplotypes distinct from 

each other and from a previously reported Tunisian pedigree, suggesting the existence of a 

mutational hotspot. 

  

While loss-of-function PRSS56 variants are associated with reduced axial length and hyperopia, 

gain-of-function variants might therefore be expected to cause increased axial length and myopia. 

Consistent with this, a p.(Ala30Thr) variant of PRSS56 has been identified in genome-wide 

association studies of myopia, suggesting it may increase axial length through a gain-of-function 

mechanism.12 PRSS56 itself is a soluble serine protease, potentially sensitive to protease 
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inhibitors or monoclonal antibodies, and therefore a candidate target for treatment of refractive 

error. 

  

In summary, we reveal considerable overlap between genes associated with rare and common 

refractive error phenotypes, a mutational hotspot responsible for the most frequent single variant 

associated with nanophthalmos or posterior microphthalmos worldwide, and a clinical distinction 

between recessive and dominant forms of the condition.  
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Figure Legends 
 
Figure 1: Genetic characterisation of a nanophthalmos and posterior microphthalmos 
cohort. 
(A) Self-reported ancestry of the 13 probands. 
(B) Proportion of probands with suspected pathogenic variants in the indicated genes. 
(C) Pedigrees grouped by affected gene. Asterisks indicate previously reported pedigrees. 
(D) Schematic of loci and variants identified. 
(E) Protein schematics with variants identified. C, cytoplasmic domain; TM, transmembrane 
domain; CUB, Complement C1r/C1s, Uegf, Bmp1 domain; L, LDL-receptor class A domain; FZ, 
frizzled domain; CC, coiled-coil domain. 
 
Figure 2: Origins of PRSS56 c.1066dupC in a mutational hotspot. 
(A) PRSS56 protein schematic with variants identified in this study (white circles), or previous 
studies (coloured circles). Dashed vertical lines indicate exon boundaries. (B) Haplotype 
structure surrounding the PRSS56 c.1066dupC variant in a previously reported Tunisian 
founder, and two unrelated probands. (C) Frequency of PRSS56 loss-of-function variants 
(nonsense, essential splice, frameshift) reported in gnomAD r2.0.2 and Bravo (TOPMed 
Freeze5) collections. The c.1066dupC variant is highlighted in red. (D) Frequency of 
c.1066dupC across multiple ancestries within gnomAD. (E) IGV representation of the left-shifted 
c.1066dupC variant within a cytosine mononucleotide repeat. 
 
Figure 3: Clinical and transcriptional phenotypes of dominant and recessive forms of 
nanophthalmos. Mean ocular axial length (A) and spherical equivalent (B) of affected individuals 
stratified by genetic diagnosis. For both phenotypes, group means were significantly different by 
one-way ANOVA (P<0.0005), with asterisks (*) indicating a significant difference from the 
unsolved cohort (Tukey multiple comparison testing, P<0.03). (C) Relative mean expression 
dendrogram (normalised log counts per kb per million mapped reads) of genes in dissected 
human adult cadaveric eye tissue. S, sclera; CS, corneal stroma; CE, corneal epithelium; TM, 
trabecular meshwork; DM, Descemet’s membrane; ON, optic nerve; ONH, optic nerve head; PI, 
peripheral iris; CB, ciliary body. 
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Supplementary Table 1: Clinical details as obtained from referring clinicians. Gender and ancestry are both self-reported. BCVA, best-
corrected visual acuity; AL, axial length; SE, spherical equivalent; AC, anterior chamber depth; IOP, intraocular pressure (mm Hg); SLT, 
selective laser trabeculoplasty; Trab, trabeculectomy; PI, laser peripheral iridotomy; Phaco, phacoemulsification; BE, both eyes; RE, right eye; 
LE, left eye. 
 

ID Gene Age at 
recruitment 

Gender Proband Ancestry BCVA RE BCVA LE AL RE 
(mm) 

AL LE 
(mm) 

SE RE 
(D) 

SE LE 
(D) 

AC RE 
(mm) 

AC LE 
(mm)  

Max IOP 
(mmHg) 

Glaucoma Interventions 

NNO01.05 TMEM98 31 F TRUE European 6/60 6/24 18.46 18.34 9.75 10.5 
  

42 Yes SLT BE, trab RE 

NNO01.06 TMEM98 23 F FALSE European 6/12 6/15 17.02 16.90 14.12 13.5 
  

19 No Nil 

NNO01.07 TMEM98 58 F FALSE European 
  

17.10 17.14 15.50 15.00 
     

NNO01.08 TMEM98 60 M FALSE European 
    

11.87 12.37 
  

19 No Nil 

NNO01.10 TMEM98 28 M FALSE European 
    

13.75 12.87 
     

NNO01.12 TMEM98 88 M FALSE European 
    

11.5 
      

NNO01.14 TMEM98 61 M FALSE European 6/9 6/9 17.00 17.00 11.75 11.75 
  

24 No Nil 

NNO01.19 TMEM98 47 M FALSE European 6/9 6/12 
  

13.75 12.87 
  

18 No Nil 

NNO01.23 TMEM98 48 F FALSE European 6/9 6/36 
  

14.50 14.25 
   

Yes Trab BE, PI BE 

NNO01.25 TMEM98 21 M FALSE European 6/12 
 

18.42 
 

7.50 
   

40 Yes PI RE, Trab LE 

NNO01.26 TMEM98 23 F FALSE European 
    

8.25 8.50 
  

11 No Nil 

NNO01.28 TMEM98 81 F FALSE European 
  

17.43 17.31 7.00 9.50 
     

NNO01.30 TMEM98 83 F FALSE European HM CF 18.02 
 

12.50 12.00 
   

Yes Trab BE 

NNO01.32 TMEM98 46 M FALSE European 
    

12.50 12.00 
     

NNO01.33 TMEM98 75 M FALSE European 6/24 6/30 18.12 17.92 15.00 15.00 
  

14 No Nil 

NNO01.36 TMEM98 49 M FALSE European 
    

9.00 10.00 
     

NNO02.1 PRSS56 49 F TRUE European 6/12 6/36 
  

8.00 7.25 
  

46 Yes PI BE, trab RE, phaco 
LE, cyclodiode laser 
RE 

NNO02.2 PRSS56 44 F FALSE European 6/6 6/6 15.58 15.41 16.75 18.00 
  

16 No Nil 

NNO02.3 PRSS56 48 M FALSE European 
 

6/48 
 

15.52 
 

13.00 
 

2.93 37 No 
 

NNO03.1 MFRP 65 F TRUE Unknown 6/18 6/24 16.75 16.71 16.50 15.25 2.67 1.72 26 No PI BE, phaco BE 

NNO04.1 MFRP 59 F TRUE European 6/9 6/18 
  

13.00 13.00 
  

33 Yes PI BE, phaco BE 

NNO04.2 MFRP 56 F FALSE European 
  

16.79 16.97 19.25 18.00 
  

20 No PI BE 



NNO05.1 Unsolve
d 

66 F TRUE European 6/12 6/10 18.40 18.42 10.25 10.12 1.90 2.12 23 No Phaco BE 

NNO05.4 Unsolve
d 

39 F FALSE European 6/4.8 6/10 19.22 19.15 8.50 9.00 2.44 2.60 17 No Nil 

NNO08.1 MFRP 42 F TRUE European 6/15 6/15 15.70 15.70 15.00 15.00 2.5 2.6 20 No Cat ex OU 

NNO17.1 Unsolve
d 

51 F TRUE European 6/9.5 6/9.5 19.22 19.28 9.50 9.50 2.26 2.30 59 Yes PI OU, cat ex OU 

NNO17.2 Unsolve
d 

54 M FALSE European 6/6 6/6 19.89 19.74 9.25 9.50 NA NA 13 No Cat ex OU 

NNO18.1 PRSS56 41 F TRUE European/Indigenou
s 

6/24 6/24 14.17 14.52 20.50 19.37 2.02 2.23 20 No PI OU, cat ex OU 

NNO18.2 PRSS56 41 F FALSE European/Indigenou
s 

           

NNO18.3 PRSS56 44 M FALSE European/Indigenou
s 

6/15 6/38 15.24 17.10 16.00 18.00 2.86 2.93 15 No Cat ex OU 

NNO21.1 Unsolve
d 

61 F TRUE European 6/9.6 6/7.5 19.37 18.89 8.00 9.25 2.09 2.31 16 No PI OU 

NNO22.1 PRSS56 7 M TRUE Lebanese 6/15 6/12 16.64 16.63 14.50 14.50 NA NA 17 No Nil 

NNO22.2 PRSS56 3 M FALSE Lebanese 6/12 6/12 16.23 16.10 13.50 14.00 NA NA 15 No Nil 

NNO25.1 Unsolve
d 

70 F TRUE European 6/9.5 6/15 19.83 19.77 7.75 7.87 2.17 2.44 21 No PI OU 

NNO27.1 PRSS56 35 F TRUE Vietnamese 6/12 6/18 15.90 16.10 15.00 15.00 2.99 2.75 12 
  

NNO32.1 MYRF 36 F TRUE European 6/24 6/9 17.5 17.69 13.00 13.00 2.91 2.85 12 No PI OU 

NNO32.2 MYRF 33 M FALSE European 
           

NNO32.3 MYRF 56 M FALSE European 6/30 6/24 18.24 18.14 10.75 10.50 3.98 2.95 18 No Cat ex OU 

NNO32.4 MYRF 9 M FALSE European 6/6 6/38 18.4 18.19 9.00 10.00 3.70 3.67 14 No Nil 

NNO32.5 MYRF 8 F FALSE European 6/15 6/7.5 17.88 18.05 4.75 4.00 2.00 1.98 30 No PI OU 

 



Supplementary Table 2. Disease-associated gene variants in nine probands with 
nanophthalmos or posterior microphthalmos. Genomic coordinates are based on the hg19 
reference. AF, gnomAD r2.1.1 allele frequency; CADD, Phred-scaled CADD score. Variant 
consequences refer to the following transcript and protein accession IDs: TMEM98 
(ENST00000579849.1, ENSP00000463245.1), PRSS56 (ENST00000617714.1, 
ENSP00000479745.1), MFRP (ENST00000555262.1, ENSP00000450509.1), MYRF 
(ENST00000278836.5, ENSP00000278836.4). 
 
Family gene chr start ref alt state class cDNA protein gnomAD AF CADD 

NNO03 MFRP 11 119214525 C A het splice donor c.1124+1G>T . 0.00006065 26.4 

NNO03 MFRP 11 119212289 G A het missense c.1709C>T p.Ala570Val 0.000004098 24.4 

NNO04 MFRP 11 119212574 C A het missense c.1508G>T p.Gly503Val . 25.6 

NNO04 MFRP 11 119216248 G A het stop gained c.523C>T p.Gln175Ter 0.00004022 36 

NNO08 MFRP 11 119214525 C A hom splice donor c.1124+1G>T . 0.00006065 26.4 

NNO32 MYRF 11 61553331 C - het 
frameshift 
deletion c.3361del p.Arg1121GlyfsTer36 . . 

NNO02 PRSS56 2 233387913 G T het splice donor c.849+1G>T . 0.00008335 24.5 

NNO02 PRSS56 2 233388527 - C het 
frameshift 
insertion c.1066dupC p.Gln356ProfsTer152 0.0003668 . 

NNO18 PRSS56 2 233388527 - C hom 
frameshift 
insertion c.1066dupC p.Gln356ProfsTer152 0.0003668 . 

NNO22 PRSS56 2 233385406 - T hom splice donor c.97+2dupT . . . 

NNO27 PRSS56 2 233386763 - G het 
frameshift 
insertion c.343dupG p.Ala115GlyfsTer39 0.000009972 . 

NNO27 PRSS56 2 233390091 C T het missense c.1690C>T p.Arg564Cys 0.00001887 33 

NNO01 TMEM98 17 31267907 G C het missense c.577G>C p.Ala193Pro . 29.5 

 
 



Supplementary Table 3. Summary of genotype-phenotype correlates. Continuous variables are 
displayed as mean ± SD (for normally distributed variables) or IQR (for non-normal variables), with 
categorical variables displayed as numbers and percentages. P values were calculated by one-way 
ANOVA for normally distributed variables, Kruskal-Wallis test for non-normal continuous variables, or 
by Fisher’s exact test for categorical variables. AL, axial length; AC, anterior chamber; SE, spherical 
equivalent; MD, mean deviation; SD, standard deviation; IQR, interquartile range.  
 
 Unsolved MYRF TMEM98 MFRP PRSS56 P 
n 6 5 16 4 9  
Gender = F/M (%) 5/1 (83.3/16.7) 2/3 (40.0/60.0) 7/9 (43.8/56.2) 4/0 (100.0/0.0) 5/4 (55.6/44.4) 0.1937 
Age at recruitment 
(mean (SD)) 56.83 (11.27) 28.40 (20.21) 51.38 (22.43) 55.50 (9.75) 34.67 (17.34) 0.033 
AL (mean (SD)) 19.27 (0.52) 18.01 (0.31) 17.66 (0.62) 16.44 (0.64) 15.76 (0.74) <0.0001 
SE (mean (SD)) 9.04 (0.83) 9.38 (3.64) 11.79 (2.43) 15.62 (2.33) 14.77 (3.66) 0.0005 
Maximum IOP (median 
[IQR]) 

19.00 [16.25, 
22.50] 

16.00 [13.50, 
21.00] 

19.00 [17.00, 
28.00] 

23.00 [20.00, 
27.75] 

16.50 [15.00, 
24.25] 0.6016 

Glaucoma = No/Yes 
(%) 5/1 (83.3/16.7) 4/0 (100.0/0.0) 6/4 (60.0/40.0) 3/1 (75.0/25.0) 6/1 (85.7/14.3) 0.6665 
IOP intervention = 
FALSE/TRUE (%) 3/3 (50.0/50.0) 2/2 (50.0/50.0) 6/4 (60.0/40.0) 2/2 (50.0/50.0) 4/2 (66.7/33.3) 1 
 


